syavnyi commited on
Commit
a0e06f3
1 Parent(s): d7abbfc

Model card WIP

Browse files
Files changed (1) hide show
  1. README.md +54 -1
README.md CHANGED
@@ -3,4 +3,57 @@ license: apache-2.0
3
  language:
4
  - en
5
  pipeline_tag: text-classification
6
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  language:
4
  - en
5
  pipeline_tag: text-classification
6
+ datasets:
7
+ - grammarly/detexd-eval
8
+ ---
9
+
10
+ # DeTexD-RoBERTa-base delicate text detection
11
+
12
+ This is a baseline RoBERTa-base model for the delicate text detection task.
13
+
14
+ * Paper: [DeTexD: A Benchmark Dataset for Delicate Text Detection](TODO)
15
+ * [GitHub repository](https://github.com/grammarly/detexd)
16
+
17
+ ## Classification example code
18
+
19
+ Here's a short usage example with the torch library in a binary classification task:
20
+
21
+ ```python
22
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
23
+ import torch
24
+
25
+ tokenizer = AutoTokenizer.from_pretrained("grammarly/detexd-roberta")
26
+ model = AutoModelForSequenceClassification.from_pretrained("grammarly/detexd-roberta")
27
+ model.eval()
28
+
29
+ def predict_binary_score(text: str, break_class_ix=3):
30
+ with torch.no_grad():
31
+ # get multiclass probability scores
32
+ logits = model(**tokenizer(text, return_tensors='pt'))[0]
33
+ probs = torch.nn.functional.softmax(logits, dim=-1)
34
+
35
+ # convert to a binary prediction by summing the probability scores
36
+ # for the higher-index classes, as defined by break_class_ix
37
+ bin_score = probs[..., break_class_ix:].sum(dim=-1)
38
+
39
+ return bin_score.item()
40
+
41
+ def predict_delicate(text: str, threshold=0.72496545):
42
+ return predict_binary_score(text) > threshold
43
+
44
+ print(predict_delicate("Time flies like an arrow. Fruit flies like a banana."))
45
+ ```
46
+
47
+ Expected output:
48
+
49
+ ```
50
+ False
51
+ ```
52
+
53
+ ## BibTeX entry and citation info
54
+
55
+ Please cite [our paper](TODO) if you use this model.
56
+
57
+ ```bibtex
58
+ TODO
59
+ ```