nielsr HF Staff commited on
Commit
cc51f44
·
verified ·
1 Parent(s): 672a47c

Improve model card: Add pipeline tag, paper, project page, code, usage, and more

Browse files

This PR significantly improves the model card for Track-On2 by adding:

* **Metadata**:
* `pipeline_tag: keypoint-detection` to ensure the model is discoverable under relevant tasks at https://huggingface.co/models?pipeline_tag=keypoint-detection.
* **Content**:
* A descriptive overview of the model.
* Links to the paper (https://huggingface.co/papers/2509.19115), the project page (https://kuis-ai.github.io/track_on2), and the official GitHub repository (https://github.com/gorkaydemir/track_on).
* Details on the available pretrained models.
* A "Usage" section with a Python code snippet and instructions from the original GitHub README to demonstrate how to run the model.
* Citation information and acknowledgments.

These additions will make the model much more accessible and informative for the Hugging Face community.

Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: keypoint-detection
4
+ ---
5
+
6
+ # Track-On2: Enhancing Online Point Tracking with Memory
7
+
8
+ [📚 Paper](https://huggingface.co/papers/2509.19115) - [🌐 Project Page](https://kuis-ai.github.io/track_on2) - [💻 Code](https://github.com/gorkaydemir/track_on)
9
+
10
+ ## Overview
11
+ **Track-On2** is an efficient **online point tracking** model that processes videos **frame-by-frame** with a compact transformer memory—no future frames, no windows. Track-On2 builds on this with improved accuracy and efficiency.
12
+
13
+ <p align="center">
14
+ <img src="https://github.com/gorkaydemir/track_on/raw/main/media/teaser.png" alt="Track-On Overview" width="800" />
15
+ </p>
16
+
17
+ ## Pretrained models
18
+ We provide two pretrained **Track-On2** checkpoints, each using a different backbone:
19
+
20
+ - **Track-On2 with DINOv3**
21
+ [Download here](https://huggingface.co/gorkaydemir/track_on2/resolve/main/trackon2_dinov3_checkpoint.pt?download=true)
22
+ This checkpoint uses the **DINOv3** visual backbone.
23
+ - To use it, you must separately obtain the official pretrained DINOv3 weights of [dinov3-vits16plus](https://huggingface.co/facebook/dinov3-vits16plus-pretrain-lvd1689m) by requesting access through Hugging Face.
24
+ - Our released checkpoints **do not include** backbone weights in order to comply with DINOv3’s licensing and distribution policy.
25
+
26
+ - **Track-On2 with DINOv2**
27
+ [Download here](https://huggingface.co/gorkaydemir/track_on2/resolve/main/trackon2_dinov2_checkpoint.pt?download=true)
28
+ No additional permissions or downloads are needed.
29
+ - It offers competitive, often comparable (or stronger) performance to the DINOv3 variant.
30
+ - Recommended if you want a quick setup without external dependencies.
31
+
32
+ ## Usage
33
+ You can track points on a video using the **`Predictor`** class.
34
+
35
+ ### Minimal example
36
+ ```python
37
+ import torch
38
+ from model.trackon_predictor import Predictor
39
+
40
+ device = "cuda" if torch.cuda.is_available() else "cpu"
41
+
42
+ # Initialize
43
+ model = Predictor(args, checkpoint_path="path/to/checkpoint.pth").to(device).eval()
44
+
45
+ # Inputs
46
+ # video: (1, T, 3, H, W) in range 0-255
47
+ # queries: (1, N, 3) with rows = (t, x, y) in pixel coordinates
48
+ # or use None to enable the model's uniform grid querying
49
+ video = ... # e.g., torchvision.io.read_video -> (T, H, W, 3) -> (T, 3, H, W) -> add batch dim
50
+ queries = ... # e.g., torch.tensor([[0, 190, 190], [0, 200, 190], ...]).unsqueeze(0).to(device)
51
+
52
+ # Inference
53
+ traj, vis = model(video, queries)
54
+
55
+ # Outputs
56
+ # traj: (1, T, N, 2) -> per-point (x, y) in pixels
57
+ # vis: (1, T, N) -> per-point visibility in {0, 1}
58
+ ```
59
+
60
+ ### Using `demo.py`
61
+ A ready-to-run script ([`demo.py`](https://github.com/gorkaydemir/track_on/blob/main/demo.py)) handles loading, preprocessing, inference, and visualization.
62
+
63
+ Given:
64
+ - `$video_path`: Path to the input video file (e.g., `.mp4`)
65
+ - `$config_path`: Config file of the model with `yaml` extension (default: `./config/test.yaml`)
66
+ - `$ckpt_path`: Path to the Track-On2 checkpoint (`.pth`)
67
+ - `$output_path`: Path to save the rendered tracking video (e.g., `demo_output.mp4`)
68
+ - `$use_grid`: Whether to use a uniform grid of queries (`true` or `false`)
69
+
70
+ you can run the demo by
71
+ ```bash
72
+ python demo.py \
73
+ --video $video_path \
74
+ --config $config_path \
75
+ --ckpt $ckpt_path \
76
+ --output $output_path \
77
+ --use-grid $use_grid
78
+ ```
79
+
80
+ Running the model with uniform grid queries on the video at `media/sample.mp4` produces the visualization shown below.
81
+
82
+ <p align="center">
83
+ <img src="https://github.com/gorkaydemir/track_on/raw/main/media/demo_output.gif" alt="Sample Tracking" width="300" />
84
+ </p>
85
+
86
+ ## Citation
87
+ If you find this work useful, please cite:
88
+
89
+ ```bibtex
90
+ @article{Aydemir2025TrackOn2,
91
+ title={{Track-On2}: Enhancing Online Point Tracking with Memory},
92
+ author={Aydemir, G\"orkay and Xie, Weidi and G\"uney, Fatma},
93
+ journal={arXiv preprint arXiv:2509.19115},
94
+ year={2025}
95
+ }
96
+ ```
97
+
98
+ ```bibtex
99
+ @InProceedings{Aydemir2025TrackOn,
100
+ title = {{Track-On}: Transformer-based Online Point Tracking with Memory},
101
+ author = {Aydemir, G\"orkay and Cai, Xiongyi and Xie, Weidi and G\"uney, Fatma},
102
+ booktitle = {The Thirteenth International Conference on Learning Representations},
103
+ year = {2025}
104
+ }
105
+ ```
106
+
107
+ ## Acknowledgments
108
+ This repository incorporates code from public works including [CoTracker](https://github.com/facebookresearch/co-tracker), [TAPNet](https://github.com/google-deepmind/tapnet), [DINOv2](https://github.com/facebookresearch/dinov2), [ViT-Adapter](https://github.com/czczup/ViT-Adapter), and [SPINO](https://github.com/robot-learning-freiburg/SPINO). We thank the authors for making their code available.