--- license: llama4 language: - en - fr - de - hi - it - pt - es - th base_model: - meta-llama/Llama-Prompt-Guard-2-86M pipeline_tag: text-classification tags: - facebook - meta - llama - llama4 - safety - gravitee-io - ai-gateway --- # Llama-Prompt-Guard-2-86M-onnx This repository provides a ONNX converted and quantized version of meta-llama/Llama-Prompt-Guard-2-86M ## ๐Ÿง  Built With - Meta LLaMA โ€“ Foundation model powering the classifier - [meta-llama/Llama-Prompt-Guard-2-22M](https://huggingface.co/meta-llama/Llama-Prompt-Guard-2-22M) - [meta-llama/Llama-Prompt-Guard-2-86M](https://huggingface.co/meta-llama/Llama-Prompt-Guard-2-86M) - ๐Ÿค— Hugging Face Transformers โ€“ Model and tokenizer loading - ONNX โ€“ Model export and runtime format - ONNX Runtime โ€“ Efficient inference backend ## ๐Ÿ“ฅ Evaluation Dataset We use [`jackhhao/jailbreak-classification`](https://huggingface.co/datasets/jackhhao/jailbreak-classification) for the evaluation ## ๐Ÿงช Evaluation Results | Model | Accuracy | Precision | Recall | F1 Score | AUC-ROC | Inference Time | |-------------------------------|----------|-----------|--------|----------|---------|----------------| | Llama-Prompt-Guard-2-22M | 0.9569 | 0.9879 | 0.9260 | 0.9559 | 0.9259 | 33s | | Llama-Prompt-Guard-2-22M-q | 0.9473 | 1.0000 | 0.8956 | 0.9449 | 0.9032 | 29s | | Llama-Prompt-Guard-2-86M | 0.9770 | 0.9980 | 0.9564 | 0.9767 | 0.9523 | 1m29s | | Llama-Prompt-Guard-2-86M-q | 0.8937 | 1.0000 | 0.7894 | 0.8823 | 0.7263 | 1m15s | ## ๐Ÿค— Usage ```python from transformers import AutoTokenizer from optimum.onnxruntime import ORTModelForSequenceClassification import numpy as np # Load model and tokenizer using optimum model = ORTModelForSequenceClassification.from_pretrained("gravitee-io/Llama-Prompt-Guard-2-86M-onnx", file_name="model.quant.onnx") tokenizer = AutoTokenizer.from_pretrained("gravitee-io/Llama-Prompt-Guard-2-86M-onnx") # Tokenize input text = "Your comment here" inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) # Run inference outputs = model(**inputs) logits = outputs.logits # Optional: convert to probabilities probs = 1 / (1 + np.exp(-logits)) print(probs) ``` ## ๐Ÿ™ GitHub Repository: You can find the full source code, CLI tools, and evaluation scripts in the official [GitHub repository](https://github.com/gravitee-io-labs/Llama-Prompt-Guard-2-onnx).