--- license: cc-by-nc-4.0 --- # Model Card for Spivavtor-Large This model was obtained by fine-tuning the corresponding `bigscience/mt0-large` model on the Spivavtor dataset. All details of the dataset and fine tuning process can be found in our paper and repository. **Paper:** Spivavtor: An Instruction Tuned Ukrainian Text Editing Model **Authors:** Aman Saini, Artem Chernodub, Vipul Raheja, Vivek Kulkarni ## Model Details ### Model Description - **Language**: Ukrainian - **Finetuned from model:** bigscience/mt0-large ## How to use We make available the following models presented in our paper.
Model Number of parameters Reference name in Paper
Spivavtor-large 1.2B Spivavtor-mt0-large
Spivavtor-xxl 11B Spivavtor-aya-101
## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("grammarly/spivavtor-large") model = AutoModelForSeq2SeqLM.from_pretrained("grammarly/spivavtor-large") input_text = 'Виправте граматику в цьому реченнi: Дякую за iнформацiю! ми з Надiєю саме вийшли з дому' input_ids = tokenizer(input_text, return_tensors="pt").input_ids outputs = model.generate(input_ids, max_length=256) output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)