sbudideti3 commited on
Commit
1f0e043
·
verified ·
1 Parent(s): d147d06

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -155
README.md CHANGED
@@ -1,199 +1,118 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
 
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ datasets:
5
+ - gtfintechlab/WCB
6
 
7
+ language:
8
+ - en
9
 
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ - precision
14
+ - recall
15
 
16
+ base_model:
17
+ - roberta-base
18
 
19
+ pipeline_tag: text-classification
20
 
21
+ library_name: transformers
22
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # World of Central Banks Model
25
 
26
+ **Model Name:** WCB Temporal Classification Model
27
 
28
+ **Model Type:** Text Classification
29
 
30
+ **Language:** English
31
 
32
+ **License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
33
 
34
+ **Base Model:** [RoBERTa](https://huggingface.co/FacebookAI/roberta-base)
35
 
36
+ **Dataset Used for Training:** [gtfintechlab/WCB_380k_sentences](https://huggingface.co/datasets/gtfintechlab/WCB_380k_sentences)
37
 
38
+ ## Model Overview
39
 
40
+ WCB Temporal Classification Model is a fine-tuned RoBERTa-based model designed to classify text data on **Temporal Classification**. This label is annotated in the model_WCB_time_label dataset, which focuses on meeting minutes for the all 25 central banks, listed in the paper _Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications_.
41
 
42
+ ## Intended Use
43
 
44
+ This model is intended for researchers and practitioners working on subjective text classification, particularly within financial and economic contexts. It is specifically designed to assess the **Temporal Classification** label, aiding in the analysis of subjective content in financial and economic communications.
45
 
46
+ ## How to Use
47
 
48
+ To utilize this model, load it using the Hugging Face `transformers` library:
 
 
 
 
49
 
50
+ ```python
51
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
52
 
53
+ # Load tokenizer, model, and configuration
54
+ tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/model_WCB_time_label", do_lower_case=True, do_basic_tokenize=True)
55
+ model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/model_WCB_time_label", num_labels=2)
56
+ config = AutoConfig.from_pretrained("gtfintechlab/model_WCB_time_label")
57
 
58
+ # Initialize text classification pipeline
59
+ classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")
60
 
61
+ # Classify Temporal Classification
62
+ sentences = [
63
+ "[Sentence 1]",
64
+ "[Sentence 2]"
65
+ ]
66
+ results = classifier(sentences, batch_size=128, truncation="only_first")
67
 
68
+ print(results)
69
+ ```
70
 
71
+ In this script:
72
 
73
+ - **Tokenizer and Model Loading:**
74
+ Loads the pre-trained tokenizer and model from `gtfintechlab/model_WCB_time_label`.
75
 
76
+ - **Configuration:**
77
+ Loads model configuration parameters, including the number of labels.
78
 
79
+ - **Pipeline Initialization:**
80
+ Initializes a text classification pipeline with the model, tokenizer, and configuration.
81
 
82
+ - **Classification:**
83
+ Labels sentences based on **Temporal Classification**.
84
 
85
+ Ensure your environment has the necessary dependencies installed.
86
 
87
+ ## Label Interpretation
88
 
89
+ - **LABEL_0:** Forward-looking; the sentence discusses future economic events or decisions.
90
+ - **LABEL_1:** Not forward-looking; the sentence discusses past or current economic events or decisions.
91
 
92
+ ## Training Data
93
 
94
+ The model was trained on the model_WCB_time_label dataset, comprising annotated sentences from 25 central banks, labeled by Temporal Classification. The dataset includes training, validation, and test splits.
95
 
96
+ ## Citation
97
 
98
+ If you use this model in your research, please cite the model_WCB_time_label:
99
 
100
+ ```bibtex
101
+ @article{WCBShahSukhaniPardawala,
102
+ title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
103
+ author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
104
+ year={2025}
105
+ }
106
+ ```
107
 
108
+ For more details, refer to the [model_WCB_time_label dataset documentation](https://huggingface.co/gtfintechlab/model_WCB_time_label).
109
 
110
+ ## Contact
111
 
112
+ For any model_WCB_time_label related issues and questions, please contact:
113
 
114
+ - Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu
115
 
116
+ - Siddhant Sukhani: ssukhani3[at]gatech[dot]edu
117
 
118
+ - Agam Shah: ashah482[at]gatech[dot]edu