| from typing import Dict, List, Optional, Type, Union | |
| import torch | |
| def _cast_if_autocast_enabled(tensor: torch.Tensor) -> torch.Tensor: | |
| if torch.is_autocast_enabled(): | |
| if tensor.device.type == 'cuda': | |
| dtype = torch.get_autocast_gpu_dtype() | |
| elif tensor.device.type == 'cpu': | |
| dtype = torch.get_autocast_cpu_dtype() | |
| else: | |
| raise NotImplementedError() | |
| return tensor.to(dtype=dtype) | |
| return tensor | |
| class LPLayerNorm(torch.nn.LayerNorm): | |
| def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, elementwise_affine: bool=True, device: Optional[torch.device]=None, dtype: Optional[torch.dtype]=None): | |
| super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| module_device = x.device | |
| downcast_x = _cast_if_autocast_enabled(x) | |
| downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight | |
| downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias | |
| with torch.autocast(enabled=False, device_type=module_device.type): | |
| return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) | |
| def rms_norm(x: torch.Tensor, weight: Optional[torch.Tensor]=None, eps: float=1e-05) -> torch.Tensor: | |
| output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) | |
| if weight is not None: | |
| return output * weight | |
| return output | |
| class RMSNorm(torch.nn.Module): | |
| def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): | |
| super().__init__() | |
| self.eps = eps | |
| if weight: | |
| self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) | |
| else: | |
| self.register_parameter('weight', None) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) | |
| class LPRMSNorm(RMSNorm): | |
| def __init__(self, normalized_shape: Union[int, List[int], torch.Size], eps: float=1e-05, weight: bool=True, dtype: Optional[torch.dtype]=None, device: Optional[torch.device]=None): | |
| super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| downcast_x = _cast_if_autocast_enabled(x) | |
| downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight | |
| with torch.autocast(enabled=False, device_type=x.device.type): | |
| return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) | |
| NORM_CLASS_REGISTRY: Dict[str, Type[torch.nn.Module]] = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm} |