--- library_name: transformers license: mit base_model: openai-gpt tags: - generated_from_trainer metrics: - accuracy - recall - precision model-index: - name: gpt1_sst2_left results: [] datasets: - nyu-mll/glue - stanfordnlp/sst2 --- # gpt1_sst2_left This model is a fine-tuned version of [openai-gpt](https://huggingface.co/openai-gpt) on sst2 dataset of GLUE benchmark. It achieves the following results on the evaluation set: - Loss: 0.4150 - Accuracy: 0.9266 - Recall: 0.9437 - Precision: 0.9148 Access to [Repository](https://github.com/GoktugGuvercin/Text-Classification/blob/main/gpt1_sst2.ipynb) for finetuning. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data For batched training, \ token is added to the tokenizer and the following padding-truncation options are adapted: - Padding Side: "right" - Truncation Side: "left" ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Recall | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:| | 0.2083 | 1.0 | 4210 | 0.2243 | 0.9266 | 0.9279 | 0.9279 | | 0.1495 | 2.0 | 8420 | 0.3193 | 0.9300 | 0.9505 | 0.9154 | | 0.0859 | 3.0 | 12630 | 0.3456 | 0.9255 | 0.9369 | 0.9183 | | 0.0605 | 4.0 | 16840 | 0.4150 | 0.9266 | 0.9437 | 0.9148 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0