File size: 19,196 Bytes
2f7b134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
from transformers import AutoConfig
from transformers import GPT2Tokenizer, GPT2LMHeadModel

from utils import SPECIAL_TOKENS, build_input_from_segments, add_special_tokens_
from utils import get_dataset, download_pretrained_model

import timeit

import logging
logging.basicConfig(format='%(asctime)s: %(message)s',level=logging.INFO)
logger = logging.getLogger(__file__)

import random

from itertools import chain
from pprint import pformat
#import warnings

import torch
import torch.nn.functional as F

import boto3
import os
import tarfile
import io
import base64
import json
import re

from types import SimpleNamespace

import warnings
warnings.simplefilter(action='ignore', category=FutureWarning)

print("Loading Model.py module...")

s3 = boto3.client('s3')


def is_list_of_strings(lst):
        if lst and isinstance(lst, list):
            return all(isinstance(elem, str) for elem in lst)
        else:
            return False



class ServerlessModel:
    def __init__(self, model_path=None, s3_bucket=None, file_prefix=None, efs_path=None):
        #logging.basicConfig(level=logging.INFO)
        #logger = logging.getLogger(__file__)
        print("Trying to init model")

        self.model = None
        self.tokenizer = None
        self.dataset = None

        if s3_bucket is None:
                if model_path is not None and efs_path is None :
                    print("Loading model from local..")
                    self.model, self.tokenizer, self.dataset = self.from_pretrained_local_path(model_path, file_prefix)
                    logging.debug("Done loading")
                else:
                    ##Load model from EFS, with config and tokenizer from local lambda space
                    if model_path is not None and efs_path is not None:
                        print("loading model from EFS")
                        self.model, self.tokenizer, self.dataset = self.from_pretrained(model_path, s3_bucket, file_prefix, efs_path=efs_path)
                        logging.debug("Done loading")
                    else:
                        #no bucket no path fail
                        print("ERROR: Model path not found")
                        raise Exception("No model path found")

        else:
                print("Loading model from s3 path..")
                print(s3_bucket)
                self.model, self.tokenizer, self.dataset = self.from_pretrained(
                    model_path, s3_bucket, file_prefix)
                logging.debug("Done loading")


        self.parameters = {
            'max_length' : 25, #60
            'min_length' : 1,
            'device' : 'cpu',
            'temperature' : 1.0, #1.5
            'dynamic_temperature' : True,
            'dynamic_temperature_range' : 0.15,
            'top_k' : 50,  #50
            'top_p' : 0.9, #0.9
            'no_sample' : False,
            'max_history' : 2,

        }

        print("Done initializing model")


    def from_pretrained(self, model_path: str, s3_bucket: str, file_prefix: str , efs_path = None ):

        if efs_path is None:
            model = self.load_model_from_s3(model_path, s3_bucket, file_prefix)
        else:
            model = self.load_model_from_efs(model_path,efs_path)

        print("Model loaded.")
        print("loading tokenizer from path: ", model_path)

        tokenizer = self.load_tokenizer(model_path)
        # Get sequence length max of 1024
        tokenizer.model_max_length = 1024
        print("tokenizer loaded")
        
        self.model = model
        self.tokenizer = tokenizer

        add_special_tokens_(self.model, self.tokenizer)
        
        #Will only use if it cannot find cache
        DATASET_PATH = model_path + '/personafile.json'  #maynot be needed if cache exists!
        
        ##We have cache no need for dataset path 
        DATASET_CACHE = model_path +'/persona_good'  ##persona_good_gpt2_cache  (no zip extension)


        dataset = self.load_dataset(DATASET_PATH, DATASET_CACHE)
        self.dataset = dataset 

        print("dataset loaded")
        model.eval()
        print("Model in eval mode, dataset and tokenizer also loaded")
        return model, tokenizer, dataset

    def load_model_from_path(self, model_path:str):
        print("Loading model from path:",model_path)
        model = GPT2LMHeadModel.from_pretrained(model_path)
        model.eval()
        self.model = model
        return model 


    def from_pretrained_local_path(self, model_path: str, file_prefix: str):
        print("Local model loading...")
        model = GPT2LMHeadModel.from_pretrained(model_path)
        tokenizer = self.load_tokenizer(model_path)

        self.model = model 
        self.tokenizer = tokenizer

        # Get sequence length max of 1024
        tokenizer.model_max_length = 1024
        add_special_tokens_(model, tokenizer)


        #Will only use if it cannot find cache
        DATASET_PATH = model_path + '/personafile.json'  #maynot be needed if cache exists!
        
        ##We have cache no need for dataset path 
        DATASET_CACHE = model_path +'/persona_good'  ##persona_good_gpt2_cache  (no zip extension)

        dataset = self.load_dataset(DATASET_PATH, DATASET_CACHE)
        
        self.dataset = dataset 


        model.eval()
        print("Model in eval mode, dataset and tokenizer also loaded")
        return model, tokenizer, dataset
    
    def load_model_from_efs(self, model_path: str, efs_path: str):
        if model_path and efs_path:
            config = AutoConfig.from_pretrained(f'{model_path}/config.json')
            with open(efs_path, 'rb') as f:
                # state messes things just use classics!
                state = torch.load(io.BytesIO(
                        f.read()), map_location=lambda storage, loc: storage)

                '''alt
                with open(efs_path, 'rb') as f:
                    state = pickle.load(f, encoding='latin1')
                '''
                model = GPT2LMHeadModel.from_pretrained(
                    pretrained_model_name_or_path=None, state_dict=state, config=config)
            return model
        else:
            raise KeyError('No model config path or EFS bin path')


    def load_model_from_s3(self, model_path: str, s3_bucket: str, file_prefix: str):
        if model_path and s3_bucket and file_prefix:
            obj = s3.get_object(Bucket=s3_bucket, Key=file_prefix)
            bytestream = io.BytesIO(obj['Body'].read())

            tar = tarfile.open(fileobj=bytestream, mode="r:gz")
            config = AutoConfig.from_pretrained(f'{model_path}/config.json')
            for member in tar.getmembers():
                if member.name.startswith("./._"):
                    # osx tar adds ./._XXX copyfile need to pass this file
                    continue
                if member.name.endswith(".bin"):
                    f = tar.extractfile(member)
                    print("Model file extracted: " + member.name)

                    # state messes things just use classics!
                    state = torch.load(io.BytesIO(
                        f.read()), map_location=lambda storage, loc: storage)
                    model = GPT2LMHeadModel.from_pretrained(
                        pretrained_model_name_or_path=None, state_dict=state, config=config)
                    #model = AutoModelWithLMHead.from_pretrained("./",  config=config)
                    

            return model
        else:
            raise KeyError('No S3 Bucket and Key Prefix provided')

    def load_tokenizer(self, model_path: str):
        print("loading tokenizer")
        tokenizer = GPT2Tokenizer.from_pretrained(model_path)
        return tokenizer

    def load_dataset(self, DATASET_PATH: str, DATASET_CACHE: str, use_efs= False):
        print("loading dataset")
        dataset = get_dataset(self.tokenizer, DATASET_PATH, DATASET_CACHE) 
        return dataset

    def encode(self, question, context):
        encoded = self.tokenizer.encode_plus(question, context)
        return encoded["input_ids"], encoded["attention_mask"]

    def decode(self, token):
        answer_tokens = self.tokenizer.convert_ids_to_tokens(
            token, skip_special_tokens=True)
        return self.tokenizer.convert_tokens_to_string(answer_tokens)

    def generate_word(self, text, model=None, tokenizer=None, noprint=False):
        if model is None or tokenizer is None:
            print("ERROR: No model or tokenizer")
            return None

        inputs = tokenizer(text, return_tensors="pt")

        # model output
        outputs = model(**inputs, labels=inputs["input_ids"])
        loss, logits = outputs[:2]
        predicted_index = torch.argmax(logits[0, -1, :]).item()
        predicted_text = tokenizer.decode([predicted_index])

        # results
        if not noprint:
            print('input text:', text)
            print('predicted text:', predicted_text)

        return predicted_text


    def top_filtering(self,logits, top_k=0., top_p=0.9, threshold=-float('Inf'), filter_value=-float('Inf')):
        """ Filter a distribution of logits using top-k, top-p (nucleus) and/or threshold filtering
            Args:
                logits: logits distribution shape (vocabulary size)
                top_k: <=0: no filtering, >0: keep only top k tokens with highest probability.
                top_p: <=0.0: no filtering, >0.0: keep only a subset S of candidates, where S is the smallest subset
                    whose total probability mass is greater than or equal to the threshold top_p.
                    In practice, we select the highest probability tokens whose cumulative probability mass exceeds
                    the threshold top_p.
                threshold: a minimal threshold to keep logits
        """
        assert logits.dim() == 1  # Only work for batch size 1 for now - could update but it would obfuscate a bit the code
        top_k = min(top_k, logits.size(-1))
        if top_k > 0:
            # Remove all tokens with a probability less than the last token in the top-k tokens
            indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
            logits[indices_to_remove] = filter_value

        if top_p > 0.0:
            # Compute cumulative probabilities of sorted tokens
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probabilities = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probabilities > top_p
            # Shift the indices to the right to keep also the first token above the threshold
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            # Back to unsorted indices and set them to -infinity
            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            logits[indices_to_remove] = filter_value

        indices_to_remove = logits < threshold
        logits[indices_to_remove] = filter_value

        return logits


    def sample_sequence(self,personality, history, tokenizer, model, params=None, current_output=None):

        start = timeit.default_timer()
        

        if params is not None:

            for k,v in params.items():
                self.parameters[k] = v

        ##to access as dot notation
        ##param = SimpleNamespace(**parameters)

        special_tokens_ids = tokenizer.convert_tokens_to_ids(SPECIAL_TOKENS)
        if current_output is None:
            current_output = []

        for i in range(self.parameters['max_length']):

            #print(">: {}/{}       ".format(i, self.parameters['max_length'] ) ,end='\r', flush=True) 
            
            instance = build_input_from_segments(personality, history, current_output, tokenizer, with_eos=False)

            input_ids = torch.tensor(instance["input_ids"], device=self.parameters['device']).unsqueeze(0)
            token_type_ids = torch.tensor(instance["token_type_ids"], device=self.parameters['device']).unsqueeze(0)

            logits = model(input_ids, token_type_ids=token_type_ids)
            if isinstance(logits, tuple):  # for gpt2 and maybe others
                logits = logits[0]
            
            #SPECIAL Dynamic Temperature mode
            if self.parameters['dynamic_temperature']:
                #random temperature withing -0.1 / + 0.1 or 'dynamic_temperature_range'
                rand_range = random.uniform(-1 * self.parameters['dynamic_temperature_range'] , self.parameters['dynamic_temperature_range'])
                temperature = self.parameters['temperature'] + rand_range
            else:
                temperature = self.parameters['temperature']

            logits = logits[0, -1, :] / temperature
            
            logits = self.top_filtering(logits, top_k=self.parameters['top_k'], top_p=self.parameters['top_p'])
            
            probs = F.softmax(logits, dim=-1)

            prev = torch.topk(probs, 1)[1] if self.parameters['no_sample'] else torch.multinomial(probs, 1)
            if i < self.parameters['min_length'] and prev.item() in special_tokens_ids:
                while prev.item() in special_tokens_ids:
                    if probs.max().item() == 1:
                        warnings.warn("Warning: model generating special token with probability 1.")
                        break  # avoid infinitely looping over special token
                    prev = torch.multinomial(probs, num_samples=1)

            if prev.item() in special_tokens_ids:
                ##breaks here if found end of anser!!
                break
            current_output.append(prev.item())


        stop = timeit.default_timer()
        #print(f"\nPredict in {stop - start} seconds\n")

        return current_output


    def dump_personalities_with_movies(self):
        personalities = [ [dialog["name"], dialog["moviename"]] for dialog in self.dataset["train"]]
        name_list = []
        for person in personalities:
            try:
                name_tokenized = person[0]
                name = self.tokenizer.decode(name_tokenized)
                movies_tokenized = person[1]
                movienames= ""
                ##check type of first element
                ##if int , only 1 movie
                if isinstance(movies_tokenized[0], int):
                    movienames = self.tokenizer.decode(movies_tokenized)
                    movienames = movienames.replace(".txt", "")
                else:
                    for movie in movies_tokenized:
                        moviename = self.tokenizer.decode(movie)
                        moviename = moviename.replace(".txt", "")
                        movienames = movienames + " / " + moviename
                name_list.append([name,movienames])
            except:
                print("Could not do name:", self.tokenizer.decode(person[0]))
        
        return name_list




    def dump_personalities(self,as_list=False):
        personalities = [dialog["personality"] for dialog in self.dataset["train"]]
        name_list = []
        for person in personalities:
            name_tokenized = person[-1]
            name = self.tokenizer.decode(name_tokenized)
            name = name.replace("My name is ", "")[:-1]
            name_list.append(name)
            #print(name)

        if as_list:
            return name_list
        else:
            return " | ".join(name_list)


    def get_personalities(self):
        ##THIS FUNCTION IS NOW LEGACY, USE dump_personalities
        personalities = [dialog["personality"] for dialog in self.dataset["train"]]

        people = [item[-1][-10:-1] for item in personalities]
        ##will get My Name is Something
        people_list = self.tokenizer.decode(chain(*people))

        #print( " | ".join( people_list.split(" ") ) )
        text_to_remove = "My name is "
        people_list = people_list.replace(text_to_remove,  " | ")

        
        #characters =  " | ".join( people_list.split(" ") ) 

        return people_list

    def select_personality(self,characters,select_random=False):
        ##FIND people list
        ##this is for debug, usually has " is Name"
        #people = [item[-1][-3:-1] for item in personalities]
        personalities = [dialog["personality"]  for dialog in  self.dataset["train"]]

        if select_random : return random.choice(personalities)
        

        #people = [item[-1][-2:-1] for item in personalities]
        #people_list = self.tokenizer.decode(chain(*people)) 
        #print( " | ".join( people_list.split(" ") ) )
        
        personality = None 

        name = "My name is " + str(characters) 
        name_token = self.tokenizer.encode(name)
        #print(name_token)
        index_start = len(name_token)+1

        try:
          
          index_of_name = [ item[-1][-1*index_start: -1]== name_token for item in personalities].index(True)
          
          #print("Selected {} is at: {}".format(characters, str(index_of_name) ) )
          personality = personalities[index_of_name]
        except:
          print("Not found ... Select again")
          return None 

        ##TALK TO HAL
        #personality_hal = ["that's true. My name is Hal"]
        #personality = tokenize(personality_hal)
        #print(personality)

        print("Selected personality: %s", self.tokenizer.decode(chain(*personality)))

        return personality



    def get_answer(self, input_text, personality, history, params=None):
        
        ##Check length of history (to save 1 computation!)
        if len(history)>0:
            #mostly it will be empty list so need a length check for performance
            #would do string check also but just assume it is list of list of strings, as not public
            
            new_hist = [] 
            for ele in history:
                new_hist.append( self.tokenizer.encode(ele) )
            history = new_hist.copy()

        history.append(self.tokenizer.encode(input_text))

        with torch.no_grad():
            out_ids = self.sample_sequence(personality, history, self.tokenizer, self.model, params=params)
        history.append(out_ids)
        history = history[-(2*self.parameters['max_history']+1):]
        out_text = self.tokenizer.decode(out_ids, skip_special_tokens=True)
        #print(out_text)


        history_decoded = []
        for ele in history:
            history_decoded.append(self.tokenizer.decode(ele))

        return out_text, history_decoded, self.parameters



    def predict(self, question, parameter_dict):
        try:
            answer = self.generate_text(question, model=self.model,
                                        tokenizer=self.tokenizer,
                                        parameter_dict=parameter_dict,
                                        )
            return answer
        except Exception as e:
            raise Exception(
                "Runtime error see cloudwatch logs : {}".format(repr(e)))