from transformers import PretrainedConfig import os import yaml import requests from functools import partial import torch.nn as nn class SMARTIESConfig(PretrainedConfig): model_type = "SMARTIES-v1-ViT-B" def __init__( self, img_size=224, patch_size=16, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True, norm_eps=1e-6, spectrum_specs=None, global_pool=False, norm_layer_eps=1e-6, mixed_precision='no', decoder_embed_dim=512, decoder_depth=8, decoder_num_heads=16, pos_drop_rate=0.0, **kwargs ): super().__init__(**kwargs) self.img_size = img_size self.patch_size = patch_size self.embed_dim = embed_dim self.depth = depth self.num_heads = num_heads self.mlp_ratio = mlp_ratio self.qkv_bias = qkv_bias self.norm_eps = norm_eps self.spectrum_specs = spectrum_specs self.global_pool = global_pool self.pos_drop_rate = pos_drop_rate self.num_heads = self.num_heads self.norm_layer_eps = norm_layer_eps self.mixed_precision = mixed_precision self.decoder_embed_dim = decoder_embed_dim self.decoder_depth = decoder_depth self.decoder_num_heads = decoder_num_heads