Text Classification
Transformers
Safetensors
English
roberta
sbudideti3 commited on
Commit
92141f6
·
verified ·
1 Parent(s): eb43569

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +74 -155
README.md CHANGED
@@ -1,199 +1,118 @@
1
  ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
 
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
 
 
69
 
70
- ## How to Get Started with the Model
 
71
 
72
- Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
 
125
- [More Information Needed]
126
 
127
- ### Results
128
 
129
- [More Information Needed]
130
 
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
154
 
155
- ### Model Architecture and Objective
 
 
 
156
 
157
- [More Information Needed]
 
158
 
159
- ### Compute Infrastructure
 
 
 
 
 
160
 
161
- [More Information Needed]
 
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
 
166
 
167
- #### Software
 
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
 
4
+ datasets:
5
+ - gtfintechlab/central_bank_of_chile
6
 
7
+ language:
8
+ - en
9
 
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ - precision
14
+ - recall
15
 
16
+ base_model:
17
+ - roberta-base
18
 
19
+ pipeline_tag: text-classification
20
 
21
+ library_name: transformers
22
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
 
24
+ # World of Central Banks Model
25
 
26
+ **Model Name:** Central Bank of Chile Temporal Classification Model
27
 
28
+ **Model Type:** Text Classification
29
 
30
+ **Language:** English
31
 
32
+ **License:** [CC-BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
33
 
34
+ **Base Model:** [roberta-base](https://huggingface.co/FacebookAI/roberta-base)
35
 
36
+ **Dataset Used for Training:** [gtfintechlab/central_bank_of_chile](https://huggingface.co/datasets/gtfintechlab/central_bank_of_chile)
37
 
38
+ ## Model Overview
39
 
40
+ Central Bank of Chile Temporal Classification Model is a fine-tuned roberta-base model designed to classify text data on **Temporal Classification**. This label is annotated in the central_bank_of_chile dataset, which focuses on meeting minutes for the Central Bank of Chile.
41
 
42
+ ## Intended Use
43
 
44
+ This model is intended for researchers and practitioners working on subjective text classification for the Central Bank of Chile, particularly within financial and economic contexts. It is specifically designed to assess the **Temporal Classification** label, aiding in the analysis of subjective content in financial and economic communications.
45
 
46
+ ## How to Use
47
 
48
+ To utilize this model, load it using the Hugging Face `transformers` library:
 
 
 
 
49
 
50
+ ```python
51
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoConfig
52
 
53
+ # Load tokenizer, model, and configuration
54
+ tokenizer = AutoTokenizer.from_pretrained("gtfintechlab/central_bank_of_chile", do_lower_case=True, do_basic_tokenize=True)
55
+ model = AutoModelForSequenceClassification.from_pretrained("gtfintechlab/central_bank_of_chile", num_labels=2)
56
+ config = AutoConfig.from_pretrained("gtfintechlab/central_bank_of_chile")
57
 
58
+ # Initialize text classification pipeline
59
+ classifier = pipeline('text-classification', model=model, tokenizer=tokenizer, config=config, framework="pt")
60
 
61
+ # Classify Temporal Classification
62
+ sentences = [
63
+ "[Sentence 1]",
64
+ "[Sentence 2]"
65
+ ]
66
+ results = classifier(sentences, batch_size=128, truncation="only_first")
67
 
68
+ print(results)
69
+ ```
70
 
71
+ In this script:
72
 
73
+ - **Tokenizer and Model Loading:**
74
+ Loads the pre-trained tokenizer and model from `gtfintechlab/central_bank_of_chile`.
75
 
76
+ - **Configuration:**
77
+ Loads model configuration parameters, including the number of labels.
78
 
79
+ - **Pipeline Initialization:**
80
+ Initializes a text classification pipeline with the model, tokenizer, and configuration.
81
 
82
+ - **Classification:**
83
+ Labels sentences based on **Temporal Classification**.
84
 
85
+ Ensure your environment has the necessary dependencies installed.
86
 
87
+ ## Label Interpretation
88
 
89
+ - **LABEL_0:** Forward-looking; the sentence discusses future economic events or decisions.
90
+ - **LABEL_1:** Not forward-looking; the sentence discusses past or current economic events or decisions.
91
 
92
+ ## Training Data
93
 
94
+ The model was trained on the central_bank_of_chile dataset, comprising annotated sentences from the Central Bank of Chile meeting minutes, labeled by **Temporal Classification**. The dataset includes training, validation, and test splits.
95
 
96
+ ## Citation
97
 
98
+ If you use this model in your research, please cite the central_bank_of_chile:
99
 
100
+ ```bibtex
101
+ @article{WCBShahSukhaniPardawala,
102
+ title={Words That Unite The World: A Unified Framework for Deciphering Global Central Bank Communications},
103
+ author={Agam Shah, Siddhant Sukhani, Huzaifa Pardawala et al.},
104
+ year={2025}
105
+ }
106
+ ```
107
 
108
+ For more details, refer to the [central_bank_of_chile dataset documentation](https://huggingface.co/gtfintechlab/central_bank_of_chile).
109
 
110
+ ## Contact
111
 
112
+ For any central_bank_of_chile related issues and questions, please contact:
113
 
114
+ - Huzaifa Pardawala: huzaifahp7[at]gatech[dot]edu
115
 
116
+ - Siddhant Sukhani: ssukhani3[at]gatech[dot]edu
117
 
118
+ - Agam Shah: ashah482[at]gatech[dot]edu