Push the trained agent to the Hugging Face Hub
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +25 -25
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 292.23 +/- 21.67
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa4578a5670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa4578a5700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa4578a5790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa4578a5820>", "_build": "<function ActorCriticPolicy._build at 0x7fa4578a58b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa4578a5940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa4578a59d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa4578a5a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa4578a5af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa4578a5b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa4578a5c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa4578a5ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa45789d8d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673878681727908871, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFoagj0crrY/omIBP0J2sL107vc7WHzZPQAAAAAAAAAAGr4yvcAqTD/Gq6G9xAoEv21GxLz4Q2k8AAAAAAAAAAB6fw4++wK4PS9EJr4Gkxq+Nxg7PVgYX70AAAAAAAAAAGBaQj4bbII//bjgPqZwIb+IyUw+OH1hPQAAAAAAAAAAZnurvCnYQbrQGB49PZUoswzSCTo6R1mzAAAAAAAAAABN1eo9kRSmPY3E+71liky+q6NCPNrtN70AAAAAAAAAADN3oL18R68/U8y/vsH8tL7iD8O9BZuFvQAAAAAAAAAAc6X3vW3aAD/u3yU9ghfDvv7pRb1aV5k8AAAAAAAAAACNwKG9uvM7Pvk6Jrxkqmi+EXhYvLBlqDwAAAAAAAAAAM1Z8L1BjYk9e7FZPZ00i77MBKe8qmOFvAAAAAAAAAAAc7plvtwPcT6uuYE+VAKBvnv4CrxmVKY8AAAAAAAAAADgNj0+KRR3PSZzYL7WoDe+CvjTO6idIj0AAAAAAAAAAHoDW75sufA+p3uLPYKSxr623HC9tn5CPQAAAAAAAAAAzXAaPnveND8OXhA+Y7HOvhFW1T2NvZq9AAAAAAAAAACAKaa9OjcGPwYVqTw7UcK+WA8+vGLA+zwAAAAAAAAAAECGNb4px0+8ysQjO3UWMDlaV7k91R5NugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIDFpIwCiXckCUhpRSlIwBbJRL6IwBdJRHQJYvp+vyLAJ1fZQoaAZoCWgPQwix+47hMSRtQJSGlFKUaBVLz2gWR0CWL7tz0Yj0dX2UKGgGaAloD0MINZcbDPWcbkCUhpRSlGgVS91oFkdAli/sNUfgaXV9lChoBmgJaA9DCEYGuYuw9XFAlIaUUpRoFUvbaBZHQJYwBnGsFMZ1fZQoaAZoCWgPQwi4V+ateohxQJSGlFKUaBVNcQFoFkdAljCp7LMcInV9lChoBmgJaA9DCBuDTggdZnBAlIaUUpRoFU0EAWgWR0CWMMgh8pkPdX2UKGgGaAloD0MIGQRWDi39cUCUhpRSlGgVTWgBaBZHQJYxMXBP9DR1fZQoaAZoCWgPQwh1ApoIG19xQJSGlFKUaBVL0WgWR0CWMea9K28adX2UKGgGaAloD0MI4pS5+UbAZUCUhpRSlGgVTegDaBZHQJYyXRu0kW11fZQoaAZoCWgPQwixicxcYIpyQJSGlFKUaBVL8GgWR0CWM7aH9FWodX2UKGgGaAloD0MIuoEC72QtcECUhpRSlGgVTUcBaBZHQJY0Vy3kPtl1fZQoaAZoCWgPQwhmLQWk/X5xQJSGlFKUaBVLyWgWR0CWNRlImPYGdX2UKGgGaAloD0MIC0W6n9MucECUhpRSlGgVS+ZoFkdAljZCdvsJIHV9lChoBmgJaA9DCOjewyWHgXBAlIaUUpRoFUvtaBZHQJY2Q57w8W91fZQoaAZoCWgPQwhsXtVZ7UdwQJSGlFKUaBVNLgFoFkdAljbJ97Wuo3V9lChoBmgJaA9DCIGU2LU95m9AlIaUUpRoFUviaBZHQJY3JS619fF1fZQoaAZoCWgPQwg3HJYGfjFxQJSGlFKUaBVNAgFoFkdAljc5lSS/03V9lChoBmgJaA9DCFZ9rrZiOmxAlIaUUpRoFUvgaBZHQJY3kHKOktV1fZQoaAZoCWgPQwh1OpD11AJxQJSGlFKUaBVNewFoFkdAljfDi4rjHXV9lChoBmgJaA9DCLow0osamnBAlIaUUpRoFUvNaBZHQJY30hMajvd1fZQoaAZoCWgPQwiv6xfsRqZwQJSGlFKUaBVNBQFoFkdAljf5kK/mDHV9lChoBmgJaA9DCKBQTx8BonBAlIaUUpRoFUvVaBZHQJY4cSeyzHF1fZQoaAZoCWgPQwhss7ES8ydwQJSGlFKUaBVL9mgWR0CWOyF23azvdX2UKGgGaAloD0MIsb/snrz+cECUhpRSlGgVS+BoFkdAljtGZRbbDnV9lChoBmgJaA9DCPRRRlxAn3JAlIaUUpRoFUv9aBZHQJY9dbbDdgx1fZQoaAZoCWgPQwhQAMXIUrZwQJSGlFKUaBVLymgWR0CWPYqrR0EHdX2UKGgGaAloD0MI3CkdrP9+b0CUhpRSlGgVS8xoFkdAlj2LM5fdAXV9lChoBmgJaA9DCJwwYTQrVz1AlIaUUpRoFUvYaBZHQJY9shr30wt1fZQoaAZoCWgPQwhslstG5zdvQJSGlFKUaBVL6GgWR0CWPb2mYSg5dX2UKGgGaAloD0MIMCqpE1DqcUCUhpRSlGgVS/toFkdAlj3ymygPE3V9lChoBmgJaA9DCOxsyD+z23FAlIaUUpRoFU1kAWgWR0CWPfyR0U48dX2UKGgGaAloD0MIABqlS3+8cECUhpRSlGgVS/FoFkdAlj4Vo+Ofd3V9lChoBmgJaA9DCHtrYKuEDXBAlIaUUpRoFUvjaBZHQJY+cK/mDDl1fZQoaAZoCWgPQwiMTSuFwONxQJSGlFKUaBVNLwFoFkdAlj7YcebNKXV9lChoBmgJaA9DCA73kVvTXXFAlIaUUpRoFUvlaBZHQJY+98MNMGp1fZQoaAZoCWgPQwiuug7VlNVhQJSGlFKUaBVN6ANoFkdAlkFgJXyRS3V9lChoBmgJaA9DCCPA6V08bXBAlIaUUpRoFUv5aBZHQJZCaZlWfbt1fZQoaAZoCWgPQwh1PdF1YZJtQJSGlFKUaBVL0mgWR0CWQ5FERaoudX2UKGgGaAloD0MIxXb3AJ33cECUhpRSlGgVS99oFkdAlkPLjo6jnHV9lChoBmgJaA9DCISezapPwW9AlIaUUpRoFUvUaBZHQJZD7AWSEDh1fZQoaAZoCWgPQwhGzy10JeFuQJSGlFKUaBVL6GgWR0CWREHBUJfIdX2UKGgGaAloD0MIEhJpG7+8ckCUhpRSlGgVTToBaBZHQJZEV7Z39rJ1fZQoaAZoCWgPQwhNnrKaLoVxQJSGlFKUaBVLy2gWR0CWRK89wFTvdX2UKGgGaAloD0MIEB/Y8V99bkCUhpRSlGgVTQYBaBZHQJZE85IYm9h1fZQoaAZoCWgPQwhfmiLAKXBzQJSGlFKUaBVNGAFoFkdAlkWEygwoLHV9lChoBmgJaA9DCHEBaJRuqHBAlIaUUpRoFU0FAWgWR0CWReCtA9mpdX2UKGgGaAloD0MICFbVyy9OckCUhpRSlGgVTR0BaBZHQJZGJS3solV1fZQoaAZoCWgPQwgiiPNwQmRxQJSGlFKUaBVNAAFoFkdAlkZOOsDGLnV9lChoBmgJaA9DCLPr3orErXJAlIaUUpRoFU1IAWgWR0CWRxwR5C4SdX2UKGgGaAloD0MIL/1LUpmOb0CUhpRSlGgVS+BoFkdAlkjfMnqmj3V9lChoBmgJaA9DCN44Kcz7zHBAlIaUUpRoFU0JAWgWR0CWSQQCCBf8dX2UKGgGaAloD0MIq+tQTUklcUCUhpRSlGgVS8VoFkdAlkkrvPTodXV9lChoBmgJaA9DCO9YbJOKqmNAlIaUUpRoFU3oA2gWR0CWSUZP2wmmdX2UKGgGaAloD0MIoiqm0k8vcUCUhpRSlGgVS8doFkdAlklnD7655XV9lChoBmgJaA9DCGiWBKjpcXFAlIaUUpRoFUvEaBZHQJZKAgjhUBJ1fZQoaAZoCWgPQwjHKTqSSwxuQJSGlFKUaBVL1mgWR0CWSrTfzjFRdX2UKGgGaAloD0MIDd5X5QJccUCUhpRSlGgVS/poFkdAlkrGmUGFBnV9lChoBmgJaA9DCJ2huONN7nBAlIaUUpRoFUvzaBZHQJZK7RBu4w11fZQoaAZoCWgPQwjuPsdHCzByQJSGlFKUaBVL1mgWR0CWSy3RG+bmdX2UKGgGaAloD0MIUWhZ949PZECUhpRSlGgVTegDaBZHQJZLQaR6nix1fZQoaAZoCWgPQwhrt11oLmVxQJSGlFKUaBVNEgFoFkdAlkuGOEM9bHV9lChoBmgJaA9DCFN1j2yup21AlIaUUpRoFUvdaBZHQJZLk+aBqbl1fZQoaAZoCWgPQwgrTrUW5vhwQJSGlFKUaBVL62gWR0CWTBHrQgLadX2UKGgGaAloD0MICVIpdrTBcECUhpRSlGgVS9FoFkdAlkxH1vl2eXV9lChoBmgJaA9DCGfXvRVJBnJAlIaUUpRoFUv+aBZHQJZMiQPqcEx1fZQoaAZoCWgPQwhMw/AR8QpzQJSGlFKUaBVLx2gWR0CWTXF98Z1ndX2UKGgGaAloD0MIDeNuEG1WckCUhpRSlGgVS8ZoFkdAlk2/itJWenV9lChoBmgJaA9DCCEjoMKRIG9AlIaUUpRoFUveaBZHQJZOM4o7V8V1fZQoaAZoCWgPQwhr9GqAUpZxQJSGlFKUaBVL82gWR0CWTmkjHGS7dX2UKGgGaAloD0MI7BLVW8O4cECUhpRSlGgVS/BoFkdAlk6Yk/r0KHV9lChoBmgJaA9DCBNE3QegTm1AlIaUUpRoFUvKaBZHQJZPtNFjNIN1fZQoaAZoCWgPQwjKiAtAY9FwQJSGlFKUaBVL8mgWR0CWUErupjtpdX2UKGgGaAloD0MIJLcm3dY+ckCUhpRSlGgVTQgBaBZHQJZQ1ETg2qF1fZQoaAZoCWgPQwhn8WJhSEdwQJSGlFKUaBVL52gWR0CWUP81XNkfdX2UKGgGaAloD0MI+62dKElfcECUhpRSlGgVS9xoFkdAllFVPznRs3V9lChoBmgJaA9DCMGPathvznBAlIaUUpRoFU07AWgWR0CWUW7UXpGGdX2UKGgGaAloD0MIq15+pwmIcECUhpRSlGgVTQkBaBZHQJZRwnb7CSB1fZQoaAZoCWgPQwiTc2IPrc9xQJSGlFKUaBVNHQFoFkdAllHo9gWrO3V9lChoBmgJaA9DCCuFQC6xh3BAlIaUUpRoFUvwaBZHQJZSE7LdN351fZQoaAZoCWgPQwi8lLpkHJ9yQJSGlFKUaBVNNgFoFkdAllIimygPE3V9lChoBmgJaA9DCD+rzJSWqHBAlIaUUpRoFUvxaBZHQJZSXEpAlfJ1fZQoaAZoCWgPQwhAw5s1eJBuQJSGlFKUaBVL9mgWR0CWU2lJ6IFedX2UKGgGaAloD0MIQYAMHTskb0CUhpRSlGgVS9toFkdAllOH0XgtOHV9lChoBmgJaA9DCDS9xFgmCm9AlIaUUpRoFUv9aBZHQJZT4sg+yJN1fZQoaAZoCWgPQwgvFLAdDAFxQJSGlFKUaBVL4mgWR0CWVARODaoNdX2UKGgGaAloD0MIGvm84qmxb0CUhpRSlGgVS+5oFkdAllVR0uDjBHV9lChoBmgJaA9DCLq8OVxryHBAlIaUUpRoFUvZaBZHQJZVW8zyjHp1fZQoaAZoCWgPQwjGbworlUJxQJSGlFKUaBVL2GgWR0CWVdcer+5wdX2UKGgGaAloD0MI2xfQCzexcUCUhpRSlGgVS91oFkdAllYdyLhrFnV9lChoBmgJaA9DCF70FaRZA3BAlIaUUpRoFUvbaBZHQJZWfTlT3qR1fZQoaAZoCWgPQwhR9SudjwxvQJSGlFKUaBVLyGgWR0CWVsQXhwVCdX2UKGgGaAloD0MIjJ5b6AqqcUCUhpRSlGgVTVoBaBZHQJZWwiRnvlV1fZQoaAZoCWgPQwgkgQabOgpxQJSGlFKUaBVL22gWR0CWVwC/GlyjdX2UKGgGaAloD0MIp5NsdflIcUCUhpRSlGgVS/RoFkdAlldpFgDzRXV9lChoBmgJaA9DCI5bzM/Ne3FAlIaUUpRoFUv2aBZHQJZXxAQg9vF1fZQoaAZoCWgPQwjl0CLb+VVxQJSGlFKUaBVL/WgWR0CWWEVeKKpDdX2UKGgGaAloD0MINfCjGnb5b0CUhpRSlGgVTTQBaBZHQJZYeIqLCN11fZQoaAZoCWgPQwhbXOMz2WhwQJSGlFKUaBVL4GgWR0CWWLVGkN4JdX2UKGgGaAloD0MIu5o8ZXVAcECUhpRSlGgVS+poFkdAllkJFocrAnV9lChoBmgJaA9DCCAot+37hHFAlIaUUpRoFUvkaBZHQJZZO0JF9a51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f35b98a79d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35b98a7a60>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35b98a7af0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35b98a7b80>", "_build": "<function ActorCriticPolicy._build at 0x7f35b98a7c10>", "forward": "<function ActorCriticPolicy.forward at 0x7f35b98a7ca0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35b98a7d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35b98a7dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f35b98a7e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35b98a7ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35b98a7f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35b98ab040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f35b99234e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673884671132192062, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo5IL1SsMy5ct59O6HMaDbf4fI5gNZaNQAAAAAAAAAAZrV2vSDTmD9MXam+0d0wv0r3ub1HcCS+AAAAAAAAAACahQo8mpeJPowbnb2Sy+i+qFGUvd41o7wAAAAAAAAAAKZUJD400ww/05L3vSqqCL9LN3s+zl4kvgAAAAAAAAAAszo3PSmwV7pCRne33FFvspx00brXrZE2AACAPwAAgD8AgDW89np1P/XREr3ZbB+/3V7tPOTWo70AAAAAAAAAAKaUQL5n34I+yyi9PjPdvr5Zohe9ZMasPQAAAAAAAAAAwNQ7vvk4VD5O3GU/bVTIvprcLb2QKMA+AAAAAAAAAAAA5Kc8Mmw/P25WM71tow2/q/cxPRhiar0AAAAAAAAAAJq/pzy2AzA9ivlSvUS+r77lSHu9MQcSvQAAAAAAAAAAZjgevIW+p7ve9ho8XDOCPN9hCb0aPmI9AACAPwAAgD8AB0C9aREgvGzByT0ky4g8bZqMvXPxYj0AAIA/AACAPw0dy731sUk+DGOdPRQ3wL53BYe9hr0VvQAAAAAAAAAAYl2evtuaJz/dyXK9QLURvyyC577aGQQ+AAAAAAAAAADTXw6+0OCqPupKgj4mCL6+ajoQvSekBT4AAAAAAAAAAM3MZLvDoWa6r3K0PT5rCraBH4C6Zq4GtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4dIx5xk9b0CUhpRSlIwBbJRLuowBdJRHQKxStRLsa891fZQoaAZoCWgPQwiaX80BwkpyQJSGlFKUaBVLvWgWR0CsUtP5P/JedX2UKGgGaAloD0MI05/9SJF4cUCUhpRSlGgVS71oFkdArFLZhQWN3nV9lChoBmgJaA9DCKOwi6KHBXJAlIaUUpRoFUvwaBZHQKxS21y/9Hd1fZQoaAZoCWgPQwjXMa64+JRyQJSGlFKUaBVLwWgWR0CsUvaguh9LdX2UKGgGaAloD0MI0t9L4QHeckCUhpRSlGgVS7xoFkdArFMBo4+8oXV9lChoBmgJaA9DCHjPgeVI53NAlIaUUpRoFUu9aBZHQKxTOaS9ugp1fZQoaAZoCWgPQwgMdy6MdOZyQJSGlFKUaBVL2mgWR0CsU1AYP5HmdX2UKGgGaAloD0MIxty1hDxpckCUhpRSlGgVS79oFkdArFN4CMglnnV9lChoBmgJaA9DCE8GR8nrx3FAlIaUUpRoFUvHaBZHQKxTfU3n6mB1fZQoaAZoCWgPQwhBuAIKdSVxQJSGlFKUaBVLzmgWR0CsU6E3Kji5dX2UKGgGaAloD0MIrTWU2kvhc0CUhpRSlGgVS+BoFkdArFOuZ7Xxv3V9lChoBmgJaA9DCHsWhPK+vXBAlIaUUpRoFUu+aBZHQKxULDSgGr11fZQoaAZoCWgPQwjGbwor1bpyQJSGlFKUaBVLvWgWR0CsVG8jiXIEdX2UKGgGaAloD0MItkyG47mqc0CUhpRSlGgVS9toFkdArFR2vfTCtXV9lChoBmgJaA9DCJNUppjD2XFAlIaUUpRoFUuyaBZHQKxUjeqrBCV1fZQoaAZoCWgPQwhtjnObMAZyQJSGlFKUaBVLrGgWR0CsVJo2n88+dX2UKGgGaAloD0MIIQclzHSDcECUhpRSlGgVS8RoFkdArFTA24uscXV9lChoBmgJaA9DCP8Iw4DlEHFAlIaUUpRoFUvPaBZHQKxUv+5OJtV1fZQoaAZoCWgPQwhanZyh+IlzQJSGlFKUaBVLzWgWR0CsVNreANG3dX2UKGgGaAloD0MImIbhI+InckCUhpRSlGgVS8NoFkdArFThagVXWHV9lChoBmgJaA9DCJfK2xFOEnBAlIaUUpRoFUu+aBZHQKxVJB/qgRN1fZQoaAZoCWgPQwisGoS5HQtzQJSGlFKUaBVLrGgWR0CsVWJ+tr9EdX2UKGgGaAloD0MI1vz4S8vOc0CUhpRSlGgVS+poFkdArFWAcNpdr3V9lChoBmgJaA9DCF7VWS2wGHJAlIaUUpRoFUvOaBZHQKxVf/Ue+251fZQoaAZoCWgPQwh56/zbZSNNQJSGlFKUaBVLgGgWR0CsX17bDdgwdX2UKGgGaAloD0MICI82jlgeckCUhpRSlGgVS/xoFkdArF9pu4wyqXV9lChoBmgJaA9DCORIZ2Ak6XBAlIaUUpRoFUu3aBZHQKxfhLzwtrd1fZQoaAZoCWgPQwiR1a2eU/5yQJSGlFKUaBVL82gWR0CsX4UDEFW5dX2UKGgGaAloD0MInfS+8bXfb0CUhpRSlGgVS7doFkdArF/GQ+2VmnV9lChoBmgJaA9DCDOHpBZKSnRAlIaUUpRoFUvIaBZHQKxgDjrAxi51fZQoaAZoCWgPQwhRa5p3nKVuQJSGlFKUaBVLvWgWR0CsYCW5QP7OdX2UKGgGaAloD0MIjbRU3g46b0CUhpRSlGgVS8FoFkdArGAvhMrVfHV9lChoBmgJaA9DCOvE5XiF/3JAlIaUUpRoFUvsaBZHQKxgWn4O+Zh1fZQoaAZoCWgPQwh872/QHvVxQJSGlFKUaBVL0GgWR0CsYHXjuKGddX2UKGgGaAloD0MIkQw5th4Ib0CUhpRSlGgVS9NoFkdArGCEXP7emHV9lChoBmgJaA9DCB6kp8ghX29AlIaUUpRoFUvPaBZHQKxguz41xbV1fZQoaAZoCWgPQwiOImsNZdhxQJSGlFKUaBVLxmgWR0CsYP8ZUDMedX2UKGgGaAloD0MIQ1ThzzDXckCUhpRSlGgVS9ZoFkdArGENeWv8qHV9lChoBmgJaA9DCEwz3etkTHFAlIaUUpRoFUvOaBZHQKxhFa/RE4N1fZQoaAZoCWgPQwgEdF/ObIlvQJSGlFKUaBVLt2gWR0CsYU2k8A7xdX2UKGgGaAloD0MI8NsQ47W/bkCUhpRSlGgVS8FoFkdArGFdJ4B3inV9lChoBmgJaA9DCNV2E3xTbm9AlIaUUpRoFUvQaBZHQKxhqLFXJYF1fZQoaAZoCWgPQwg+l6lJ8FNxQJSGlFKUaBVL02gWR0CsYbB3zMA4dX2UKGgGaAloD0MIzR/T2jQ+cECUhpRSlGgVS8xoFkdArGHgXj2i+XV9lChoBmgJaA9DCC9pjNZR43BAlIaUUpRoFUvDaBZHQKxiEtlqagF1fZQoaAZoCWgPQwg1CklmNYZxQJSGlFKUaBVLvGgWR0CsYhgZCOWCdX2UKGgGaAloD0MIIOup1Vc0cUCUhpRSlGgVS7doFkdArGJqC17Y03V9lChoBmgJaA9DCIdPOpFgXXJAlIaUUpRoFUvZaBZHQKxidW3jMmp1fZQoaAZoCWgPQwgJa2PsRPZwQJSGlFKUaBVLyGgWR0CsYovrfLs9dX2UKGgGaAloD0MIVvMcke+ocUCUhpRSlGgVS9doFkdArGKaT4cm0HV9lChoBmgJaA9DCJi+1xCcKnBAlIaUUpRoFUvCaBZHQKxiyCzTnaF1fZQoaAZoCWgPQwiAKQMHNNhwQJSGlFKUaBVLumgWR0CsYvZtNzsAdX2UKGgGaAloD0MI8WJhiJyCN0CUhpRSlGgVS11oFkdArGMUOZssQXV9lChoBmgJaA9DCLsru2AwlnBAlIaUUpRoFUvBaBZHQKxjFmU4aP11fZQoaAZoCWgPQwjpf7kWrZtzQJSGlFKUaBVL02gWR0CsY1FNtZV5dX2UKGgGaAloD0MI8PeL2ZJfb0CUhpRSlGgVS8JoFkdArGNrb+Lm63V9lChoBmgJaA9DCHNmu0LfEnFAlIaUUpRoFUvAaBZHQKxjvtUGVzJ1fZQoaAZoCWgPQwh06spnOTRwQJSGlFKUaBVLzGgWR0CsY9iHh0hedX2UKGgGaAloD0MIZK4Mqg2NckCUhpRSlGgVS/5oFkdArGQD6tT1kHV9lChoBmgJaA9DCHh+UYL+GnJAlIaUUpRoFUvaaBZHQKxkPQcghbJ1fZQoaAZoCWgPQwiNJayN8dVxQJSGlFKUaBVLsmgWR0CsZHs4ku6FdX2UKGgGaAloD0MI3QvMCoVscECUhpRSlGgVS8BoFkdArGSMS/TLGXV9lChoBmgJaA9DCPTg7qzd8nJAlIaUUpRoFUvRaBZHQKxkslYU34t1fZQoaAZoCWgPQwguOllqPatxQJSGlFKUaBVLsmgWR0CsZOqaG5+ZdX2UKGgGaAloD0MIZ0gVxWuOckCUhpRSlGgVS8poFkdArGT9wT/Q0HV9lChoBmgJaA9DCFIst7RaLHJAlIaUUpRoFUuxaBZHQKxlCUKzAvd1fZQoaAZoCWgPQwgnbD8ZIwtzQJSGlFKUaBVL4WgWR0CsZRDqW1MNdX2UKGgGaAloD0MIC+wxkVKVc0CUhpRSlGgVS79oFkdArGUx3/xUenV9lChoBmgJaA9DCPCFyVRBWW9AlIaUUpRoFUvOaBZHQKxlkmm+Cbt1fZQoaAZoCWgPQwhX6e4628dxQJSGlFKUaBVL2mgWR0CsZc8gQpWndX2UKGgGaAloD0MIu7ThsHQeckCUhpRSlGgVS9JoFkdArGYL6JqIrXV9lChoBmgJaA9DCMCy0qSUEXFAlIaUUpRoFUvLaBZHQKxmEc/+sHV1fZQoaAZoCWgPQwhhM8AFmSlzQJSGlFKUaBVLzWgWR0CsZkEug6EKdX2UKGgGaAloD0MIQX42cl1ecECUhpRSlGgVS8BoFkdArGaWSIP9UHV9lChoBmgJaA9DCP8fJ0yYyGZAlIaUUpRoFU3oA2gWR0CsZqFbmlqKdX2UKGgGaAloD0MIBygNNQoocECUhpRSlGgVS8loFkdArGbBCv5gxHV9lChoBmgJaA9DCIUGYtnMwnJAlIaUUpRoFUvoaBZHQKxmyvRJEpl1fZQoaAZoCWgPQwiymxn9aL5QQJSGlFKUaBVLk2gWR0CsZsyLZSNwdX2UKGgGaAloD0MIzXLZ6FyGckCUhpRSlGgVS8loFkdArGbk2itaIXV9lChoBmgJaA9DCK8/ic8d2W5AlIaUUpRoFUu9aBZHQKxnEdlum791fZQoaAZoCWgPQwjcgM8PYxVyQJSGlFKUaBVLw2gWR0CsZxbYbsF/dX2UKGgGaAloD0MIbf/KShPLb0CUhpRSlGgVS8JoFkdArGcmf/WDpXV9lChoBmgJaA9DCK/S3XU2cnFAlIaUUpRoFUvhaBZHQKxnUXqqwQl1fZQoaAZoCWgPQwhjmX6JeL9xQJSGlFKUaBVL1WgWR0CsZ9bPppvhdX2UKGgGaAloD0MIOuY8Y98WcUCUhpRSlGgVS8VoFkdArGgqnzg/DHV9lChoBmgJaA9DCH8zMV1I/nFAlIaUUpRoFUvcaBZHQKxoKSXdCVt1fZQoaAZoCWgPQwgm32xzY+xyQJSGlFKUaBVLzGgWR0CsaDiYTj//dX2UKGgGaAloD0MI9z/AWvWecUCUhpRSlGgVS71oFkdArGhD+1jRUnV9lChoBmgJaA9DCEsC1NTycHFAlIaUUpRoFUu4aBZHQKxowHj6vaF1fZQoaAZoCWgPQwi0klZ8gzhyQJSGlFKUaBVLzGgWR0CsaM6jWTX8dX2UKGgGaAloD0MInieeswWQc0CUhpRSlGgVS9NoFkdArGjYe9zwMHV9lChoBmgJaA9DCLtCHyzjYnNAlIaUUpRoFUu9aBZHQKxo6k1uR9x1fZQoaAZoCWgPQwgYQWMmERlzQJSGlFKUaBVLzWgWR0CsaPHanJkodX2UKGgGaAloD0MIOKPmq2TPckCUhpRSlGgVS81oFkdArGj8gdOqN3V9lChoBmgJaA9DCG3jT1S2v3JAlIaUUpRoFUvPaBZHQKxpSTOgQH11fZQoaAZoCWgPQwjxnC0gdCxyQJSGlFKUaBVLzGgWR0CsaVYXoC+2dX2UKGgGaAloD0MIaverAN/jckCUhpRSlGgVS9RoFkdArGle8oQWe3V9lChoBmgJaA9DCE5gOq0b3HJAlIaUUpRoFUvPaBZHQKxpjA1vVEx1fZQoaAZoCWgPQwjDfeTW5LFyQJSGlFKUaBVLumgWR0CsadONYKYzdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a4e16bcd6fc555046907ca7638f3ea268d6f4f43e8d3721838421d0ad03a675e
|
3 |
+
size 147294
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,24 +67,24 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f35b98a79d0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f35b98a7a60>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f35b98a7af0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f35b98a7b80>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f35b98a7c10>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f35b98a7ca0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f35b98a7d30>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f35b98a7dc0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f35b98a7e50>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f35b98a7ee0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f35b98a7f70>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f35b98ab040>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f35b99234e0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 5013504,
|
47 |
+
"_total_timesteps": 5000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1673884671132192062,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJo5IL1SsMy5ct59O6HMaDbf4fI5gNZaNQAAAAAAAAAAZrV2vSDTmD9MXam+0d0wv0r3ub1HcCS+AAAAAAAAAACahQo8mpeJPowbnb2Sy+i+qFGUvd41o7wAAAAAAAAAAKZUJD400ww/05L3vSqqCL9LN3s+zl4kvgAAAAAAAAAAszo3PSmwV7pCRne33FFvspx00brXrZE2AACAPwAAgD8AgDW89np1P/XREr3ZbB+/3V7tPOTWo70AAAAAAAAAAKaUQL5n34I+yyi9PjPdvr5Zohe9ZMasPQAAAAAAAAAAwNQ7vvk4VD5O3GU/bVTIvprcLb2QKMA+AAAAAAAAAAAA5Kc8Mmw/P25WM71tow2/q/cxPRhiar0AAAAAAAAAAJq/pzy2AzA9ivlSvUS+r77lSHu9MQcSvQAAAAAAAAAAZjgevIW+p7ve9ho8XDOCPN9hCb0aPmI9AACAPwAAgD8AB0C9aREgvGzByT0ky4g8bZqMvXPxYj0AAIA/AACAPw0dy731sUk+DGOdPRQ3wL53BYe9hr0VvQAAAAAAAAAAYl2evtuaJz/dyXK9QLURvyyC577aGQQ+AAAAAAAAAADTXw6+0OCqPupKgj4mCL6+ajoQvSekBT4AAAAAAAAAAM3MZLvDoWa6r3K0PT5rCraBH4C6Zq4GtQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4dIx5xk9b0CUhpRSlIwBbJRLuowBdJRHQKxStRLsa891fZQoaAZoCWgPQwiaX80BwkpyQJSGlFKUaBVLvWgWR0CsUtP5P/JedX2UKGgGaAloD0MI05/9SJF4cUCUhpRSlGgVS71oFkdArFLZhQWN3nV9lChoBmgJaA9DCKOwi6KHBXJAlIaUUpRoFUvwaBZHQKxS21y/9Hd1fZQoaAZoCWgPQwjXMa64+JRyQJSGlFKUaBVLwWgWR0CsUvaguh9LdX2UKGgGaAloD0MI0t9L4QHeckCUhpRSlGgVS7xoFkdArFMBo4+8oXV9lChoBmgJaA9DCHjPgeVI53NAlIaUUpRoFUu9aBZHQKxTOaS9ugp1fZQoaAZoCWgPQwgMdy6MdOZyQJSGlFKUaBVL2mgWR0CsU1AYP5HmdX2UKGgGaAloD0MIxty1hDxpckCUhpRSlGgVS79oFkdArFN4CMglnnV9lChoBmgJaA9DCE8GR8nrx3FAlIaUUpRoFUvHaBZHQKxTfU3n6mB1fZQoaAZoCWgPQwhBuAIKdSVxQJSGlFKUaBVLzmgWR0CsU6E3Kji5dX2UKGgGaAloD0MIrTWU2kvhc0CUhpRSlGgVS+BoFkdArFOuZ7Xxv3V9lChoBmgJaA9DCHsWhPK+vXBAlIaUUpRoFUu+aBZHQKxULDSgGr11fZQoaAZoCWgPQwjGbwor1bpyQJSGlFKUaBVLvWgWR0CsVG8jiXIEdX2UKGgGaAloD0MItkyG47mqc0CUhpRSlGgVS9toFkdArFR2vfTCtXV9lChoBmgJaA9DCJNUppjD2XFAlIaUUpRoFUuyaBZHQKxUjeqrBCV1fZQoaAZoCWgPQwhtjnObMAZyQJSGlFKUaBVLrGgWR0CsVJo2n88+dX2UKGgGaAloD0MIIQclzHSDcECUhpRSlGgVS8RoFkdArFTA24uscXV9lChoBmgJaA9DCP8Iw4DlEHFAlIaUUpRoFUvPaBZHQKxUv+5OJtV1fZQoaAZoCWgPQwhanZyh+IlzQJSGlFKUaBVLzWgWR0CsVNreANG3dX2UKGgGaAloD0MImIbhI+InckCUhpRSlGgVS8NoFkdArFThagVXWHV9lChoBmgJaA9DCJfK2xFOEnBAlIaUUpRoFUu+aBZHQKxVJB/qgRN1fZQoaAZoCWgPQwisGoS5HQtzQJSGlFKUaBVLrGgWR0CsVWJ+tr9EdX2UKGgGaAloD0MI1vz4S8vOc0CUhpRSlGgVS+poFkdArFWAcNpdr3V9lChoBmgJaA9DCF7VWS2wGHJAlIaUUpRoFUvOaBZHQKxVf/Ue+251fZQoaAZoCWgPQwh56/zbZSNNQJSGlFKUaBVLgGgWR0CsX17bDdgwdX2UKGgGaAloD0MICI82jlgeckCUhpRSlGgVS/xoFkdArF9pu4wyqXV9lChoBmgJaA9DCORIZ2Ak6XBAlIaUUpRoFUu3aBZHQKxfhLzwtrd1fZQoaAZoCWgPQwiR1a2eU/5yQJSGlFKUaBVL82gWR0CsX4UDEFW5dX2UKGgGaAloD0MInfS+8bXfb0CUhpRSlGgVS7doFkdArF/GQ+2VmnV9lChoBmgJaA9DCDOHpBZKSnRAlIaUUpRoFUvIaBZHQKxgDjrAxi51fZQoaAZoCWgPQwhRa5p3nKVuQJSGlFKUaBVLvWgWR0CsYCW5QP7OdX2UKGgGaAloD0MIjbRU3g46b0CUhpRSlGgVS8FoFkdArGAvhMrVfHV9lChoBmgJaA9DCOvE5XiF/3JAlIaUUpRoFUvsaBZHQKxgWn4O+Zh1fZQoaAZoCWgPQwh872/QHvVxQJSGlFKUaBVL0GgWR0CsYHXjuKGddX2UKGgGaAloD0MIkQw5th4Ib0CUhpRSlGgVS9NoFkdArGCEXP7emHV9lChoBmgJaA9DCB6kp8ghX29AlIaUUpRoFUvPaBZHQKxguz41xbV1fZQoaAZoCWgPQwiOImsNZdhxQJSGlFKUaBVLxmgWR0CsYP8ZUDMedX2UKGgGaAloD0MIQ1ThzzDXckCUhpRSlGgVS9ZoFkdArGENeWv8qHV9lChoBmgJaA9DCEwz3etkTHFAlIaUUpRoFUvOaBZHQKxhFa/RE4N1fZQoaAZoCWgPQwgEdF/ObIlvQJSGlFKUaBVLt2gWR0CsYU2k8A7xdX2UKGgGaAloD0MI8NsQ47W/bkCUhpRSlGgVS8FoFkdArGFdJ4B3inV9lChoBmgJaA9DCNV2E3xTbm9AlIaUUpRoFUvQaBZHQKxhqLFXJYF1fZQoaAZoCWgPQwg+l6lJ8FNxQJSGlFKUaBVL02gWR0CsYbB3zMA4dX2UKGgGaAloD0MIzR/T2jQ+cECUhpRSlGgVS8xoFkdArGHgXj2i+XV9lChoBmgJaA9DCC9pjNZR43BAlIaUUpRoFUvDaBZHQKxiEtlqagF1fZQoaAZoCWgPQwg1CklmNYZxQJSGlFKUaBVLvGgWR0CsYhgZCOWCdX2UKGgGaAloD0MIIOup1Vc0cUCUhpRSlGgVS7doFkdArGJqC17Y03V9lChoBmgJaA9DCIdPOpFgXXJAlIaUUpRoFUvZaBZHQKxidW3jMmp1fZQoaAZoCWgPQwgJa2PsRPZwQJSGlFKUaBVLyGgWR0CsYovrfLs9dX2UKGgGaAloD0MIVvMcke+ocUCUhpRSlGgVS9doFkdArGKaT4cm0HV9lChoBmgJaA9DCJi+1xCcKnBAlIaUUpRoFUvCaBZHQKxiyCzTnaF1fZQoaAZoCWgPQwiAKQMHNNhwQJSGlFKUaBVLumgWR0CsYvZtNzsAdX2UKGgGaAloD0MI8WJhiJyCN0CUhpRSlGgVS11oFkdArGMUOZssQXV9lChoBmgJaA9DCLsru2AwlnBAlIaUUpRoFUvBaBZHQKxjFmU4aP11fZQoaAZoCWgPQwjpf7kWrZtzQJSGlFKUaBVL02gWR0CsY1FNtZV5dX2UKGgGaAloD0MI8PeL2ZJfb0CUhpRSlGgVS8JoFkdArGNrb+Lm63V9lChoBmgJaA9DCHNmu0LfEnFAlIaUUpRoFUvAaBZHQKxjvtUGVzJ1fZQoaAZoCWgPQwh06spnOTRwQJSGlFKUaBVLzGgWR0CsY9iHh0hedX2UKGgGaAloD0MIZK4Mqg2NckCUhpRSlGgVS/5oFkdArGQD6tT1kHV9lChoBmgJaA9DCHh+UYL+GnJAlIaUUpRoFUvaaBZHQKxkPQcghbJ1fZQoaAZoCWgPQwiNJayN8dVxQJSGlFKUaBVLsmgWR0CsZHs4ku6FdX2UKGgGaAloD0MI3QvMCoVscECUhpRSlGgVS8BoFkdArGSMS/TLGXV9lChoBmgJaA9DCPTg7qzd8nJAlIaUUpRoFUvRaBZHQKxkslYU34t1fZQoaAZoCWgPQwguOllqPatxQJSGlFKUaBVLsmgWR0CsZOqaG5+ZdX2UKGgGaAloD0MIZ0gVxWuOckCUhpRSlGgVS8poFkdArGT9wT/Q0HV9lChoBmgJaA9DCFIst7RaLHJAlIaUUpRoFUuxaBZHQKxlCUKzAvd1fZQoaAZoCWgPQwgnbD8ZIwtzQJSGlFKUaBVL4WgWR0CsZRDqW1MNdX2UKGgGaAloD0MIC+wxkVKVc0CUhpRSlGgVS79oFkdArGUx3/xUenV9lChoBmgJaA9DCPCFyVRBWW9AlIaUUpRoFUvOaBZHQKxlkmm+Cbt1fZQoaAZoCWgPQwhX6e4628dxQJSGlFKUaBVL2mgWR0CsZc8gQpWndX2UKGgGaAloD0MIu7ThsHQeckCUhpRSlGgVS9JoFkdArGYL6JqIrXV9lChoBmgJaA9DCMCy0qSUEXFAlIaUUpRoFUvLaBZHQKxmEc/+sHV1fZQoaAZoCWgPQwhhM8AFmSlzQJSGlFKUaBVLzWgWR0CsZkEug6EKdX2UKGgGaAloD0MIQX42cl1ecECUhpRSlGgVS8BoFkdArGaWSIP9UHV9lChoBmgJaA9DCP8fJ0yYyGZAlIaUUpRoFU3oA2gWR0CsZqFbmlqKdX2UKGgGaAloD0MIBygNNQoocECUhpRSlGgVS8loFkdArGbBCv5gxHV9lChoBmgJaA9DCIUGYtnMwnJAlIaUUpRoFUvoaBZHQKxmyvRJEpl1fZQoaAZoCWgPQwiymxn9aL5QQJSGlFKUaBVLk2gWR0CsZsyLZSNwdX2UKGgGaAloD0MIzXLZ6FyGckCUhpRSlGgVS8loFkdArGbk2itaIXV9lChoBmgJaA9DCK8/ic8d2W5AlIaUUpRoFUu9aBZHQKxnEdlum791fZQoaAZoCWgPQwjcgM8PYxVyQJSGlFKUaBVLw2gWR0CsZxbYbsF/dX2UKGgGaAloD0MIbf/KShPLb0CUhpRSlGgVS8JoFkdArGcmf/WDpXV9lChoBmgJaA9DCK/S3XU2cnFAlIaUUpRoFUvhaBZHQKxnUXqqwQl1fZQoaAZoCWgPQwhjmX6JeL9xQJSGlFKUaBVL1WgWR0CsZ9bPppvhdX2UKGgGaAloD0MIOuY8Y98WcUCUhpRSlGgVS8VoFkdArGgqnzg/DHV9lChoBmgJaA9DCH8zMV1I/nFAlIaUUpRoFUvcaBZHQKxoKSXdCVt1fZQoaAZoCWgPQwgm32xzY+xyQJSGlFKUaBVLzGgWR0CsaDiYTj//dX2UKGgGaAloD0MI9z/AWvWecUCUhpRSlGgVS71oFkdArGhD+1jRUnV9lChoBmgJaA9DCEsC1NTycHFAlIaUUpRoFUu4aBZHQKxowHj6vaF1fZQoaAZoCWgPQwi0klZ8gzhyQJSGlFKUaBVLzGgWR0CsaM6jWTX8dX2UKGgGaAloD0MInieeswWQc0CUhpRSlGgVS9NoFkdArGjYe9zwMHV9lChoBmgJaA9DCLtCHyzjYnNAlIaUUpRoFUu9aBZHQKxo6k1uR9x1fZQoaAZoCWgPQwgYQWMmERlzQJSGlFKUaBVLzWgWR0CsaPHanJkodX2UKGgGaAloD0MIOKPmq2TPckCUhpRSlGgVS81oFkdArGj8gdOqN3V9lChoBmgJaA9DCG3jT1S2v3JAlIaUUpRoFUvPaBZHQKxpSTOgQH11fZQoaAZoCWgPQwjxnC0gdCxyQJSGlFKUaBVLzGgWR0CsaVYXoC+2dX2UKGgGaAloD0MIaverAN/jckCUhpRSlGgVS9RoFkdArGle8oQWe3V9lChoBmgJaA9DCE5gOq0b3HJAlIaUUpRoFUvPaBZHQKxpjA1vVEx1fZQoaAZoCWgPQwjDfeTW5LFyQJSGlFKUaBVLumgWR0CsadONYKYzdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 1224,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:458ea274a7765626f3bd7d9ea8a84373e5efdb0010f539a4b65f776ffbdacf54
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df9062d095060963d0174cc674ee72ecc71a83e3c5a8d265e2098e3d356a211b
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 292.2286449047437, "std_reward": 21.673335723483618, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T17:06:05.551022"}
|