Update README.md
Browse files
README.md
CHANGED
@@ -112,18 +112,58 @@ def rag_format_func(reference, query):
|
|
112 |
|
113 |
## Usage:
|
114 |
```python
|
115 |
-
from
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
```
|
119 |
|
120 |
### Toxicity Detection Example:
|
121 |
```python
|
122 |
text_to_evaluate = "This is some text to evaluate"
|
123 |
system, prompt = toxic_format_func(text_to_evaluate)
|
124 |
-
|
125 |
-
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
```
|
128 |
|
129 |
### Hallucination Detection Example:
|
@@ -132,6 +172,7 @@ reference = "The Eiffel Tower was completed in 1889."
|
|
132 |
query = "When was the Eiffel Tower built?"
|
133 |
response = "The Eiffel Tower was completed in 1925."
|
134 |
system, prompt = halu_format_func(reference, query, response)
|
|
|
135 |
```
|
136 |
|
137 |
### RAG Relevance Example:
|
@@ -139,7 +180,7 @@ system, prompt = halu_format_func(reference, query, response)
|
|
139 |
reference = "The process of photosynthesis in plants..."
|
140 |
query = "How does photosynthesis work?"
|
141 |
system, prompt = rag_format_func(reference, query)
|
142 |
-
)
|
143 |
```
|
144 |
## Sample Output:
|
145 |
```Markdown
|
|
|
112 |
|
113 |
## Usage:
|
114 |
```python
|
115 |
+
from vllm import LLM, SamplingParams
|
116 |
+
|
117 |
+
# Configure sampling parameters
|
118 |
+
sampling_params = SamplingParams(
|
119 |
+
temperature=0.5,
|
120 |
+
top_p=0.5,
|
121 |
+
max_tokens=1024,
|
122 |
+
)
|
123 |
+
|
124 |
+
# Initialize the LLM
|
125 |
+
llm = LLM(
|
126 |
+
model="grounded-ai/phi4-r1-guard",
|
127 |
+
max_num_seqs=5,
|
128 |
+
max_model_len=2048,
|
129 |
+
tensor_parallel_size=1,
|
130 |
+
gpu_memory_utilization=0.9,
|
131 |
+
)
|
132 |
```
|
133 |
|
134 |
### Toxicity Detection Example:
|
135 |
```python
|
136 |
text_to_evaluate = "This is some text to evaluate"
|
137 |
system, prompt = toxic_format_func(text_to_evaluate)
|
138 |
+
|
139 |
+
from transformers import AutoTokenizer
|
140 |
+
|
141 |
+
def run_inference(system, prompt):
|
142 |
+
tokenizer = AutoTokenizer.from_pretrained("grounded-ai/phi4-r1-guard")
|
143 |
+
|
144 |
+
# Define prompts
|
145 |
+
text = tokenizer.apply_chat_template([
|
146 |
+
{"role" : "system", "content" : system},
|
147 |
+
{"role" : "user", "content" : prompt},
|
148 |
+
], tokenize = False, add_generation_prompt = True)
|
149 |
+
|
150 |
+
prompts = [
|
151 |
+
text
|
152 |
+
]
|
153 |
+
# Generate responses
|
154 |
+
outputs = llm.generate(prompts, sampling_params)
|
155 |
+
|
156 |
+
# Print results
|
157 |
+
for output in outputs:
|
158 |
+
prompt = output.prompt
|
159 |
+
generated_text = output.outputs[0].text
|
160 |
+
print(f"Prompt: {prompt}")
|
161 |
+
print('------------------'*40)
|
162 |
+
print(f"Generated text: {generated_text}\n")
|
163 |
+
|
164 |
+
return generated_text
|
165 |
+
|
166 |
+
run_inference(system, prompt)
|
167 |
```
|
168 |
|
169 |
### Hallucination Detection Example:
|
|
|
172 |
query = "When was the Eiffel Tower built?"
|
173 |
response = "The Eiffel Tower was completed in 1925."
|
174 |
system, prompt = halu_format_func(reference, query, response)
|
175 |
+
run_inference(system, prompt)
|
176 |
```
|
177 |
|
178 |
### RAG Relevance Example:
|
|
|
180 |
reference = "The process of photosynthesis in plants..."
|
181 |
query = "How does photosynthesis work?"
|
182 |
system, prompt = rag_format_func(reference, query)
|
183 |
+
run_inference(system, prompt)
|
184 |
```
|
185 |
## Sample Output:
|
186 |
```Markdown
|