File size: 4,357 Bytes
376d497
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
base_model: gokuls/bert_12_layer_model_v1_complete_training_new_48
tags:
- generated_from_trainer
datasets:
- massive
metrics:
- accuracy
model-index:
- name: hbertv1-massive-intermediate_KD_new
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: massive
      type: massive
      config: en-US
      split: validation
      args: en-US
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8165272995573045
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# hbertv1-massive-intermediate_KD_new

This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48) on the massive dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6631
- Accuracy: 0.8165

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 33
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 5.2865        | 1.0   | 180  | 4.1021          | 0.1692   |
| 4.1098        | 2.0   | 360  | 3.6293          | 0.2494   |
| 3.6635        | 3.0   | 540  | 3.1836          | 0.3665   |
| 3.311         | 4.0   | 720  | 2.9568          | 0.4555   |
| 3.0266        | 5.0   | 900  | 2.7684          | 0.4791   |
| 2.8087        | 6.0   | 1080 | 2.5803          | 0.5903   |
| 2.6276        | 7.0   | 1260 | 2.4481          | 0.6335   |
| 2.4728        | 8.0   | 1440 | 2.3491          | 0.6763   |
| 2.3497        | 9.0   | 1620 | 2.3474          | 0.6508   |
| 2.2557        | 10.0  | 1800 | 2.3618          | 0.6945   |
| 2.1673        | 11.0  | 1980 | 2.1769          | 0.7324   |
| 2.0929        | 12.0  | 2160 | 2.2181          | 0.7177   |
| 2.0125        | 13.0  | 2340 | 2.0942          | 0.7659   |
| 1.9507        | 14.0  | 2520 | 2.0009          | 0.7767   |
| 1.8811        | 15.0  | 2700 | 2.0316          | 0.7624   |
| 1.8356        | 16.0  | 2880 | 2.0107          | 0.7698   |
| 1.7935        | 17.0  | 3060 | 1.9687          | 0.7742   |
| 1.7436        | 18.0  | 3240 | 1.9601          | 0.7811   |
| 1.7158        | 19.0  | 3420 | 1.9357          | 0.7836   |
| 1.6848        | 20.0  | 3600 | 1.9413          | 0.7747   |
| 1.6421        | 21.0  | 3780 | 1.9428          | 0.7723   |
| 1.6091        | 22.0  | 3960 | 1.8787          | 0.7944   |
| 1.5758        | 23.0  | 4140 | 1.8953          | 0.7831   |
| 1.5557        | 24.0  | 4320 | 1.8503          | 0.7964   |
| 1.5249        | 25.0  | 4500 | 1.8481          | 0.7939   |
| 1.5082        | 26.0  | 4680 | 1.8342          | 0.7983   |
| 1.4827        | 27.0  | 4860 | 1.7922          | 0.7993   |
| 1.4552        | 28.0  | 5040 | 1.7805          | 0.7988   |
| 1.4296        | 29.0  | 5220 | 1.7730          | 0.7988   |
| 1.4067        | 30.0  | 5400 | 1.7724          | 0.7993   |
| 1.3843        | 31.0  | 5580 | 1.7438          | 0.8032   |
| 1.3721        | 32.0  | 5760 | 1.7842          | 0.7954   |
| 1.358         | 33.0  | 5940 | 1.7238          | 0.8087   |
| 1.3332        | 34.0  | 6120 | 1.6919          | 0.8091   |
| 1.3211        | 35.0  | 6300 | 1.7014          | 0.8042   |
| 1.3063        | 36.0  | 6480 | 1.6718          | 0.8131   |
| 1.2863        | 37.0  | 6660 | 1.6631          | 0.8165   |
| 1.2753        | 38.0  | 6840 | 1.6867          | 0.8091   |
| 1.2651        | 39.0  | 7020 | 1.6675          | 0.8067   |
| 1.2475        | 40.0  | 7200 | 1.6524          | 0.8072   |
| 1.2343        | 41.0  | 7380 | 1.6218          | 0.8165   |
| 1.2223        | 42.0  | 7560 | 1.6201          | 0.8155   |


### Framework versions

- Transformers 4.35.2
- Pytorch 1.14.0a0+410ce96
- Datasets 2.15.0
- Tokenizers 0.15.0