Commit
·
0569c34
1
Parent(s):
9505bbe
Update README.md
Browse files
README.md
CHANGED
@@ -99,34 +99,105 @@ import torchaudio
|
|
99 |
from datasets import load_dataset, load_metric
|
100 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
101 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
test_dataset = load_dataset("common_voice", "tr", split="test")
|
103 |
wer = load_metric("wer")
|
104 |
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish")
|
105 |
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish")
|
106 |
model.to("cuda")
|
107 |
-
# Note: Not ignoring "'" on this one
|
108 |
-
chars_to_ignore_regex = """[\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\>\<\_\’\[\]\{\}]"""
|
109 |
|
110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
# Preprocessing the datasets.
|
112 |
# We need to read the aduio files as arrays
|
113 |
def speech_file_to_array_fn(batch):
|
114 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
115 |
-
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
116 |
-
|
|
|
117 |
return batch
|
118 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
119 |
# Preprocessing the datasets.
|
120 |
# We need to read the aduio files as arrays
|
121 |
def evaluate(batch):
|
|
|
122 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
123 |
with torch.no_grad():
|
124 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
125 |
pred_ids = torch.argmax(logits, dim=-1)
|
126 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
127 |
return batch
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
|
|
130 |
```
|
131 |
**Test Result**: TBD %
|
132 |
## Training
|
|
|
99 |
from datasets import load_dataset, load_metric
|
100 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
101 |
import re
|
102 |
+
import torch
|
103 |
+
import pydub
|
104 |
+
from pydub.utils import mediainfo
|
105 |
+
import array
|
106 |
+
from pydub import AudioSegment
|
107 |
+
from pydub.utils import get_array_type
|
108 |
+
import numpy as np
|
109 |
+
|
110 |
test_dataset = load_dataset("common_voice", "tr", split="test")
|
111 |
wer = load_metric("wer")
|
112 |
processor = Wav2Vec2Processor.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish")
|
113 |
model = Wav2Vec2ForCTC.from_pretrained("gorkemgoknar/wav2vec2-large-xlsr-53-turkish")
|
114 |
model.to("cuda")
|
|
|
|
|
115 |
|
116 |
+
#Note: Not ignoring "'" on this one
|
117 |
+
#Note: Not ignoring "'" on this one
|
118 |
+
chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\”\�\#\>\<\_\’\[\]\{\}]'
|
119 |
+
|
120 |
+
#resampler = torchaudio.transforms.Resample(48_000, 16_000)
|
121 |
+
#using custom load and transformer for audio -> see audio_resampler
|
122 |
+
new_sample_rate = 16000
|
123 |
+
|
124 |
+
|
125 |
+
|
126 |
+
import torchaudio
|
127 |
+
import torch
|
128 |
+
import pydub
|
129 |
+
import array
|
130 |
+
import numpy as np
|
131 |
+
|
132 |
+
def audio_resampler(batch, new_sample_rate = 16000):
|
133 |
+
|
134 |
+
#not working without complex library compilation in windows for mp3
|
135 |
+
#speech_array, sampling_rate = torchaudio.load(batch["path"])
|
136 |
+
#speech_array, sampling_rate = librosa.load(batch["path"])
|
137 |
+
|
138 |
+
#sampling_rate = pydub.utils.info['sample_rate'] ##gets current samplerate
|
139 |
+
|
140 |
+
sound = pydub.AudioSegment.from_file(file=batch["path"])
|
141 |
+
sampling_rate = new_sample_rate
|
142 |
+
sound = sound.set_frame_rate(new_sample_rate)
|
143 |
+
left = sound.split_to_mono()[0]
|
144 |
+
bit_depth = left.sample_width * 8
|
145 |
+
array_type = pydub.utils.get_array_type(bit_depth)
|
146 |
+
|
147 |
+
numeric_array = np.array(array.array(array_type, left._data) )
|
148 |
+
|
149 |
+
speech_array = torch.FloatTensor(numeric_array)
|
150 |
+
|
151 |
+
batch["speech"] = numeric_array
|
152 |
+
batch["sampling_rate"] = sampling_rate
|
153 |
+
#batch["target_text"] = batch["sentence"]
|
154 |
+
|
155 |
+
return batch
|
156 |
+
|
157 |
+
|
158 |
+
def remove_special_characters(batch):
|
159 |
+
|
160 |
+
##this one comes from subtitles if additional timestamps not processed -> 00:01:01 00:01:01,33
|
161 |
+
batch["sentence"] = re.sub('\b\d{2}:\d{2}:\d{2}(,+\d{2})?\b', ' ', batch["sentence"])
|
162 |
+
|
163 |
+
##remove all caps in text [AÇIKLAMA] etc, do it before..
|
164 |
+
batch["sentence"] = re.sub('\[(\b[A-Z]+\])', '', batch["sentence"])
|
165 |
+
|
166 |
+
##replace three dots (that are inside string with single)
|
167 |
+
batch["sentence"] = re.sub("([a-zA-Z]+)\.\.\.", r"\1.", batch["sentence"])
|
168 |
+
|
169 |
+
#standart ignore list
|
170 |
+
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " "
|
171 |
+
|
172 |
+
|
173 |
+
return batch
|
174 |
+
|
175 |
# Preprocessing the datasets.
|
176 |
# We need to read the aduio files as arrays
|
177 |
def speech_file_to_array_fn(batch):
|
178 |
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower()
|
179 |
+
##speech_array, sampling_rate = torchaudio.load(batch["path"])
|
180 |
+
##load and conversion done in resampler , takes and returns batch
|
181 |
+
batch = audio_resampler(batch, new_sample_rate = new_sample_rate)
|
182 |
return batch
|
183 |
test_dataset = test_dataset.map(speech_file_to_array_fn)
|
184 |
# Preprocessing the datasets.
|
185 |
# We need to read the aduio files as arrays
|
186 |
def evaluate(batch):
|
187 |
+
|
188 |
inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
189 |
with torch.no_grad():
|
190 |
logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits
|
191 |
pred_ids = torch.argmax(logits, dim=-1)
|
192 |
batch["pred_strings"] = processor.batch_decode(pred_ids)
|
193 |
return batch
|
194 |
+
|
195 |
+
print("EVALUATING:")
|
196 |
+
|
197 |
+
##for 8GB RAM on GPU best is batch_size 2 for windows, 4 may fit in linux only
|
198 |
+
result = test_dataset.map(evaluate, batched=True, batch_size=2)
|
199 |
print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"])))
|
200 |
+
|
201 |
```
|
202 |
**Test Result**: TBD %
|
203 |
## Training
|