|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch SwitchTransformers model.""" |
|
|
|
|
|
import copy |
|
import math |
|
import warnings |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import ( |
|
MoEModelOutput, |
|
MoEModelOutputWithPastAndCrossAttentions, |
|
Seq2SeqMoEModelOutput, |
|
Seq2SeqMoEOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer |
|
from transformers.utils import ( |
|
DUMMY_INPUTS, |
|
DUMMY_MASK, |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
is_torch_fx_proxy, |
|
logging, |
|
replace_return_docstrings, |
|
) |
|
from configuration_switch_transformers import SwitchTransformersConfig |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "SwitchTransformersConfig" |
|
_CHECKPOINT_FOR_DOC = "google/switch-base-8" |
|
|
|
|
|
|
|
|
|
|
|
SWITCH_TRANSFORMERS_PRETRAINED_MODEL_ARCHIVE_LIST = [ |
|
"google/switch-base-8", |
|
"google/switch-base-16", |
|
"google/switch-base-32", |
|
"google/switch-base-64", |
|
"google/switch-base-128", |
|
"google/switch-base-256", |
|
"google/switch-large-128", |
|
"google/switch-xxl-128", |
|
"google/switch-c-2048", |
|
|
|
] |
|
|
|
|
|
def router_z_loss_func(router_logits: torch.Tensor) -> float: |
|
r""" |
|
Compute the router z-loss implemented in PyTorch. |
|
|
|
The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906). |
|
It encourages router logits to remain small in an effort to improve stability. |
|
|
|
Args: |
|
router_logits (`float`): |
|
Input logits of shape [batch_size, sequence_length, num_experts] |
|
|
|
Returns: |
|
Scalar router z-loss. |
|
""" |
|
num_groups, tokens_per_group, _ = router_logits.shape |
|
log_z = torch.logsumexp(router_logits, dim=-1) |
|
z_loss = log_z**2 |
|
return torch.sum(z_loss) / (num_groups * tokens_per_group) |
|
|
|
|
|
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
router_probs (`torch.Tensor`): |
|
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts]. |
|
expert_indices (`torch.Tensor`): |
|
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token. |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
num_experts = router_probs.shape[-1] |
|
|
|
|
|
if expert_indices.dtype != torch.int64: |
|
expert_indices = expert_indices.to(torch.int64) |
|
|
|
if len(expert_indices.shape) == 2: |
|
expert_indices = expert_indices.unsqueeze(2) |
|
|
|
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts) |
|
|
|
|
|
expert_mask = torch.max(expert_mask, axis=-2).values |
|
|
|
|
|
expert_mask = expert_mask.to(torch.float32) |
|
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2) |
|
|
|
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2) |
|
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2) |
|
|
|
|
|
|
|
class SwitchTransformersClassificationHead(nn.Module): |
|
"""Head for sentence-level classification tasks.""" |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__() |
|
self.dense = nn.Linear(config.d_model, config.d_model) |
|
self.dropout = nn.Dropout(p=config.classifier_dropout) |
|
self.out_proj = nn.Linear(config.d_model, config.num_labels) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.dense(hidden_states) |
|
hidden_states = torch.tanh(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
hidden_states = self.out_proj(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SwitchTransformersTop1Router(nn.Module): |
|
""" |
|
Router using tokens choose top-1 experts assignment. |
|
|
|
This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE |
|
(https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then |
|
routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each |
|
token is processed by an expert**, or that each expert receives at least one token. |
|
|
|
""" |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__() |
|
self.num_experts = config.num_experts |
|
self.expert_capacity = config.expert_capacity |
|
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias) |
|
self.jitter_noise = config.router_jitter_noise |
|
self.ignore_padding_tokens = config.router_ignore_padding_tokens |
|
self.dtype = getattr(torch, config.router_dtype) |
|
|
|
def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]: |
|
r""" |
|
Computes router probabilities from input hidden states. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`): |
|
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed. |
|
Returns: |
|
router_probabilities (`torch.Tensor`): |
|
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each |
|
token and expert. Used for routing tokens to experts. |
|
router_logits (`torch.Tensor`): |
|
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits. |
|
This is used later for computing router z-loss. |
|
""" |
|
|
|
|
|
|
|
self.input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(self.dtype) |
|
|
|
if self.training and self.jitter_noise > 0: |
|
|
|
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise) |
|
|
|
|
|
self._cast_classifier() |
|
router_logits = self.classifier(hidden_states) |
|
|
|
|
|
router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype) |
|
return router_probabilities, router_logits |
|
|
|
def _cast_classifier(self): |
|
r""" |
|
`bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an |
|
instance of the `Linear8bitLt` class by checking special attributes. |
|
""" |
|
if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")): |
|
self.classifier = self.classifier.to(self.dtype) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> Tuple: |
|
r""" |
|
Generic forward function for every Router class. Each Router expects to have the same input hidden states |
|
(`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the |
|
number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert. |
|
|
|
Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and |
|
`router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned |
|
to an expert. Then each Router class will have to define its own `_compute_routing_instructions`. |
|
|
|
Args: |
|
hidden_states (`torch.Tensor`) : |
|
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts. |
|
Returns: |
|
Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs |
|
and the router logits. The router probabilities and logits are required to compute the loss. |
|
""" |
|
router_probs, router_logits = self._compute_router_probabilities(hidden_states) |
|
|
|
expert_index = torch.argmax(router_probs, dim=-1) |
|
expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts) |
|
|
|
|
|
token_priority = torch.cumsum(expert_index, dim=-2) |
|
|
|
expert_capacity_mask = token_priority <= self.expert_capacity |
|
expert_index = expert_index * expert_capacity_mask |
|
|
|
router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1) |
|
return expert_index, router_probs, router_logits |
|
|
|
|
|
|
|
class SwitchTransformersLayerNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
Construct a layernorm module in the SwitchTransformers style. No bias and no subtraction of mean. |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
|
|
|
|
|
|
|
|
|
|
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
|
|
|
if self.weight.dtype in [torch.float16, torch.bfloat16]: |
|
hidden_states = hidden_states.to(self.weight.dtype) |
|
|
|
return self.weight * hidden_states |
|
|
|
|
|
ALL_LAYERNORM_LAYERS.append(SwitchTransformersLayerNorm) |
|
|
|
|
|
|
|
class SwitchTransformersDenseActDense(nn.Module): |
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__() |
|
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) |
|
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
self.act = ACT2FN[config.dense_act_fn] |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.wi(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
if ( |
|
isinstance(self.wo.weight, torch.Tensor) |
|
and hidden_states.dtype != self.wo.weight.dtype |
|
and self.wo.weight.dtype != torch.int8 |
|
): |
|
hidden_states = hidden_states.to(self.wo.weight.dtype) |
|
hidden_states = self.wo(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class SwitchTransformersSparseMLP(nn.Module): |
|
r""" |
|
Implementation of the Switch Transformers Sparse MLP module. |
|
""" |
|
|
|
def __init__(self, config: SwitchTransformersConfig, expert_class: nn.Module = SwitchTransformersDenseActDense): |
|
super().__init__() |
|
|
|
self.router = SwitchTransformersTop1Router(config) |
|
|
|
|
|
self.experts = nn.ModuleDict() |
|
for idx in range(config.num_experts): |
|
self.experts[f"expert_{idx}"] = expert_class(config) |
|
|
|
def forward(self, hidden_states): |
|
r""" |
|
Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following: |
|
|
|
1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)` |
|
and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the |
|
hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor). |
|
|
|
2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each |
|
expert the corresponding hidden states. |
|
|
|
""" |
|
|
|
router_mask, router_probs, router_logits = self.router(hidden_states) |
|
expert_index = torch.argmax(router_mask, dim=-1) |
|
|
|
|
|
|
|
|
|
next_states = hidden_states.clone() |
|
for idx, expert in enumerate(self.experts.values()): |
|
token_indices = router_mask[:, :, idx].bool() |
|
next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype) |
|
|
|
hidden_states = router_probs * next_states |
|
return hidden_states, (router_logits, expert_index) |
|
|
|
|
|
class SwitchTransformersLayerFF(nn.Module): |
|
r""" |
|
Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module. |
|
|
|
Parameters: |
|
config : ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
is_sparse (`bool`): |
|
Whether the MLP layer is a `Sparse` layer (contains a Mixture of Experts) or not |
|
""" |
|
|
|
def __init__(self, config: SwitchTransformersConfig, is_sparse=False): |
|
super().__init__() |
|
self.is_sparse = is_sparse |
|
|
|
|
|
if not self.is_sparse: |
|
self.mlp = SwitchTransformersDenseActDense(config) |
|
else: |
|
self.mlp = SwitchTransformersSparseMLP(config) |
|
|
|
self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward(self, hidden_states, output_router_logits): |
|
forwarded_states = self.layer_norm(hidden_states) |
|
forwarded_states = self.mlp(forwarded_states) |
|
|
|
if isinstance(forwarded_states, tuple): |
|
forwarded_states, router_tuple = forwarded_states |
|
else: |
|
router_tuple = None |
|
|
|
output = hidden_states + self.dropout(forwarded_states) |
|
|
|
if output_router_logits and router_tuple is not None: |
|
output = (output, router_tuple) |
|
|
|
return output |
|
|
|
|
|
|
|
class SwitchTransformersAttention(nn.Module): |
|
def __init__(self, config: SwitchTransformersConfig, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.has_relative_attention_bias = has_relative_attention_bias |
|
self.relative_attention_num_buckets = config.relative_attention_num_buckets |
|
self.relative_attention_max_distance = config.relative_attention_max_distance |
|
self.d_model = config.d_model |
|
self.key_value_proj_dim = config.d_kv |
|
self.n_heads = config.num_heads |
|
self.dropout = config.dropout_rate |
|
self.inner_dim = self.n_heads * self.key_value_proj_dim |
|
|
|
|
|
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) |
|
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) |
|
|
|
if self.has_relative_attention_bias: |
|
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) |
|
self.pruned_heads = set() |
|
self.gradient_checkpointing = False |
|
|
|
def prune_heads(self, heads): |
|
if len(heads) == 0: |
|
return |
|
heads, index = find_pruneable_heads_and_indices( |
|
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads |
|
) |
|
|
|
self.q = prune_linear_layer(self.q, index) |
|
self.k = prune_linear_layer(self.k, index) |
|
self.v = prune_linear_layer(self.v, index) |
|
self.o = prune_linear_layer(self.o, index, dim=1) |
|
|
|
self.n_heads = self.n_heads - len(heads) |
|
self.inner_dim = self.key_value_proj_dim * self.n_heads |
|
self.pruned_heads = self.pruned_heads.union(heads) |
|
|
|
@staticmethod |
|
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): |
|
""" |
|
Adapted from Mesh Tensorflow: |
|
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 |
|
|
|
Translate relative position to a bucket number for relative attention. The relative position is defined as |
|
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to |
|
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for |
|
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative |
|
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. |
|
This should allow for more graceful generalization to longer sequences than the model has been trained on |
|
|
|
Args: |
|
relative_position: an int32 Tensor |
|
bidirectional: a boolean - whether the attention is bidirectional |
|
num_buckets: an integer |
|
max_distance: an integer |
|
|
|
Returns: |
|
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) |
|
""" |
|
relative_buckets = 0 |
|
if bidirectional: |
|
num_buckets //= 2 |
|
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets |
|
relative_position = torch.abs(relative_position) |
|
else: |
|
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) |
|
|
|
|
|
|
|
max_exact = num_buckets // 2 |
|
is_small = relative_position < max_exact |
|
|
|
|
|
relative_position_if_large = max_exact + ( |
|
torch.log(relative_position.float() / max_exact) |
|
/ math.log(max_distance / max_exact) |
|
* (num_buckets - max_exact) |
|
).to(torch.long) |
|
relative_position_if_large = torch.min( |
|
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) |
|
) |
|
|
|
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) |
|
return relative_buckets |
|
|
|
def compute_bias(self, query_length, key_length, device=None): |
|
"""Compute binned relative position bias""" |
|
if device is None: |
|
device = self.relative_attention_bias.weight.device |
|
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] |
|
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] |
|
relative_position = memory_position - context_position |
|
relative_position_bucket = self._relative_position_bucket( |
|
relative_position, |
|
bidirectional=(not self.is_decoder), |
|
num_buckets=self.relative_attention_num_buckets, |
|
max_distance=self.relative_attention_max_distance, |
|
) |
|
values = self.relative_attention_bias(relative_position_bucket) |
|
values = values.permute([2, 0, 1]).unsqueeze(0) |
|
return values |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
mask=None, |
|
key_value_states=None, |
|
position_bias=None, |
|
past_key_value=None, |
|
layer_head_mask=None, |
|
query_length=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
""" |
|
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). |
|
""" |
|
|
|
|
|
|
|
batch_size, seq_length = hidden_states.shape[:2] |
|
|
|
real_seq_length = seq_length |
|
|
|
if past_key_value is not None: |
|
if len(past_key_value) != 2: |
|
raise ValueError( |
|
f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" |
|
) |
|
real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length |
|
|
|
key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] |
|
|
|
def shape(states): |
|
"""projection""" |
|
return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) |
|
|
|
def unshape(states): |
|
"""reshape""" |
|
return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) |
|
|
|
def project(hidden_states, proj_layer, key_value_states, past_key_value): |
|
"""projects hidden states correctly to key/query states""" |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(hidden_states)) |
|
elif past_key_value is None: |
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
|
|
if past_key_value is not None: |
|
if key_value_states is None: |
|
|
|
|
|
hidden_states = torch.cat([past_key_value, hidden_states], dim=2) |
|
elif past_key_value.shape[2] != key_value_states.shape[1]: |
|
|
|
|
|
|
|
|
|
hidden_states = shape(proj_layer(key_value_states)) |
|
else: |
|
|
|
hidden_states = past_key_value |
|
return hidden_states |
|
|
|
|
|
query_states = shape(self.q(hidden_states)) |
|
|
|
|
|
key_states = project( |
|
hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None |
|
) |
|
value_states = project( |
|
hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None |
|
) |
|
|
|
|
|
scores = torch.matmul( |
|
query_states, key_states.transpose(3, 2) |
|
) |
|
|
|
if position_bias is None: |
|
if not self.has_relative_attention_bias: |
|
position_bias = torch.zeros( |
|
(1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype |
|
) |
|
if self.gradient_checkpointing and self.training: |
|
position_bias.requires_grad = True |
|
else: |
|
position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) |
|
|
|
|
|
|
|
if past_key_value is not None: |
|
position_bias = position_bias[:, :, -hidden_states.size(1) :, :] |
|
|
|
if mask is not None: |
|
position_bias = position_bias + mask |
|
|
|
if self.pruned_heads: |
|
mask = torch.ones(position_bias.shape[1]) |
|
mask[list(self.pruned_heads)] = 0 |
|
position_bias_masked = position_bias[:, mask.bool()] |
|
else: |
|
position_bias_masked = position_bias |
|
|
|
scores += position_bias_masked |
|
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( |
|
scores |
|
) |
|
attn_weights = nn.functional.dropout( |
|
attn_weights, p=self.dropout, training=self.training |
|
) |
|
|
|
|
|
if layer_head_mask is not None: |
|
attn_weights = attn_weights * layer_head_mask |
|
|
|
attn_output = unshape(torch.matmul(attn_weights, value_states)) |
|
attn_output = self.o(attn_output) |
|
|
|
present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None |
|
outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) |
|
|
|
if output_attentions: |
|
outputs = outputs + (attn_weights,) |
|
return outputs |
|
|
|
|
|
|
|
class SwitchTransformersLayerSelfAttention(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False): |
|
super().__init__() |
|
self.SelfAttention = SwitchTransformersAttention( |
|
config, has_relative_attention_bias=has_relative_attention_bias |
|
) |
|
self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.SelfAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (hidden_states,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
|
|
class SwitchTransformersLayerCrossAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.EncDecAttention = SwitchTransformersAttention(config, has_relative_attention_bias=False) |
|
self.layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
key_value_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
query_length=None, |
|
output_attentions=False, |
|
): |
|
normed_hidden_states = self.layer_norm(hidden_states) |
|
attention_output = self.EncDecAttention( |
|
normed_hidden_states, |
|
mask=attention_mask, |
|
key_value_states=key_value_states, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
query_length=query_length, |
|
output_attentions=output_attentions, |
|
) |
|
layer_output = hidden_states + self.dropout(attention_output[0]) |
|
outputs = (layer_output,) + attention_output[1:] |
|
return outputs |
|
|
|
|
|
class SwitchTransformersBlock(nn.Module): |
|
def __init__(self, config, has_relative_attention_bias=False, is_sparse=False): |
|
super().__init__() |
|
self.is_decoder = config.is_decoder |
|
self.is_sparse = is_sparse |
|
self.layer = nn.ModuleList() |
|
self.layer.append( |
|
SwitchTransformersLayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias) |
|
) |
|
if self.is_decoder: |
|
self.layer.append(SwitchTransformersLayerCrossAttention(config)) |
|
|
|
self.layer.append(SwitchTransformersLayerFF(config, is_sparse=self.is_sparse)) |
|
|
|
def forward( |
|
self, |
|
hidden_states, |
|
attention_mask=None, |
|
position_bias=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
encoder_decoder_position_bias=None, |
|
layer_head_mask=None, |
|
cross_attn_layer_head_mask=None, |
|
past_key_value=None, |
|
use_cache=False, |
|
output_attentions=False, |
|
output_router_logits=True, |
|
return_dict=True, |
|
): |
|
if past_key_value is not None: |
|
if not self.is_decoder: |
|
logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") |
|
expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 |
|
|
|
if len(past_key_value) != expected_num_past_key_values: |
|
raise ValueError( |
|
f"There should be {expected_num_past_key_values} past states. " |
|
f"{'2 (past / key) for cross attention. ' if expected_num_past_key_values == 4 else ''}" |
|
f"Got {len(past_key_value)} past key / value states" |
|
) |
|
|
|
self_attn_past_key_value = past_key_value[:2] |
|
cross_attn_past_key_value = past_key_value[2:] |
|
else: |
|
self_attn_past_key_value, cross_attn_past_key_value = None, None |
|
|
|
self_attention_outputs = self.layer[0]( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_bias=position_bias, |
|
layer_head_mask=layer_head_mask, |
|
past_key_value=self_attn_past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states, present_key_value_state = self_attention_outputs[:2] |
|
attention_outputs = self_attention_outputs[2:] |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
do_cross_attention = self.is_decoder and encoder_hidden_states is not None |
|
if do_cross_attention: |
|
|
|
|
|
if present_key_value_state is not None: |
|
query_length = present_key_value_state[0].shape[2] |
|
else: |
|
query_length = None |
|
|
|
cross_attention_outputs = self.layer[1]( |
|
hidden_states, |
|
key_value_states=encoder_hidden_states, |
|
attention_mask=encoder_attention_mask, |
|
position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=cross_attn_past_key_value, |
|
query_length=query_length, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = cross_attention_outputs[0] |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
|
|
if present_key_value_state is not None: |
|
present_key_value_state = present_key_value_state + cross_attention_outputs[1] |
|
|
|
|
|
attention_outputs = attention_outputs + cross_attention_outputs[2:] |
|
|
|
|
|
hidden_states = self.layer[-1](hidden_states, output_router_logits) |
|
|
|
if isinstance(hidden_states, tuple): |
|
hidden_states, router_tuple = hidden_states |
|
else: |
|
router_tuple = (torch.zeros((1,), device=hidden_states.device, dtype=torch.int64),) |
|
|
|
|
|
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any(): |
|
clamp_value = torch.finfo(hidden_states.dtype).max - 1000 |
|
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) |
|
|
|
outputs = (hidden_states,) |
|
|
|
if use_cache: |
|
outputs = outputs + (present_key_value_state,) + attention_outputs + (router_tuple,) |
|
else: |
|
outputs = outputs + attention_outputs + (router_tuple,) |
|
|
|
return outputs |
|
|
|
|
|
class SwitchTransformersPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = SwitchTransformersConfig |
|
base_model_prefix = "switch_transformers" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["SwitchTransformersBlock"] |
|
|
|
@property |
|
def dummy_inputs(self): |
|
input_ids = torch.tensor(DUMMY_INPUTS) |
|
input_mask = torch.tensor(DUMMY_MASK) |
|
dummy_inputs = { |
|
"decoder_input_ids": input_ids, |
|
"input_ids": input_ids, |
|
"decoder_attention_mask": input_mask, |
|
} |
|
return dummy_inputs |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
factor = self.config.initializer_factor |
|
if isinstance(module, SwitchTransformersLayerNorm): |
|
module.weight.data.fill_(factor * 1.0) |
|
elif isinstance( |
|
module, |
|
(SwitchTransformersModel, SwitchTransformersForConditionalGeneration, SwitchTransformersEncoderModel, SwitchTransformersForSequenceClassification), |
|
): |
|
|
|
|
|
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: |
|
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) |
|
elif isinstance(module, SwitchTransformersClassificationHead): |
|
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.dense, "bias") and module.dense.bias is not None: |
|
module.dense.bias.data.zero_() |
|
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: |
|
module.out_proj.bias.data.zero_() |
|
elif isinstance(module, SwitchTransformersDenseActDense): |
|
|
|
|
|
|
|
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) |
|
if hasattr(module.wi, "bias") and module.wi.bias is not None: |
|
module.wi.bias.data.zero_() |
|
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) |
|
if hasattr(module.wo, "bias") and module.wo.bias is not None: |
|
module.wo.bias.data.zero_() |
|
elif isinstance(module, SwitchTransformersAttention): |
|
|
|
|
|
d_model = self.config.d_model |
|
key_value_proj_dim = self.config.d_kv |
|
n_heads = self.config.num_heads |
|
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) |
|
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) |
|
if module.has_relative_attention_bias: |
|
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) |
|
elif isinstance(module, SwitchTransformersSparseMLP): |
|
|
|
|
|
d_model = self.config.d_model |
|
key_value_proj_dim = self.config.d_kv |
|
n_heads = self.config.num_heads |
|
module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1) |
|
for idx in range(self.config.num_experts): |
|
module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) |
|
|
|
def _shift_right(self, input_ids): |
|
decoder_start_token_id = self.config.decoder_start_token_id |
|
pad_token_id = self.config.pad_token_id |
|
|
|
if decoder_start_token_id is None: |
|
raise ValueError( |
|
"self.model.config.decoder_start_token_id has to be defined. In SwitchTransformers it is usually set" |
|
" to the pad_token_id. See SwitchTransformers docs for more information" |
|
) |
|
|
|
|
|
if is_torch_fx_proxy(input_ids): |
|
|
|
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) |
|
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) |
|
else: |
|
shifted_input_ids = input_ids.new_zeros(input_ids.shape) |
|
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() |
|
shifted_input_ids[..., 0] = decoder_start_token_id |
|
|
|
if pad_token_id is None: |
|
raise ValueError("self.model.config.pad_token_id has to be defined.") |
|
|
|
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) |
|
|
|
return shifted_input_ids |
|
|
|
|
|
class SwitchTransformersStack(SwitchTransformersPreTrainedModel): |
|
def __init__(self, config, embed_tokens=None): |
|
super().__init__(config) |
|
|
|
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
if embed_tokens is not None: |
|
self.embed_tokens.weight = embed_tokens.weight |
|
|
|
self.is_decoder = config.is_decoder |
|
|
|
sparse_step = config.decoder_sparse_step if self.is_decoder else config.encoder_sparse_step |
|
config.num_layers = config.num_decoder_layers if self.is_decoder else config.num_layers |
|
self.block = nn.ModuleList() |
|
for i in range(config.num_layers): |
|
is_sparse = (i % sparse_step == 1 or sparse_step == 1) if sparse_step > 0 else False |
|
|
|
self.block.append( |
|
SwitchTransformersBlock(config, has_relative_attention_bias=bool(i == 0), is_sparse=is_sparse) |
|
) |
|
|
|
self.final_layer_norm = SwitchTransformersLayerNorm(config.d_model, eps=config.layer_norm_epsilon) |
|
self.dropout = nn.Dropout(config.dropout_rate) |
|
|
|
|
|
self.post_init() |
|
|
|
self.device_map = None |
|
self.gradient_checkpointing = False |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_tokens |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.embed_tokens = new_embeddings |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
attention_mask=None, |
|
encoder_hidden_states=None, |
|
encoder_attention_mask=None, |
|
inputs_embeds=None, |
|
head_mask=None, |
|
cross_attn_head_mask=None, |
|
past_key_values=None, |
|
use_cache=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
output_router_logits=True, |
|
return_dict=None, |
|
): |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError( |
|
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" |
|
) |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
input_ids = input_ids.view(-1, input_shape[-1]) |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
err_msg_prefix = "decoder_" if self.is_decoder else "" |
|
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
if self.embed_tokens is None: |
|
raise ValueError("You have to initialize the model with valid token embeddings") |
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
|
|
mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length |
|
|
|
if use_cache is True: |
|
if not self.is_decoder: |
|
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") |
|
|
|
if attention_mask is None: |
|
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) |
|
if self.is_decoder and encoder_attention_mask is None and encoder_hidden_states is not None: |
|
encoder_seq_length = encoder_hidden_states.shape[1] |
|
encoder_attention_mask = torch.ones( |
|
batch_size, encoder_seq_length, device=inputs_embeds.device, dtype=torch.long |
|
) |
|
|
|
|
|
if past_key_values is None: |
|
past_key_values = [None] * len(self.block) |
|
|
|
|
|
|
|
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) |
|
|
|
|
|
|
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() |
|
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) |
|
if encoder_attention_mask is None: |
|
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=inputs_embeds.device) |
|
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) |
|
else: |
|
encoder_extended_attention_mask = None |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning_once( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_layers) |
|
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) |
|
present_key_value_states = () if use_cache else None |
|
all_hidden_states = () if output_hidden_states else None |
|
all_attentions = () if output_attentions else None |
|
all_router_probs = () if output_router_logits else None |
|
all_cross_attentions = () if (output_attentions and self.is_decoder) else None |
|
position_bias = None |
|
encoder_decoder_position_bias = None |
|
|
|
hidden_states = self.dropout(inputs_embeds) |
|
|
|
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): |
|
layer_head_mask = head_mask[i] |
|
cross_attn_layer_head_mask = cross_attn_head_mask[i] |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = self._gradient_checkpointing_func( |
|
layer_module.forward, |
|
hidden_states, |
|
extended_attention_mask, |
|
position_bias, |
|
encoder_hidden_states, |
|
encoder_extended_attention_mask, |
|
encoder_decoder_position_bias, |
|
layer_head_mask, |
|
cross_attn_layer_head_mask, |
|
None, |
|
use_cache, |
|
output_attentions, |
|
) |
|
else: |
|
layer_outputs = layer_module( |
|
hidden_states, |
|
attention_mask=extended_attention_mask, |
|
position_bias=position_bias, |
|
encoder_hidden_states=encoder_hidden_states, |
|
encoder_attention_mask=encoder_extended_attention_mask, |
|
encoder_decoder_position_bias=encoder_decoder_position_bias, |
|
layer_head_mask=layer_head_mask, |
|
cross_attn_layer_head_mask=cross_attn_layer_head_mask, |
|
past_key_value=past_key_value, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_router_logits=output_router_logits, |
|
) |
|
|
|
router_probs = layer_outputs[-1] |
|
layer_outputs = layer_outputs[:-1] |
|
|
|
|
|
|
|
if use_cache is False: |
|
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] |
|
|
|
hidden_states, present_key_value_state = layer_outputs[:2] |
|
|
|
|
|
|
|
|
|
position_bias = layer_outputs[2] |
|
if self.is_decoder and encoder_hidden_states is not None: |
|
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] |
|
|
|
if use_cache: |
|
present_key_value_states = present_key_value_states + (present_key_value_state,) |
|
|
|
if output_attentions: |
|
all_attentions = all_attentions + (layer_outputs[3],) |
|
if self.is_decoder: |
|
all_cross_attentions = all_cross_attentions + (layer_outputs[5],) |
|
|
|
if output_router_logits: |
|
all_router_probs = all_router_probs + (router_probs,) |
|
|
|
hidden_states = self.final_layer_norm(hidden_states) |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple( |
|
v |
|
for v in [ |
|
hidden_states, |
|
present_key_value_states, |
|
all_hidden_states, |
|
all_attentions, |
|
all_cross_attentions, |
|
all_router_probs, |
|
] |
|
if v is not None |
|
) |
|
return MoEModelOutputWithPastAndCrossAttentions( |
|
last_hidden_state=hidden_states, |
|
past_key_values=present_key_value_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
cross_attentions=all_cross_attentions, |
|
router_probs=all_router_probs, |
|
) |
|
|
|
|
|
SWITCH_TRANSFORMERS_START_DOCSTRING = r""" |
|
|
|
The SWITCH_TRANSFORMERS model was proposed in [Switch Transformers: Scaling to Trillion Parameter Models with |
|
Simple and Efficient Sparsity](https://arxiv.org/abs/2101.03961) by [William |
|
Fedus](https://arxiv.org/search/cs?searchtype=author&query=Fedus%2C+W), [Barret |
|
Zoph](https://arxiv.org/search/cs?searchtype=author&query=Zoph%2C+B), and [Noam |
|
Shazeer](https://arxiv.org/search/cs?searchtype=author&query=Shazeer%2C+N). It's an encoder-decoder T5-like model |
|
with sparse Feed Forward that stands for Mixture of Experts (MoE) architecture. |
|
|
|
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the |
|
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads |
|
etc.) |
|
|
|
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. |
|
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage |
|
and behavior. |
|
|
|
Parameters: |
|
config ([`SwitchTransformersConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
SWITCH_TRANSFORMERS_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position |
|
embeddings so you should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for detail. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
|
|
To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS |
|
Training](./switch_transformers#training). |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Indices of decoder input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are decoder input IDs?](../glossary#decoder-input-ids) |
|
|
|
SWITCH_TRANSFORMERS uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If |
|
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see |
|
`past_key_values`). |
|
|
|
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [SWITCH_TRANSFORMERS |
|
Training](./switch_transformers#training). |
|
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): |
|
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also |
|
be used by default. |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, |
|
1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in |
|
`[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): |
|
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) |
|
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at |
|
the output of the last layer of the encoder. Used in the cross-attention of the decoder. |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded |
|
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be |
|
input (see `past_key_values`). This is useful if you want more control over how to convert |
|
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. |
|
|
|
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value |
|
of `inputs_embeds`. |
|
|
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
|
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): |
|
Indices of input sequence tokens in the vocabulary. SWITCH_TRANSFORMERS is a model with relative position |
|
embeddings so you should be able to pad the inputs on both the right and the left. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for detail. |
|
|
|
To know more on how to prepare `input_ids` for pretraining take a look a [SWITCH_TRANSFORMERS |
|
Training](./switch_transformers#training). |
|
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
output_router_logits (`bool`, *optional*): |
|
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and |
|
should not be returned during inference. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
__HEAD_MASK_WARNING_MSG = """ |
|
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, |
|
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. |
|
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, |
|
num_heads)`. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare SWITCH_TRANSFORMERS Model transformer outputting raw hidden-states without any specific head on top.", |
|
SWITCH_TRANSFORMERS_START_DOCSTRING, |
|
) |
|
class SwitchTransformersModel(SwitchTransformersPreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = SwitchTransformersStack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
self.decoder = SwitchTransformersStack(decoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.device_map = None |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, SwitchTransformersModel |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") |
|
>>> model = SwitchTransformersModel.from_pretrained("google/switch-base-8") |
|
|
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 |
|
|
|
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for SwitchTransformersModel. |
|
>>> # This is not needed for torch's SwitchTransformersForConditionalGeneration as it does this internally using labels arg. |
|
>>> decoder_input_ids = model._shift_right(decoder_input_ids) |
|
|
|
>>> # forward pass |
|
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
if ( |
|
output_router_logits |
|
and self.config.num_sparse_encoder_layers == 0 |
|
and self.config.num_sparse_encoder_layers == 0 |
|
): |
|
raise ValueError( |
|
"You asked to return `output_router_logits` but the transformer in dense, and does " |
|
" not contain any sparse MLP Layers. Set `output_router_logits = False` and restart" |
|
) |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): |
|
encoder_outputs = MoEModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
if not return_dict: |
|
return decoder_outputs + encoder_outputs |
|
|
|
return Seq2SeqMoEModelOutput( |
|
last_hidden_state=decoder_outputs.last_hidden_state, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
decoder_router_logits=decoder_outputs.router_probs, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
encoder_router_logits=encoder_outputs.router_probs, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""SWITCH_TRANSFORMERS Model with a `language modeling` head on top.""", SWITCH_TRANSFORMERS_START_DOCSTRING |
|
) |
|
class SwitchTransformersForConditionalGeneration(SwitchTransformersPreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__(config) |
|
self.model_dim = config.d_model |
|
|
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = SwitchTransformersStack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
decoder_config.num_layers = config.num_decoder_layers |
|
self.decoder = SwitchTransformersStack(decoder_config, self.shared) |
|
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
self.router_z_loss_coef = config.router_z_loss_coef |
|
self.router_aux_loss_coef = config.router_aux_loss_coef |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.device_map = None |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def get_output_embeddings(self): |
|
return self.lm_head |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
@add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
decoder_inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = True, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], Seq2SeqMoEOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., |
|
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for |
|
labels in `[0, ..., config.vocab_size]` |
|
|
|
Returns: |
|
|
|
Examples: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, SwitchTransformersForConditionalGeneration |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") |
|
>>> model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8") |
|
|
|
>>> # training |
|
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids |
|
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids |
|
>>> outputs = model(input_ids=input_ids, labels=labels) |
|
>>> loss = outputs.loss |
|
>>> logits = outputs.logits |
|
|
|
>>> # inference |
|
>>> input_ids = tokenizer( |
|
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model.generate(input_ids) |
|
>>> # . To, let’s say you have a dog. To summarize: |
|
>>> # Since the model has been trained on MLM, this will output gibberish |
|
```""" |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
if head_mask is not None and decoder_head_mask is None: |
|
if self.config.num_layers == self.config.num_decoder_layers: |
|
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) |
|
decoder_head_mask = head_mask |
|
|
|
|
|
if encoder_outputs is None: |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): |
|
encoder_outputs = MoEModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: |
|
|
|
decoder_input_ids = self._shift_right(labels) |
|
|
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = decoder_outputs[0] |
|
|
|
if self.config.tie_word_embeddings: |
|
|
|
|
|
sequence_output = sequence_output * (self.model_dim**-0.5) |
|
|
|
lm_logits = self.lm_head(sequence_output) |
|
|
|
loss = None |
|
encoder_z_loss = None |
|
encoder_aux_loss = None |
|
decoder_z_loss = None |
|
decoder_aux_loss = None |
|
|
|
if output_router_logits: |
|
|
|
if self.encoder.config.encoder_sparse_step > 1: |
|
encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_outputs[-1]) |
|
encoder_z_loss = router_z_loss_func(encoder_router_logits) |
|
encoder_router_probs = nn.Softmax(dim=-1)(encoder_router_logits) |
|
encoder_aux_loss = load_balancing_loss_func(encoder_router_probs, encoder_expert_indexes) |
|
else: |
|
encoder_z_loss = 0 |
|
encoder_aux_loss = 0 |
|
|
|
if self.decoder.config.decoder_sparse_step > 1: |
|
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_outputs[-1]) |
|
decoder_z_loss = router_z_loss_func(decoder_router_logits) |
|
decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits) |
|
decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes) |
|
else: |
|
decoder_z_loss = 0 |
|
decoder_aux_loss = 0 |
|
|
|
if labels is not None: |
|
loss_fct = CrossEntropyLoss(ignore_index=-100) |
|
|
|
labels = labels.to(lm_logits.device) |
|
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) |
|
|
|
if output_router_logits: |
|
z_loss = self.router_z_loss_coef * (encoder_z_loss + decoder_z_loss) |
|
aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) |
|
loss = loss + z_loss + aux_loss |
|
|
|
if not return_dict: |
|
output = (lm_logits,) |
|
if output_router_logits: |
|
output += (encoder_z_loss, encoder_aux_loss, decoder_z_loss, decoder_aux_loss) |
|
output += (*decoder_outputs[1:], *encoder_outputs) |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqMoEOutput( |
|
loss=loss, |
|
logits=lm_logits, |
|
encoder_z_loss=encoder_z_loss, |
|
encoder_aux_loss=encoder_aux_loss, |
|
decoder_z_loss=decoder_z_loss, |
|
decoder_aux_loss=decoder_aux_loss, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
decoder_router_logits=decoder_outputs.router_probs, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
encoder_router_logits=encoder_outputs.router_probs, |
|
) |
|
|
|
def _unpack_router_logits(self, router_outputs): |
|
total_router_logits = [] |
|
total_expert_indexes = [] |
|
for router_output in router_outputs: |
|
if len(router_output[0].shape) > 1: |
|
router_logits, expert_indexes = router_output |
|
total_router_logits.append(router_logits) |
|
total_expert_indexes.append(expert_indexes) |
|
return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
attention_mask=None, |
|
head_mask=None, |
|
decoder_head_mask=None, |
|
cross_attn_head_mask=None, |
|
use_cache=None, |
|
encoder_outputs=None, |
|
**kwargs, |
|
): |
|
|
|
if past_key_values is not None: |
|
past_length = past_key_values[0][0].shape[2] |
|
|
|
|
|
if input_ids.shape[1] > past_length: |
|
remove_prefix_length = past_length |
|
else: |
|
|
|
remove_prefix_length = input_ids.shape[1] - 1 |
|
|
|
input_ids = input_ids[:, remove_prefix_length:] |
|
|
|
return { |
|
"decoder_input_ids": input_ids, |
|
"past_key_values": past_key_values, |
|
"encoder_outputs": encoder_outputs, |
|
"attention_mask": attention_mask, |
|
"head_mask": head_mask, |
|
"decoder_head_mask": decoder_head_mask, |
|
"cross_attn_head_mask": cross_attn_head_mask, |
|
"use_cache": use_cache, |
|
} |
|
|
|
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): |
|
return self._shift_right(labels) |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
|
|
|
|
if past_key_values is None: |
|
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") |
|
return past_key_values |
|
|
|
reordered_decoder_past = () |
|
for layer_past_states in past_key_values: |
|
|
|
|
|
reordered_layer_past_states = () |
|
for layer_past_state in layer_past_states: |
|
|
|
reordered_layer_past_states = reordered_layer_past_states + ( |
|
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), |
|
) |
|
|
|
if reordered_layer_past_states[0].shape != layer_past_states[0].shape: |
|
raise ValueError( |
|
"expected reordered_layer_past_states to have the same shape than layer_past_states, " |
|
f"but got {reordered_layer_past_states[0].shape} and {layer_past_states[0].shape}" |
|
) |
|
if len(reordered_layer_past_states) != len(layer_past_states): |
|
raise ValueError( |
|
"expected layer_past_states to have the same length as reordered_layer_past_states, " |
|
f"but got {len(layer_past_states)} and {len(reordered_layer_past_states)}" |
|
) |
|
|
|
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) |
|
return reordered_decoder_past |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare SWITCH_TRANSFORMERS Model transformer outputting encoder's raw hidden-states without any specific head" |
|
" on top.", |
|
SWITCH_TRANSFORMERS_START_DOCSTRING, |
|
) |
|
class SwitchTransformersEncoderModel(SwitchTransformersPreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = SwitchTransformersStack(encoder_config, self.shared) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
self.device_map = None |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_ENCODER_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=MoEModelOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = True, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.FloatTensor], MoEModelOutput]: |
|
r""" |
|
Returns: |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import AutoTokenizer, SwitchTransformersEncoderModel |
|
|
|
>>> tokenizer = AutoTokenizer.from_pretrained("google/switch-base-8") |
|
>>> model = SwitchTransformersEncoderModel.from_pretrained("google/switch-base-8") |
|
>>> input_ids = tokenizer( |
|
... "Studies have been shown that owning a dog is good for you", return_tensors="pt" |
|
... ).input_ids # Batch size 1 |
|
>>> outputs = model(input_ids=input_ids) |
|
>>> last_hidden_states = outputs.last_hidden_state |
|
```""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
|
|
return encoder_outputs |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
SwitchTransformers model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE |
|
tasks. |
|
""", |
|
SWITCH_TRANSFORMERS_START_DOCSTRING, |
|
) |
|
class SwitchTransformersForSequenceClassification(SwitchTransformersPreTrainedModel): |
|
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] |
|
|
|
def __init__(self, config: SwitchTransformersConfig): |
|
super().__init__(config) |
|
self.shared = nn.Embedding(config.vocab_size, config.d_model) |
|
|
|
encoder_config = copy.deepcopy(config) |
|
encoder_config.is_decoder = False |
|
encoder_config.use_cache = False |
|
encoder_config.is_encoder_decoder = False |
|
self.encoder = SwitchTransformersStack(encoder_config, self.shared) |
|
|
|
decoder_config = copy.deepcopy(config) |
|
decoder_config.is_decoder = True |
|
decoder_config.is_encoder_decoder = False |
|
self.decoder = SwitchTransformersStack(decoder_config, self.shared) |
|
|
|
self.classification_head = SwitchTransformersClassificationHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.shared |
|
|
|
def set_input_embeddings(self, new_embeddings): |
|
self.shared = new_embeddings |
|
self.encoder.set_input_embeddings(new_embeddings) |
|
self.decoder.set_input_embeddings(new_embeddings) |
|
|
|
def _tie_weights(self): |
|
if self.config.tie_word_embeddings: |
|
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) |
|
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) |
|
|
|
def get_encoder(self): |
|
return self.encoder |
|
|
|
def get_decoder(self): |
|
return self.decoder |
|
|
|
def _prune_heads(self, heads_to_prune): |
|
""" |
|
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base |
|
class PreTrainedModel |
|
""" |
|
for layer, heads in heads_to_prune.items(): |
|
self.encoder.layer[layer].attention.prune_heads(heads) |
|
|
|
@add_start_docstrings_to_model_forward(SWITCH_TRANSFORMERS_INPUTS_DOCSTRING) |
|
@replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
decoder_input_ids: Optional[torch.LongTensor] = None, |
|
decoder_attention_mask: Optional[torch.BoolTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
decoder_head_mask: Optional[torch.FloatTensor] = None, |
|
cross_attn_head_mask: Optional[torch.Tensor] = None, |
|
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
decoder_inputs_embeds: Optional[torch.Tensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
) -> Union[Tuple, Seq2SeqMoEOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
if labels is not None: |
|
use_cache = False |
|
|
|
if input_ids is None and inputs_embeds is not None: |
|
raise NotImplementedError( |
|
f"Passing input embeddings is currently not supported for {self.__class__.__name__}" |
|
) |
|
|
|
if ( |
|
output_router_logits |
|
and self.config.num_sparse_encoder_layers == 0 |
|
and self.config.num_sparse_encoder_layers == 0 |
|
): |
|
raise ValueError( |
|
"You asked to return `output_router_logits` but the transformer in dense, and does " |
|
" not contain any sparse MLP Layers. Set `output_router_logits = False` and restart" |
|
) |
|
|
|
|
|
|
|
if decoder_input_ids is None and decoder_inputs_embeds is None: |
|
if input_ids is None: |
|
raise ValueError( |
|
"If no `decoder_input_ids` or `decoder_inputs_embeds` are " |
|
"passed, `input_ids` cannot be `None`. Please pass either " |
|
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." |
|
) |
|
decoder_input_ids = self._shift_right(input_ids) |
|
|
|
if encoder_outputs is None: |
|
encoder_outputs = self.encoder( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
inputs_embeds=inputs_embeds, |
|
head_mask=head_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput): |
|
encoder_outputs = MoEModelOutput( |
|
last_hidden_state=encoder_outputs[0], |
|
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, |
|
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, |
|
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None, |
|
) |
|
|
|
hidden_states = encoder_outputs[0] |
|
|
|
decoder_outputs = self.decoder( |
|
input_ids=decoder_input_ids, |
|
attention_mask=decoder_attention_mask, |
|
inputs_embeds=decoder_inputs_embeds, |
|
past_key_values=past_key_values, |
|
encoder_hidden_states=hidden_states, |
|
encoder_attention_mask=attention_mask, |
|
head_mask=decoder_head_mask, |
|
cross_attn_head_mask=cross_attn_head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
output_router_logits=output_router_logits, |
|
return_dict=return_dict, |
|
) |
|
sequence_output = decoder_outputs[0] |
|
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) |
|
|
|
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: |
|
print( |
|
"All examples must have the same number of <eos> tokens. Your batch has {} <eos> tokens.".format( |
|
torch.unique_consecutive(eos_mask.sum(1)).tolist() |
|
)) |
|
logits = torch.tensor([]) |
|
return Seq2SeqMoEOutput( |
|
loss=None, |
|
logits=torch.zeros_like(logits), |
|
encoder_z_loss=0.0, |
|
encoder_aux_loss=0.0, |
|
decoder_z_loss=0.0, |
|
decoder_aux_loss=0.0, |
|
past_key_values=None, |
|
decoder_hidden_states=None, |
|
decoder_attentions=None, |
|
cross_attentions=None, |
|
decoder_router_logits=None, |
|
encoder_last_hidden_state=None, |
|
encoder_hidden_states=None, |
|
encoder_attentions=None, |
|
encoder_router_logits=None, |
|
) |
|
|
|
|
|
batch_size, _, hidden_size = sequence_output.shape |
|
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] |
|
logits = self.classification_head(sentence_representation) |
|
|
|
loss = None |
|
encoder_z_loss = None |
|
encoder_aux_loss = None |
|
decoder_z_loss = None |
|
decoder_aux_loss = None |
|
if output_router_logits: |
|
|
|
if self.encoder.config.encoder_sparse_step > 1: |
|
encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_outputs[-1]) |
|
encoder_z_loss = router_z_loss_func(encoder_router_logits) |
|
encoder_router_probs = nn.Softmax(dim=-1)(encoder_router_logits) |
|
encoder_aux_loss = load_balancing_loss_func(encoder_router_probs, encoder_expert_indexes) |
|
else: |
|
encoder_z_loss = 0 |
|
encoder_aux_loss = 0 |
|
|
|
if self.decoder.config.decoder_sparse_step > 1: |
|
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_outputs[-1]) |
|
decoder_z_loss = router_z_loss_func(decoder_router_logits) |
|
decoder_router_probs = nn.Softmax(dim=-1)(decoder_router_logits) |
|
decoder_aux_loss = load_balancing_loss_func(decoder_router_probs, decoder_expert_indexes) |
|
else: |
|
decoder_z_loss = 0 |
|
decoder_aux_loss = 0 |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.config.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.config.num_labels == 1: |
|
loss = loss_fct(logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
if output_router_logits: |
|
z_loss = self.router_z_loss_coef * (encoder_z_loss + decoder_z_loss) |
|
aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss) |
|
loss = loss + z_loss + aux_loss |
|
|
|
if not return_dict: |
|
output = (logits,) |
|
if output_router_logits: |
|
output += (encoder_z_loss, encoder_aux_loss, decoder_z_loss, decoder_aux_loss) |
|
output += (*decoder_outputs[1:], *encoder_outputs) |
|
|
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return Seq2SeqMoEOutput( |
|
loss=loss, |
|
logits=logits, |
|
encoder_z_loss=encoder_z_loss, |
|
encoder_aux_loss=encoder_aux_loss, |
|
decoder_z_loss=decoder_z_loss, |
|
decoder_aux_loss=decoder_aux_loss, |
|
past_key_values=decoder_outputs.past_key_values, |
|
decoder_hidden_states=decoder_outputs.hidden_states, |
|
decoder_attentions=decoder_outputs.attentions, |
|
cross_attentions=decoder_outputs.cross_attentions, |
|
decoder_router_logits=decoder_outputs.router_probs, |
|
encoder_last_hidden_state=encoder_outputs.last_hidden_state, |
|
encoder_hidden_states=encoder_outputs.hidden_states, |
|
encoder_attentions=encoder_outputs.attentions, |
|
encoder_router_logits=encoder_outputs.router_probs, |
|
) |
|
|