handler
Browse files- handler.py +25 -0
- requirements.txt +1 -0
handler.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import LayoutLMForTokenClassification, LayoutLMv2Processor
|
| 3 |
+
import torch
|
| 4 |
+
from subprocess import run
|
| 5 |
+
import pytesseract
|
| 6 |
+
|
| 7 |
+
# install tesseract-ocr and pytesseract
|
| 8 |
+
run("apt install -y tesseract-ocr", shell=True, check=True)
|
| 9 |
+
|
| 10 |
+
# set device
|
| 11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class EndpointHandler:
|
| 15 |
+
def __call__(self, data: Dict[str, bytes]) -> Dict[str, List[Any]]:
|
| 16 |
+
"""
|
| 17 |
+
Args:
|
| 18 |
+
data (:obj:):
|
| 19 |
+
includes the deserialized image file as PIL.Image
|
| 20 |
+
"""
|
| 21 |
+
# process input
|
| 22 |
+
image = data.pop("inputs", data)
|
| 23 |
+
|
| 24 |
+
result = pytesseract.image_to_string(image)
|
| 25 |
+
return {"predictions": result}
|
requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pytesseract
|