File size: 1,771 Bytes
6a36602 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
config:
name: pipocoin2
process:
- datasets:
- cache_latents_to_disk: true
caption_dropout_rate: 0.2
caption_ext: txt
folder_path: /root/lorahub/pipocoin2/dataset
resolution:
- 1024
shuffle_tokens: true
token_dropout_rate: 0.01
device: cuda:0
model:
is_flux: true
name_or_path: black-forest-labs/FLUX.1-dev
quantize: true
text_encoder_bits: 8
network:
linear: 42
linear_alpha: 42
transformer_only: true
type: lora
performance_log_every: 500
sample:
height: 1024
neg: ''
prompts:
- A cartoon Jedi with green lightsaber [$pipocoin]
- mini Pipo the hippo [$pipocoin]
- AN ACTION SCENE [$pipocoin]
- A woman holding a cartoon CAT [$pipocoin]
- THE JOKER MOG FACE LOL HAHA [$pipocoin]
- BATMAN cartoon IN GOTHAM [$pipocoin]
- CHAD WITH LOTS OF CASH [$pipocoin]
sample_every: 500
sample_steps: 25
sampler: flowmatch
seed: 777
walk_seed: true
width: 1024
save:
dtype: float16
max_step_saves_to_keep: 3
save_every: 500
save_format: diffusers
train:
batch_size: 1
dtype: bf16
ema_config:
ema_decay: 0.99
use_ema: true
gradient_accumulation_steps: 1
gradient_checkpointing: true
linear_timesteps: true
loss_type: mse
lr: 0.5
noise_scheduler: flowmatch
optimizer: prodigy
reg_weight: 0.5
steps: 3000
target_noise_multiplier: 1.0
train_text_encoder: false
train_unet: true
training_folder: /root/lorahub
trigger_word: $pipocoin
type: sd_trainer
job: extension
meta:
description: Pipo memecoin with caption dataset
|