Add files using upload-large-folder tool
Browse files- .gitattributes +1 -0
- VERSION +1 -0
- added_tokens.json +24 -0
- config.json +51 -0
- generation_config.json +16 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +740 -0
- nohup.out +322 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +212 -0
- trainer_state.json +649 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +674 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
VERSION
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
checkpoint-4410
|
added_tokens.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</tool_call>": 151658,
|
3 |
+
"<tool_call>": 151657,
|
4 |
+
"<|box_end|>": 151649,
|
5 |
+
"<|box_start|>": 151648,
|
6 |
+
"<|endoftext|>": 151643,
|
7 |
+
"<|file_sep|>": 151664,
|
8 |
+
"<|fim_middle|>": 151660,
|
9 |
+
"<|fim_pad|>": 151662,
|
10 |
+
"<|fim_prefix|>": 151659,
|
11 |
+
"<|fim_suffix|>": 151661,
|
12 |
+
"<|im_end|>": 151645,
|
13 |
+
"<|im_start|>": 151644,
|
14 |
+
"<|image_pad|>": 151655,
|
15 |
+
"<|object_ref_end|>": 151647,
|
16 |
+
"<|object_ref_start|>": 151646,
|
17 |
+
"<|quad_end|>": 151651,
|
18 |
+
"<|quad_start|>": 151650,
|
19 |
+
"<|repo_name|>": 151663,
|
20 |
+
"<|video_pad|>": 151656,
|
21 |
+
"<|vision_end|>": 151653,
|
22 |
+
"<|vision_pad|>": 151654,
|
23 |
+
"<|vision_start|>": 151652
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/data/user/qxiao183/qxiao183test2/GameAgent/atari_results/13May_data_CLIP_0.5/checkpoint-4410",
|
3 |
+
"architectures": [
|
4 |
+
"Qwen2_5_VLForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 151643,
|
8 |
+
"eos_token_id": 151645,
|
9 |
+
"hidden_act": "silu",
|
10 |
+
"hidden_size": 3584,
|
11 |
+
"image_token_id": 151655,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 18944,
|
14 |
+
"max_position_embeddings": 128000,
|
15 |
+
"max_window_layers": 28,
|
16 |
+
"model_type": "qwen2_5_vl",
|
17 |
+
"num_attention_heads": 28,
|
18 |
+
"num_hidden_layers": 28,
|
19 |
+
"num_key_value_heads": 4,
|
20 |
+
"rms_norm_eps": 1e-06,
|
21 |
+
"rope_scaling": {
|
22 |
+
"mrope_section": [
|
23 |
+
16,
|
24 |
+
24,
|
25 |
+
24
|
26 |
+
],
|
27 |
+
"rope_type": "default",
|
28 |
+
"type": "default"
|
29 |
+
},
|
30 |
+
"rope_theta": 1000000.0,
|
31 |
+
"sliding_window": 32768,
|
32 |
+
"tie_word_embeddings": false,
|
33 |
+
"torch_dtype": "bfloat16",
|
34 |
+
"transformers_version": "4.49.0",
|
35 |
+
"use_cache": false,
|
36 |
+
"use_sliding_window": false,
|
37 |
+
"video_token_id": 151656,
|
38 |
+
"vision_config": {
|
39 |
+
"_attn_implementation_autoset": true,
|
40 |
+
"hidden_size": 1280,
|
41 |
+
"in_chans": 3,
|
42 |
+
"model_type": "qwen2_5_vl",
|
43 |
+
"spatial_patch_size": 14,
|
44 |
+
"tokens_per_second": 2,
|
45 |
+
"torch_dtype": "float32"
|
46 |
+
},
|
47 |
+
"vision_end_token_id": 151653,
|
48 |
+
"vision_start_token_id": 151652,
|
49 |
+
"vision_token_id": 151654,
|
50 |
+
"vocab_size": 152064
|
51 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"attn_implementation": null,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"do_sample": true,
|
5 |
+
"eos_token_id": [
|
6 |
+
151645,
|
7 |
+
151643
|
8 |
+
],
|
9 |
+
"pad_token_id": 151643,
|
10 |
+
"repetition_penalty": 1.05,
|
11 |
+
"temperature": 0.1,
|
12 |
+
"top_k": 1,
|
13 |
+
"top_p": 0.001,
|
14 |
+
"transformers_version": "4.49.0",
|
15 |
+
"use_cache": false
|
16 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step4403
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1251d48eddf423cf9dc15b71ad536d9b3a40d197323b0c590d464d5fed4ce75e
|
3 |
+
size 4883847560
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5af93b2b46a201faddb34759a1cd09f0b5879a0f2dfeff358598d3d2fc268d1f
|
3 |
+
size 4932750976
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee0464786e441790d78fe5709b8c6c00ce54d5d6818a44d37654834f6d5b48c7
|
3 |
+
size 4991495888
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b335599a70dbf635f0b35f6e09dc9171a811f1eee0a93ae163ee070c553ca905
|
3 |
+
size 1827715088
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,740 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 16635727872
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"visual.adapter.mlp.0.bias": "model-00001-of-00004.safetensors",
|
346 |
+
"visual.adapter.mlp.0.weight": "model-00001-of-00004.safetensors",
|
347 |
+
"visual.adapter.mlp.2.bias": "model-00001-of-00004.safetensors",
|
348 |
+
"visual.adapter.mlp.2.weight": "model-00001-of-00004.safetensors",
|
349 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
350 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
351 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
352 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
353 |
+
"visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
354 |
+
"visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
355 |
+
"visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
356 |
+
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
357 |
+
"visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
358 |
+
"visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
359 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
360 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
361 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
362 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
363 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
364 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
365 |
+
"visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
366 |
+
"visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
367 |
+
"visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
368 |
+
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
369 |
+
"visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
370 |
+
"visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
371 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
372 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
373 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
374 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
375 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
376 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
377 |
+
"visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
378 |
+
"visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
379 |
+
"visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
380 |
+
"visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
381 |
+
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
382 |
+
"visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
383 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
384 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
385 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
386 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
387 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
388 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
389 |
+
"visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
390 |
+
"visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
391 |
+
"visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
392 |
+
"visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
393 |
+
"visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
394 |
+
"visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
395 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
396 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
397 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
398 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
399 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
400 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
401 |
+
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
402 |
+
"visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
403 |
+
"visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
404 |
+
"visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
405 |
+
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
406 |
+
"visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
407 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
408 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
409 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
410 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
411 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
412 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
413 |
+
"visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
414 |
+
"visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
415 |
+
"visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
416 |
+
"visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
417 |
+
"visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
418 |
+
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
419 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
420 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
421 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
422 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
423 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
424 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
425 |
+
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
426 |
+
"visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
427 |
+
"visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
428 |
+
"visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
429 |
+
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
430 |
+
"visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
431 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
432 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
433 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
434 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
435 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
436 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
437 |
+
"visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
438 |
+
"visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
439 |
+
"visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
440 |
+
"visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
441 |
+
"visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
442 |
+
"visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
443 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
444 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
445 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
446 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
447 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
448 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
449 |
+
"visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
450 |
+
"visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
451 |
+
"visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
452 |
+
"visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
453 |
+
"visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
454 |
+
"visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
455 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
456 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
457 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
458 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
459 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
460 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
461 |
+
"visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
462 |
+
"visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
463 |
+
"visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
464 |
+
"visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
465 |
+
"visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
466 |
+
"visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
467 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
468 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
469 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
470 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
471 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
472 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
473 |
+
"visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
474 |
+
"visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
475 |
+
"visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
476 |
+
"visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
477 |
+
"visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
478 |
+
"visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
479 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
480 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
481 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
482 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
483 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
484 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
485 |
+
"visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
486 |
+
"visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
487 |
+
"visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
488 |
+
"visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
489 |
+
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
490 |
+
"visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
491 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
492 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
493 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
494 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
495 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
496 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
497 |
+
"visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
498 |
+
"visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
499 |
+
"visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
500 |
+
"visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
501 |
+
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
502 |
+
"visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
503 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
504 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
505 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
506 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
507 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
508 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
509 |
+
"visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
510 |
+
"visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
511 |
+
"visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
512 |
+
"visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
513 |
+
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
514 |
+
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
515 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
516 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
517 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
518 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
519 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
520 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
521 |
+
"visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
522 |
+
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
523 |
+
"visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
524 |
+
"visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
525 |
+
"visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
526 |
+
"visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
527 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
528 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
529 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
530 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
531 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
532 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
533 |
+
"visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
534 |
+
"visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
535 |
+
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
536 |
+
"visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
537 |
+
"visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
538 |
+
"visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
539 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
540 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
541 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
542 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
543 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
544 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
545 |
+
"visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
546 |
+
"visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
547 |
+
"visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
548 |
+
"visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
549 |
+
"visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
550 |
+
"visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
551 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
552 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
553 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
554 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
555 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
556 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
557 |
+
"visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
558 |
+
"visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
559 |
+
"visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
560 |
+
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
561 |
+
"visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
562 |
+
"visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
563 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
564 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
565 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
566 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
567 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
568 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
569 |
+
"visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
570 |
+
"visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
571 |
+
"visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
572 |
+
"visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
573 |
+
"visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
574 |
+
"visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
575 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
576 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
577 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
578 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
579 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
580 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
581 |
+
"visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
582 |
+
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
583 |
+
"visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
584 |
+
"visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
585 |
+
"visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
586 |
+
"visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
587 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
588 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
589 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
590 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
591 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
592 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
593 |
+
"visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
594 |
+
"visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
595 |
+
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
596 |
+
"visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
597 |
+
"visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
598 |
+
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
599 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
600 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
601 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
602 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
603 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
604 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
605 |
+
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
606 |
+
"visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
607 |
+
"visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
608 |
+
"visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
609 |
+
"visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
610 |
+
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
611 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
612 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
613 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
614 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
615 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
616 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
617 |
+
"visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
618 |
+
"visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
619 |
+
"visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
620 |
+
"visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
621 |
+
"visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
622 |
+
"visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
623 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
624 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
625 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
626 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
627 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
628 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
629 |
+
"visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
630 |
+
"visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
631 |
+
"visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
632 |
+
"visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
633 |
+
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
634 |
+
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
635 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
636 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
637 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
638 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
639 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
640 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
641 |
+
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
642 |
+
"visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
643 |
+
"visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
644 |
+
"visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
645 |
+
"visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
646 |
+
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
647 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
648 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
649 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
650 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
651 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
652 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
653 |
+
"visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
654 |
+
"visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
655 |
+
"visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
656 |
+
"visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
657 |
+
"visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
658 |
+
"visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
659 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
660 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
661 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
662 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
663 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
664 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
665 |
+
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
666 |
+
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
667 |
+
"visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
668 |
+
"visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
669 |
+
"visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
670 |
+
"visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
671 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
672 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
673 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
674 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
675 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
676 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
677 |
+
"visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
678 |
+
"visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
679 |
+
"visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
680 |
+
"visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
681 |
+
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
682 |
+
"visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
683 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
684 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
685 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
686 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
687 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
688 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
689 |
+
"visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
690 |
+
"visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
691 |
+
"visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
692 |
+
"visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
693 |
+
"visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
694 |
+
"visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
695 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
696 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
697 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
698 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
699 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
700 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
701 |
+
"visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
702 |
+
"visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
703 |
+
"visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
704 |
+
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
705 |
+
"visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
706 |
+
"visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
707 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
708 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
709 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
710 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
711 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
712 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
713 |
+
"visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
714 |
+
"visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
715 |
+
"visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
716 |
+
"visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
717 |
+
"visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
718 |
+
"visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
719 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
720 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
721 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
722 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
723 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
724 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
725 |
+
"visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
726 |
+
"visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
727 |
+
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
728 |
+
"visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
729 |
+
"visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
730 |
+
"visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
731 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
732 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
733 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
734 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
735 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
736 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
737 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
738 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
739 |
+
}
|
740 |
+
}
|
nohup.out
ADDED
@@ -0,0 +1,322 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Repo created: https://huggingface.co/gzqaq/13May_data_sft_normal_after_clip_0.5
|
2 |
+
Found 28 candidate files to upload
|
3 |
+
[33mYou are about to upload a large folder to the Hub using `huggingface-cli upload-large-folder`. This is a new feature so feedback is very welcome!
|
4 |
+
|
5 |
+
A few things to keep in mind:
|
6 |
+
- Repository limits still apply: https://huggingface.co/docs/hub/repositories-recommendations
|
7 |
+
- Do not start several processes in parallel.
|
8 |
+
- You can interrupt and resume the process at any time. The script will pick up where it left off except for partially uploaded files that would have to be entirely reuploaded.
|
9 |
+
- Do not upload the same folder to several repositories. If you need to do so, you must delete the `./.cache/huggingface/` folder first.
|
10 |
+
|
11 |
+
Some temporary metadata will be stored under `./.cache/huggingface`.
|
12 |
+
- You must not modify those files manually.
|
13 |
+
- You must not delete the `./.cache/huggingface/` folder while a process is running.
|
14 |
+
- You can delete the `./.cache/huggingface/` folder to reinitialize the upload state when process is not running. Files will have to be hashed and preuploaded again, except for already committed files.
|
15 |
+
|
16 |
+
If the process output is too verbose, you can disable the progress bars with `--no-bars`. You can also entirely disable the status report with `--no-report`.
|
17 |
+
|
18 |
+
For more details, run `huggingface-cli upload-large-folder --help` or check the documentation at https://huggingface.co/docs/huggingface_hub/guides/upload#upload-a-large-folder.[0m
|
19 |
+
|
20 |
+
Uploading files using Xet Storage..
|
21 |
+
Uploading files using Xet Storage..
|
22 |
+
Uploading files using Xet Storage..
|
23 |
+
Uploading files using Xet Storage..
|
24 |
+
Uploading files using Xet Storage..
|
25 |
+
Uploading files using Xet Storage..
|
26 |
+
Uploading files using Xet Storage..
|
27 |
+
Uploading files using Xet Storage..
|
28 |
+
Uploading files using Xet Storage..
|
29 |
+
Uploading files using Xet Storage..
|
30 |
+
Uploading files using Xet Storage..
|
31 |
+
Uploading files using Xet Storage..
|
32 |
+
Uploading files using Xet Storage..
|
33 |
+
Uploading files using Xet Storage..
|
34 |
+
Uploading files using Xet Storage..
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
---------- 2025-05-26 18:43:17 (0:00:00) ----------
|
39 |
+
Files: hashed 6/28 (76.4K/16.7G) | pre-uploaded: 0/0 (0.0/16.7G) (+28 unsure) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
40 |
+
Workers: hashing: 9 | get upload mode: 1 | pre-uploading: 0 | committing: 0 | waiting: 0
|
41 |
+
---------------------------------------------------
|
42 |
+
|
43 |
+
---------- 2025-05-26 18:44:17 (0:01:00) ----------
|
44 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
45 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
46 |
+
---------------------------------------------------
|
47 |
+
|
48 |
+
---------- 2025-05-26 18:45:17 (0:02:00) ----------
|
49 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
50 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
51 |
+
---------------------------------------------------
|
52 |
+
|
53 |
+
---------- 2025-05-26 18:46:17 (0:03:00) ----------
|
54 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
55 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
56 |
+
---------------------------------------------------
|
57 |
+
|
58 |
+
---------- 2025-05-26 18:47:18 (0:04:00) ----------
|
59 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
60 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
61 |
+
---------------------------------------------------
|
62 |
+
|
63 |
+
---------- 2025-05-26 18:48:18 (0:05:00) ----------
|
64 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
65 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
66 |
+
---------------------------------------------------
|
67 |
+
|
68 |
+
---------- 2025-05-26 18:49:18 (0:06:00) ----------
|
69 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
70 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
71 |
+
---------------------------------------------------
|
72 |
+
|
73 |
+
---------- 2025-05-26 18:50:18 (0:07:00) ----------
|
74 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
75 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
76 |
+
---------------------------------------------------
|
77 |
+
|
78 |
+
---------- 2025-05-26 18:51:18 (0:08:00) ----------
|
79 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
80 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
81 |
+
---------------------------------------------------
|
82 |
+
|
83 |
+
---------- 2025-05-26 18:52:18 (0:09:00) ----------
|
84 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
85 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
86 |
+
---------------------------------------------------
|
87 |
+
|
88 |
+
---------- 2025-05-26 18:53:18 (0:10:00) ----------
|
89 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
90 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
91 |
+
---------------------------------------------------
|
92 |
+
|
93 |
+
---------- 2025-05-26 18:54:18 (0:11:00) ----------
|
94 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
95 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
96 |
+
---------------------------------------------------
|
97 |
+
|
98 |
+
---------- 2025-05-26 18:55:18 (0:12:00) ----------
|
99 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
100 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
101 |
+
---------------------------------------------------
|
102 |
+
|
103 |
+
---------- 2025-05-26 18:56:18 (0:13:00) ----------
|
104 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
105 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
106 |
+
---------------------------------------------------
|
107 |
+
|
108 |
+
---------- 2025-05-26 18:57:18 (0:14:00) ----------
|
109 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
110 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
111 |
+
---------------------------------------------------
|
112 |
+
|
113 |
+
---------- 2025-05-26 18:58:18 (0:15:00) ----------
|
114 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
115 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
116 |
+
---------------------------------------------------
|
117 |
+
|
118 |
+
---------- 2025-05-26 18:59:18 (0:16:00) ----------
|
119 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
120 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
121 |
+
---------------------------------------------------
|
122 |
+
|
123 |
+
---------- 2025-05-26 19:00:18 (0:17:00) ----------
|
124 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
125 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
126 |
+
---------------------------------------------------
|
127 |
+
|
128 |
+
---------- 2025-05-26 19:01:18 (0:18:00) ----------
|
129 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
130 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
131 |
+
---------------------------------------------------
|
132 |
+
|
133 |
+
---------- 2025-05-26 19:02:18 (0:19:00) ----------
|
134 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
135 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
136 |
+
---------------------------------------------------
|
137 |
+
|
138 |
+
---------- 2025-05-26 19:03:18 (0:20:00) ----------
|
139 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
140 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
141 |
+
---------------------------------------------------
|
142 |
+
|
143 |
+
---------- 2025-05-26 19:04:18 (0:21:00) ----------
|
144 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
145 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
146 |
+
---------------------------------------------------
|
147 |
+
|
148 |
+
---------- 2025-05-26 19:05:18 (0:22:00) ----------
|
149 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
150 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
151 |
+
---------------------------------------------------
|
152 |
+
|
153 |
+
---------- 2025-05-26 19:06:18 (0:23:00) ----------
|
154 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
155 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
156 |
+
---------------------------------------------------
|
157 |
+
|
158 |
+
---------- 2025-05-26 19:07:18 (0:24:00) ----------
|
159 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
160 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
161 |
+
---------------------------------------------------
|
162 |
+
|
163 |
+
---------- 2025-05-26 19:08:18 (0:25:00) ----------
|
164 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
165 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
166 |
+
---------------------------------------------------
|
167 |
+
|
168 |
+
---------- 2025-05-26 19:09:18 (0:26:00) ----------
|
169 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 11/15 (11.6M/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
170 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 4 | committing: 0 | waiting: 6
|
171 |
+
---------------------------------------------------
|
172 |
+
|
173 |
+
---------- 2025-05-26 19:10:18 (0:27:00) ----------
|
174 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
175 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
176 |
+
---------------------------------------------------
|
177 |
+
|
178 |
+
---------- 2025-05-26 19:11:18 (0:28:00) ----------
|
179 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
180 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
181 |
+
---------------------------------------------------
|
182 |
+
|
183 |
+
---------- 2025-05-26 19:12:18 (0:29:00) ----------
|
184 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
185 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
186 |
+
---------------------------------------------------
|
187 |
+
|
188 |
+
---------- 2025-05-26 19:13:18 (0:30:00) ----------
|
189 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
190 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
191 |
+
---------------------------------------------------
|
192 |
+
|
193 |
+
---------- 2025-05-26 19:14:18 (0:31:00) ----------
|
194 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
195 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
196 |
+
---------------------------------------------------
|
197 |
+
|
198 |
+
---------- 2025-05-26 19:15:18 (0:32:00) ----------
|
199 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
200 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
201 |
+
---------------------------------------------------
|
202 |
+
|
203 |
+
---------- 2025-05-26 19:16:18 (0:33:00) ----------
|
204 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
205 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
206 |
+
---------------------------------------------------
|
207 |
+
|
208 |
+
---------- 2025-05-26 19:17:18 (0:34:00) ----------
|
209 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
210 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
211 |
+
---------------------------------------------------
|
212 |
+
|
213 |
+
---------- 2025-05-26 19:18:18 (0:35:00) ----------
|
214 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
215 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
216 |
+
---------------------------------------------------
|
217 |
+
|
218 |
+
---------- 2025-05-26 19:19:18 (0:36:00) ----------
|
219 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
220 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
221 |
+
---------------------------------------------------
|
222 |
+
|
223 |
+
---------- 2025-05-26 19:20:18 (0:37:00) ----------
|
224 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
225 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
226 |
+
---------------------------------------------------
|
227 |
+
|
228 |
+
---------- 2025-05-26 19:21:18 (0:38:00) ----------
|
229 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
230 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
231 |
+
---------------------------------------------------
|
232 |
+
|
233 |
+
---------- 2025-05-26 19:22:18 (0:39:00) ----------
|
234 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
235 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
236 |
+
---------------------------------------------------
|
237 |
+
|
238 |
+
---------- 2025-05-26 19:23:18 (0:40:00) ----------
|
239 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
240 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
241 |
+
---------------------------------------------------
|
242 |
+
|
243 |
+
---------- 2025-05-26 19:24:18 (0:41:00) ----------
|
244 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
245 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
246 |
+
---------------------------------------------------
|
247 |
+
|
248 |
+
---------- 2025-05-26 19:25:18 (0:42:00) ----------
|
249 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
250 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
251 |
+
---------------------------------------------------
|
252 |
+
|
253 |
+
---------- 2025-05-26 19:26:18 (0:43:00) ----------
|
254 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
255 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
256 |
+
---------------------------------------------------
|
257 |
+
|
258 |
+
---------- 2025-05-26 19:27:18 (0:44:00) ----------
|
259 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
260 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
261 |
+
---------------------------------------------------
|
262 |
+
|
263 |
+
---------- 2025-05-26 19:28:18 (0:45:00) ----------
|
264 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
265 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
266 |
+
---------------------------------------------------
|
267 |
+
|
268 |
+
---------- 2025-05-26 19:29:18 (0:46:00) ----------
|
269 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
270 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
271 |
+
---------------------------------------------------
|
272 |
+
|
273 |
+
---------- 2025-05-26 19:30:18 (0:47:00) ----------
|
274 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
275 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
276 |
+
---------------------------------------------------
|
277 |
+
|
278 |
+
---------- 2025-05-26 19:31:18 (0:48:00) ----------
|
279 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
280 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
281 |
+
---------------------------------------------------
|
282 |
+
|
283 |
+
---------- 2025-05-26 19:32:18 (0:49:00) ----------
|
284 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
285 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
286 |
+
---------------------------------------------------
|
287 |
+
|
288 |
+
---------- 2025-05-26 19:33:18 (0:50:00) ----------
|
289 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 12/15 (1.8G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
290 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 3 | committing: 0 | waiting: 7
|
291 |
+
---------------------------------------------------
|
292 |
+
|
293 |
+
---------- 2025-05-26 19:34:18 (0:51:00) ----------
|
294 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 13/15 (6.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
295 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 2 | committing: 0 | waiting: 8
|
296 |
+
---------------------------------------------------
|
297 |
+
|
298 |
+
---------- 2025-05-26 19:35:18 (0:52:00) ----------
|
299 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 13/15 (6.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
300 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 2 | committing: 0 | waiting: 8
|
301 |
+
---------------------------------------------------
|
302 |
+
|
303 |
+
---------- 2025-05-26 19:36:18 (0:53:00) ----------
|
304 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 13/15 (6.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
305 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 2 | committing: 0 | waiting: 8
|
306 |
+
---------------------------------------------------
|
307 |
+
|
308 |
+
---------- 2025-05-26 19:37:18 (0:54:00) ----------
|
309 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 13/15 (6.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
310 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 2 | committing: 0 | waiting: 8
|
311 |
+
---------------------------------------------------
|
312 |
+
|
313 |
+
---------- 2025-05-26 19:38:18 (0:55:00) ----------
|
314 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 14/15 (11.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
315 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 1 | committing: 0 | waiting: 9
|
316 |
+
---------------------------------------------------
|
317 |
+
|
318 |
+
---------- 2025-05-26 19:39:18 (0:56:00) ----------
|
319 |
+
Files: hashed 28/28 (16.7G/16.7G) | pre-uploaded: 14/15 (11.7G/16.7G) | committed: 0/28 (0.0/16.7G) | ignored: 0
|
320 |
+
Workers: hashing: 0 | get upload mode: 0 | pre-uploading: 1 | committing: 0 | waiting: 9
|
321 |
+
---------------------------------------------------
|
322 |
+
Uploading files using Xet Storage..
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb1165242405b17b3d6a8186ae61b13dcb1faa5a54320bebd74ef8d71b964bf7
|
3 |
+
size 15984
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:562c262916c9997ec644c42fed9655ab28706b74fca20290ca921c4761d6a4b0
|
3 |
+
size 15984
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8d40f8118f513299624ded0a9bcf09778b961635615090409394d4f96f928f6
|
3 |
+
size 15984
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4391f924238a4cb855c4cbdc6d1a14954f785431c75997d05c7a4ee6615dae7
|
3 |
+
size 15984
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be7b19bb9543a16bf9f4cd96466ac581436f63070f5815f3a7ba57980608994f
|
3 |
+
size 15984
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97da4a1ede0a3e0f96411cacd5bfdf84d9355198f7aadc9bcb8be41122043f63
|
3 |
+
size 15984
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:544cb6421b975bd5d2b2360a4e666003794e6197ae654d2ad963cd6572a86ede
|
3 |
+
size 15984
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8d6eb32a23f3bef6262bbcb2eda724b2fd6f5e579969aa27c71a5971331722b
|
3 |
+
size 15984
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c89398e01b5829487b6d28ed0235d051c0f71e779ce1d7835c279e8dbddad4e7
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>",
|
5 |
+
"<|object_ref_start|>",
|
6 |
+
"<|object_ref_end|>",
|
7 |
+
"<|box_start|>",
|
8 |
+
"<|box_end|>",
|
9 |
+
"<|quad_start|>",
|
10 |
+
"<|quad_end|>",
|
11 |
+
"<|vision_start|>",
|
12 |
+
"<|vision_end|>",
|
13 |
+
"<|vision_pad|>",
|
14 |
+
"<|image_pad|>",
|
15 |
+
"<|video_pad|>"
|
16 |
+
],
|
17 |
+
"eos_token": {
|
18 |
+
"content": "<|im_end|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": false,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
},
|
24 |
+
"pad_token": {
|
25 |
+
"content": "<|endoftext|>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": false,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
}
|
31 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba0c439f7be467bf47d12a7e6f9adc6116201056fc60c67f431c679b7c16afc8
|
3 |
+
size 11422064
|
tokenizer_config.json
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_prefix_space": false,
|
4 |
+
"added_tokens_decoder": {
|
5 |
+
"151643": {
|
6 |
+
"content": "<|endoftext|>",
|
7 |
+
"lstrip": false,
|
8 |
+
"normalized": false,
|
9 |
+
"rstrip": false,
|
10 |
+
"single_word": false,
|
11 |
+
"special": true
|
12 |
+
},
|
13 |
+
"151644": {
|
14 |
+
"content": "<|im_start|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false,
|
19 |
+
"special": true
|
20 |
+
},
|
21 |
+
"151645": {
|
22 |
+
"content": "<|im_end|>",
|
23 |
+
"lstrip": false,
|
24 |
+
"normalized": false,
|
25 |
+
"rstrip": false,
|
26 |
+
"single_word": false,
|
27 |
+
"special": true
|
28 |
+
},
|
29 |
+
"151646": {
|
30 |
+
"content": "<|object_ref_start|>",
|
31 |
+
"lstrip": false,
|
32 |
+
"normalized": false,
|
33 |
+
"rstrip": false,
|
34 |
+
"single_word": false,
|
35 |
+
"special": true
|
36 |
+
},
|
37 |
+
"151647": {
|
38 |
+
"content": "<|object_ref_end|>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false,
|
43 |
+
"special": true
|
44 |
+
},
|
45 |
+
"151648": {
|
46 |
+
"content": "<|box_start|>",
|
47 |
+
"lstrip": false,
|
48 |
+
"normalized": false,
|
49 |
+
"rstrip": false,
|
50 |
+
"single_word": false,
|
51 |
+
"special": true
|
52 |
+
},
|
53 |
+
"151649": {
|
54 |
+
"content": "<|box_end|>",
|
55 |
+
"lstrip": false,
|
56 |
+
"normalized": false,
|
57 |
+
"rstrip": false,
|
58 |
+
"single_word": false,
|
59 |
+
"special": true
|
60 |
+
},
|
61 |
+
"151650": {
|
62 |
+
"content": "<|quad_start|>",
|
63 |
+
"lstrip": false,
|
64 |
+
"normalized": false,
|
65 |
+
"rstrip": false,
|
66 |
+
"single_word": false,
|
67 |
+
"special": true
|
68 |
+
},
|
69 |
+
"151651": {
|
70 |
+
"content": "<|quad_end|>",
|
71 |
+
"lstrip": false,
|
72 |
+
"normalized": false,
|
73 |
+
"rstrip": false,
|
74 |
+
"single_word": false,
|
75 |
+
"special": true
|
76 |
+
},
|
77 |
+
"151652": {
|
78 |
+
"content": "<|vision_start|>",
|
79 |
+
"lstrip": false,
|
80 |
+
"normalized": false,
|
81 |
+
"rstrip": false,
|
82 |
+
"single_word": false,
|
83 |
+
"special": true
|
84 |
+
},
|
85 |
+
"151653": {
|
86 |
+
"content": "<|vision_end|>",
|
87 |
+
"lstrip": false,
|
88 |
+
"normalized": false,
|
89 |
+
"rstrip": false,
|
90 |
+
"single_word": false,
|
91 |
+
"special": true
|
92 |
+
},
|
93 |
+
"151654": {
|
94 |
+
"content": "<|vision_pad|>",
|
95 |
+
"lstrip": false,
|
96 |
+
"normalized": false,
|
97 |
+
"rstrip": false,
|
98 |
+
"single_word": false,
|
99 |
+
"special": true
|
100 |
+
},
|
101 |
+
"151655": {
|
102 |
+
"content": "<|image_pad|>",
|
103 |
+
"lstrip": false,
|
104 |
+
"normalized": false,
|
105 |
+
"rstrip": false,
|
106 |
+
"single_word": false,
|
107 |
+
"special": true
|
108 |
+
},
|
109 |
+
"151656": {
|
110 |
+
"content": "<|video_pad|>",
|
111 |
+
"lstrip": false,
|
112 |
+
"normalized": false,
|
113 |
+
"rstrip": false,
|
114 |
+
"single_word": false,
|
115 |
+
"special": true
|
116 |
+
},
|
117 |
+
"151657": {
|
118 |
+
"content": "<tool_call>",
|
119 |
+
"lstrip": false,
|
120 |
+
"normalized": false,
|
121 |
+
"rstrip": false,
|
122 |
+
"single_word": false,
|
123 |
+
"special": false
|
124 |
+
},
|
125 |
+
"151658": {
|
126 |
+
"content": "</tool_call>",
|
127 |
+
"lstrip": false,
|
128 |
+
"normalized": false,
|
129 |
+
"rstrip": false,
|
130 |
+
"single_word": false,
|
131 |
+
"special": false
|
132 |
+
},
|
133 |
+
"151659": {
|
134 |
+
"content": "<|fim_prefix|>",
|
135 |
+
"lstrip": false,
|
136 |
+
"normalized": false,
|
137 |
+
"rstrip": false,
|
138 |
+
"single_word": false,
|
139 |
+
"special": false
|
140 |
+
},
|
141 |
+
"151660": {
|
142 |
+
"content": "<|fim_middle|>",
|
143 |
+
"lstrip": false,
|
144 |
+
"normalized": false,
|
145 |
+
"rstrip": false,
|
146 |
+
"single_word": false,
|
147 |
+
"special": false
|
148 |
+
},
|
149 |
+
"151661": {
|
150 |
+
"content": "<|fim_suffix|>",
|
151 |
+
"lstrip": false,
|
152 |
+
"normalized": false,
|
153 |
+
"rstrip": false,
|
154 |
+
"single_word": false,
|
155 |
+
"special": false
|
156 |
+
},
|
157 |
+
"151662": {
|
158 |
+
"content": "<|fim_pad|>",
|
159 |
+
"lstrip": false,
|
160 |
+
"normalized": false,
|
161 |
+
"rstrip": false,
|
162 |
+
"single_word": false,
|
163 |
+
"special": false
|
164 |
+
},
|
165 |
+
"151663": {
|
166 |
+
"content": "<|repo_name|>",
|
167 |
+
"lstrip": false,
|
168 |
+
"normalized": false,
|
169 |
+
"rstrip": false,
|
170 |
+
"single_word": false,
|
171 |
+
"special": false
|
172 |
+
},
|
173 |
+
"151664": {
|
174 |
+
"content": "<|file_sep|>",
|
175 |
+
"lstrip": false,
|
176 |
+
"normalized": false,
|
177 |
+
"rstrip": false,
|
178 |
+
"single_word": false,
|
179 |
+
"special": false
|
180 |
+
}
|
181 |
+
},
|
182 |
+
"additional_special_tokens": [
|
183 |
+
"<|im_start|>",
|
184 |
+
"<|im_end|>",
|
185 |
+
"<|object_ref_start|>",
|
186 |
+
"<|object_ref_end|>",
|
187 |
+
"<|box_start|>",
|
188 |
+
"<|box_end|>",
|
189 |
+
"<|quad_start|>",
|
190 |
+
"<|quad_end|>",
|
191 |
+
"<|vision_start|>",
|
192 |
+
"<|vision_end|>",
|
193 |
+
"<|vision_pad|>",
|
194 |
+
"<|image_pad|>",
|
195 |
+
"<|video_pad|>"
|
196 |
+
],
|
197 |
+
"bos_token": null,
|
198 |
+
"chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
|
199 |
+
"clean_up_tokenization_spaces": false,
|
200 |
+
"eos_token": "<|im_end|>",
|
201 |
+
"errors": "replace",
|
202 |
+
"extra_special_tokens": {},
|
203 |
+
"max_length": null,
|
204 |
+
"model_max_length": 131072,
|
205 |
+
"pad_to_multiple_of": null,
|
206 |
+
"pad_token": "<|endoftext|>",
|
207 |
+
"pad_token_type_id": 0,
|
208 |
+
"padding_side": "right",
|
209 |
+
"split_special_tokens": false,
|
210 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
211 |
+
"unk_token": null
|
212 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,649 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 9.979036827195468,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4410,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.11331444759206799,
|
13 |
+
"grad_norm": 0.19077692313024183,
|
14 |
+
"learning_rate": 1.977324263038549e-05,
|
15 |
+
"loss": 0.4576,
|
16 |
+
"step": 50
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.22662889518413598,
|
20 |
+
"grad_norm": 0.10054329784988243,
|
21 |
+
"learning_rate": 1.9546485260770977e-05,
|
22 |
+
"loss": 0.2232,
|
23 |
+
"step": 100
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.33994334277620397,
|
27 |
+
"grad_norm": 0.13335758989667854,
|
28 |
+
"learning_rate": 1.9319727891156463e-05,
|
29 |
+
"loss": 0.2207,
|
30 |
+
"step": 150
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.45325779036827196,
|
34 |
+
"grad_norm": 0.10967673214545687,
|
35 |
+
"learning_rate": 1.9092970521541953e-05,
|
36 |
+
"loss": 0.2201,
|
37 |
+
"step": 200
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.56657223796034,
|
41 |
+
"grad_norm": 0.06223139763910794,
|
42 |
+
"learning_rate": 1.886621315192744e-05,
|
43 |
+
"loss": 0.2198,
|
44 |
+
"step": 250
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.6798866855524079,
|
48 |
+
"grad_norm": 0.05759853004285378,
|
49 |
+
"learning_rate": 1.863945578231293e-05,
|
50 |
+
"loss": 0.2189,
|
51 |
+
"step": 300
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.7932011331444759,
|
55 |
+
"grad_norm": 0.07977821109657812,
|
56 |
+
"learning_rate": 1.8412698412698415e-05,
|
57 |
+
"loss": 0.2186,
|
58 |
+
"step": 350
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.9065155807365439,
|
62 |
+
"grad_norm": 0.06262492170582389,
|
63 |
+
"learning_rate": 1.81859410430839e-05,
|
64 |
+
"loss": 0.2184,
|
65 |
+
"step": 400
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 1.0181303116147309,
|
69 |
+
"grad_norm": 0.06127223989000747,
|
70 |
+
"learning_rate": 1.795918367346939e-05,
|
71 |
+
"loss": 0.2149,
|
72 |
+
"step": 450
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 1.1314447592067989,
|
76 |
+
"grad_norm": 0.07785843870579129,
|
77 |
+
"learning_rate": 1.7732426303854877e-05,
|
78 |
+
"loss": 0.2181,
|
79 |
+
"step": 500
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 1.2447592067988669,
|
83 |
+
"grad_norm": 0.07760327110935973,
|
84 |
+
"learning_rate": 1.7505668934240366e-05,
|
85 |
+
"loss": 0.218,
|
86 |
+
"step": 550
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 1.3580736543909349,
|
90 |
+
"grad_norm": 0.0470083826860542,
|
91 |
+
"learning_rate": 1.7278911564625852e-05,
|
92 |
+
"loss": 0.2179,
|
93 |
+
"step": 600
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 1.4713881019830028,
|
97 |
+
"grad_norm": 0.06026004336659209,
|
98 |
+
"learning_rate": 1.705215419501134e-05,
|
99 |
+
"loss": 0.2178,
|
100 |
+
"step": 650
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 1.5847025495750708,
|
104 |
+
"grad_norm": 0.05471808585590988,
|
105 |
+
"learning_rate": 1.6825396825396828e-05,
|
106 |
+
"loss": 0.2182,
|
107 |
+
"step": 700
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 1.6980169971671388,
|
111 |
+
"grad_norm": 1.5328581672632824,
|
112 |
+
"learning_rate": 1.6598639455782314e-05,
|
113 |
+
"loss": 0.235,
|
114 |
+
"step": 750
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 1.8113314447592068,
|
118 |
+
"grad_norm": 0.05133721712099911,
|
119 |
+
"learning_rate": 1.63718820861678e-05,
|
120 |
+
"loss": 0.2183,
|
121 |
+
"step": 800
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 1.9246458923512748,
|
125 |
+
"grad_norm": 0.05383262507774164,
|
126 |
+
"learning_rate": 1.614512471655329e-05,
|
127 |
+
"loss": 0.2178,
|
128 |
+
"step": 850
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 2.0362606232294618,
|
132 |
+
"grad_norm": 0.06160640640527019,
|
133 |
+
"learning_rate": 1.5918367346938776e-05,
|
134 |
+
"loss": 0.2143,
|
135 |
+
"step": 900
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 2.1495750708215295,
|
139 |
+
"grad_norm": 0.06624501350294373,
|
140 |
+
"learning_rate": 1.5691609977324265e-05,
|
141 |
+
"loss": 0.2175,
|
142 |
+
"step": 950
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 2.2628895184135978,
|
146 |
+
"grad_norm": 0.0811471743466332,
|
147 |
+
"learning_rate": 1.546485260770975e-05,
|
148 |
+
"loss": 0.2176,
|
149 |
+
"step": 1000
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 2.376203966005666,
|
153 |
+
"grad_norm": 0.057146830785920345,
|
154 |
+
"learning_rate": 1.523809523809524e-05,
|
155 |
+
"loss": 0.2174,
|
156 |
+
"step": 1050
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 2.4895184135977337,
|
160 |
+
"grad_norm": 0.06486204088579503,
|
161 |
+
"learning_rate": 1.5011337868480727e-05,
|
162 |
+
"loss": 0.2174,
|
163 |
+
"step": 1100
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 2.6028328611898015,
|
167 |
+
"grad_norm": 0.04691063994533604,
|
168 |
+
"learning_rate": 1.4784580498866215e-05,
|
169 |
+
"loss": 0.2175,
|
170 |
+
"step": 1150
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 2.7161473087818697,
|
174 |
+
"grad_norm": 0.04804575617599843,
|
175 |
+
"learning_rate": 1.4557823129251703e-05,
|
176 |
+
"loss": 0.2173,
|
177 |
+
"step": 1200
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 2.829461756373938,
|
181 |
+
"grad_norm": 0.04015710381391272,
|
182 |
+
"learning_rate": 1.433106575963719e-05,
|
183 |
+
"loss": 0.2172,
|
184 |
+
"step": 1250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 2.9427762039660057,
|
188 |
+
"grad_norm": 0.04270305052811581,
|
189 |
+
"learning_rate": 1.4104308390022677e-05,
|
190 |
+
"loss": 0.2172,
|
191 |
+
"step": 1300
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 3.0543909348441924,
|
195 |
+
"grad_norm": 0.06472103175267448,
|
196 |
+
"learning_rate": 1.3877551020408165e-05,
|
197 |
+
"loss": 0.2139,
|
198 |
+
"step": 1350
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 3.1677053824362607,
|
202 |
+
"grad_norm": 0.06154235619681001,
|
203 |
+
"learning_rate": 1.3650793650793652e-05,
|
204 |
+
"loss": 0.2169,
|
205 |
+
"step": 1400
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 3.2810198300283284,
|
209 |
+
"grad_norm": 0.03889455279515394,
|
210 |
+
"learning_rate": 1.342403628117914e-05,
|
211 |
+
"loss": 0.217,
|
212 |
+
"step": 1450
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 3.3943342776203966,
|
216 |
+
"grad_norm": 0.04485600346516124,
|
217 |
+
"learning_rate": 1.3197278911564626e-05,
|
218 |
+
"loss": 0.217,
|
219 |
+
"step": 1500
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 3.507648725212465,
|
223 |
+
"grad_norm": 0.056364414807305335,
|
224 |
+
"learning_rate": 1.2970521541950114e-05,
|
225 |
+
"loss": 0.2169,
|
226 |
+
"step": 1550
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 3.6209631728045326,
|
230 |
+
"grad_norm": 0.046168847658336246,
|
231 |
+
"learning_rate": 1.2743764172335602e-05,
|
232 |
+
"loss": 0.2169,
|
233 |
+
"step": 1600
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 3.7342776203966004,
|
237 |
+
"grad_norm": 0.05350341466041888,
|
238 |
+
"learning_rate": 1.251700680272109e-05,
|
239 |
+
"loss": 0.2168,
|
240 |
+
"step": 1650
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 3.8475920679886686,
|
244 |
+
"grad_norm": 0.05485192425623718,
|
245 |
+
"learning_rate": 1.2290249433106578e-05,
|
246 |
+
"loss": 0.2167,
|
247 |
+
"step": 1700
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 3.960906515580737,
|
251 |
+
"grad_norm": 0.04473072936045142,
|
252 |
+
"learning_rate": 1.2063492063492064e-05,
|
253 |
+
"loss": 0.2167,
|
254 |
+
"step": 1750
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 4.0725212464589235,
|
258 |
+
"grad_norm": 0.05195597672403638,
|
259 |
+
"learning_rate": 1.1836734693877552e-05,
|
260 |
+
"loss": 0.2132,
|
261 |
+
"step": 1800
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 4.185835694050992,
|
265 |
+
"grad_norm": 0.0419816337852566,
|
266 |
+
"learning_rate": 1.160997732426304e-05,
|
267 |
+
"loss": 0.2164,
|
268 |
+
"step": 1850
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 4.299150141643059,
|
272 |
+
"grad_norm": 0.05899298928895464,
|
273 |
+
"learning_rate": 1.1383219954648527e-05,
|
274 |
+
"loss": 0.2214,
|
275 |
+
"step": 1900
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 4.412464589235127,
|
279 |
+
"grad_norm": 0.04346981151532487,
|
280 |
+
"learning_rate": 1.1156462585034013e-05,
|
281 |
+
"loss": 0.2167,
|
282 |
+
"step": 1950
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 4.5257790368271955,
|
286 |
+
"grad_norm": 0.044189574868086536,
|
287 |
+
"learning_rate": 1.0929705215419501e-05,
|
288 |
+
"loss": 0.2165,
|
289 |
+
"step": 2000
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 4.639093484419264,
|
293 |
+
"grad_norm": 0.040702976751947055,
|
294 |
+
"learning_rate": 1.0702947845804989e-05,
|
295 |
+
"loss": 0.2164,
|
296 |
+
"step": 2050
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 4.752407932011332,
|
300 |
+
"grad_norm": 0.050221751939795126,
|
301 |
+
"learning_rate": 1.0476190476190477e-05,
|
302 |
+
"loss": 0.2163,
|
303 |
+
"step": 2100
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 4.865722379603399,
|
307 |
+
"grad_norm": 0.04269835448208638,
|
308 |
+
"learning_rate": 1.0249433106575966e-05,
|
309 |
+
"loss": 0.2161,
|
310 |
+
"step": 2150
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 4.9790368271954675,
|
314 |
+
"grad_norm": 0.04264509161022873,
|
315 |
+
"learning_rate": 1.0022675736961451e-05,
|
316 |
+
"loss": 0.2161,
|
317 |
+
"step": 2200
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 5.090651558073654,
|
321 |
+
"grad_norm": 0.041448351480457786,
|
322 |
+
"learning_rate": 9.795918367346939e-06,
|
323 |
+
"loss": 0.2127,
|
324 |
+
"step": 2250
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 5.203966005665722,
|
328 |
+
"grad_norm": 0.06135031255383477,
|
329 |
+
"learning_rate": 9.569160997732427e-06,
|
330 |
+
"loss": 0.2159,
|
331 |
+
"step": 2300
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 5.317280453257791,
|
335 |
+
"grad_norm": 0.04121678258573565,
|
336 |
+
"learning_rate": 9.342403628117914e-06,
|
337 |
+
"loss": 0.2158,
|
338 |
+
"step": 2350
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 5.430594900849858,
|
342 |
+
"grad_norm": 0.039055759397903865,
|
343 |
+
"learning_rate": 9.115646258503402e-06,
|
344 |
+
"loss": 0.2157,
|
345 |
+
"step": 2400
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 5.543909348441926,
|
349 |
+
"grad_norm": 0.042614942354305005,
|
350 |
+
"learning_rate": 8.888888888888888e-06,
|
351 |
+
"loss": 0.2156,
|
352 |
+
"step": 2450
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 5.657223796033994,
|
356 |
+
"grad_norm": 0.03246320825773879,
|
357 |
+
"learning_rate": 8.662131519274378e-06,
|
358 |
+
"loss": 0.2156,
|
359 |
+
"step": 2500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 5.770538243626063,
|
363 |
+
"grad_norm": 0.04088525061763399,
|
364 |
+
"learning_rate": 8.435374149659866e-06,
|
365 |
+
"loss": 0.2155,
|
366 |
+
"step": 2550
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 5.88385269121813,
|
370 |
+
"grad_norm": 0.052784890825823244,
|
371 |
+
"learning_rate": 8.208616780045352e-06,
|
372 |
+
"loss": 0.2154,
|
373 |
+
"step": 2600
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 5.997167138810198,
|
377 |
+
"grad_norm": 0.029628123447202566,
|
378 |
+
"learning_rate": 7.98185941043084e-06,
|
379 |
+
"loss": 0.2155,
|
380 |
+
"step": 2650
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 6.108781869688385,
|
384 |
+
"grad_norm": 0.04456012439176859,
|
385 |
+
"learning_rate": 7.755102040816327e-06,
|
386 |
+
"loss": 0.2119,
|
387 |
+
"step": 2700
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 6.222096317280453,
|
391 |
+
"grad_norm": 0.03833949366557874,
|
392 |
+
"learning_rate": 7.528344671201815e-06,
|
393 |
+
"loss": 0.2152,
|
394 |
+
"step": 2750
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 6.335410764872521,
|
398 |
+
"grad_norm": 0.04119576615729903,
|
399 |
+
"learning_rate": 7.301587301587301e-06,
|
400 |
+
"loss": 0.2152,
|
401 |
+
"step": 2800
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 6.4487252124645895,
|
405 |
+
"grad_norm": 0.049472584582330295,
|
406 |
+
"learning_rate": 7.07482993197279e-06,
|
407 |
+
"loss": 0.215,
|
408 |
+
"step": 2850
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 6.562039660056657,
|
412 |
+
"grad_norm": 0.0400805462450423,
|
413 |
+
"learning_rate": 6.848072562358277e-06,
|
414 |
+
"loss": 0.2149,
|
415 |
+
"step": 2900
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 6.675354107648725,
|
419 |
+
"grad_norm": 0.05692803452817405,
|
420 |
+
"learning_rate": 6.621315192743765e-06,
|
421 |
+
"loss": 0.2149,
|
422 |
+
"step": 2950
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 6.788668555240793,
|
426 |
+
"grad_norm": 0.03887092292804971,
|
427 |
+
"learning_rate": 6.394557823129253e-06,
|
428 |
+
"loss": 0.2148,
|
429 |
+
"step": 3000
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 6.9019830028328615,
|
433 |
+
"grad_norm": 0.036224122110626866,
|
434 |
+
"learning_rate": 6.16780045351474e-06,
|
435 |
+
"loss": 0.2147,
|
436 |
+
"step": 3050
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 7.013597733711048,
|
440 |
+
"grad_norm": 0.047158172903523164,
|
441 |
+
"learning_rate": 5.9410430839002275e-06,
|
442 |
+
"loss": 0.2116,
|
443 |
+
"step": 3100
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 7.126912181303116,
|
447 |
+
"grad_norm": 0.03461108864643461,
|
448 |
+
"learning_rate": 5.7142857142857145e-06,
|
449 |
+
"loss": 0.2146,
|
450 |
+
"step": 3150
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 7.240226628895184,
|
454 |
+
"grad_norm": 0.0370582507441231,
|
455 |
+
"learning_rate": 5.487528344671202e-06,
|
456 |
+
"loss": 0.2145,
|
457 |
+
"step": 3200
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 7.353541076487252,
|
461 |
+
"grad_norm": 0.04204430021320609,
|
462 |
+
"learning_rate": 5.260770975056689e-06,
|
463 |
+
"loss": 0.2144,
|
464 |
+
"step": 3250
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 7.46685552407932,
|
468 |
+
"grad_norm": 0.03959334724172543,
|
469 |
+
"learning_rate": 5.034013605442177e-06,
|
470 |
+
"loss": 0.2144,
|
471 |
+
"step": 3300
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 7.580169971671388,
|
475 |
+
"grad_norm": 0.05397598403564438,
|
476 |
+
"learning_rate": 4.807256235827665e-06,
|
477 |
+
"loss": 0.2143,
|
478 |
+
"step": 3350
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 7.693484419263456,
|
482 |
+
"grad_norm": 0.03475866061919734,
|
483 |
+
"learning_rate": 4.580498866213152e-06,
|
484 |
+
"loss": 0.2143,
|
485 |
+
"step": 3400
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 7.806798866855524,
|
489 |
+
"grad_norm": 0.03605731459444405,
|
490 |
+
"learning_rate": 4.35374149659864e-06,
|
491 |
+
"loss": 0.2143,
|
492 |
+
"step": 3450
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 7.920113314447592,
|
496 |
+
"grad_norm": 0.049256646844772954,
|
497 |
+
"learning_rate": 4.126984126984127e-06,
|
498 |
+
"loss": 0.2143,
|
499 |
+
"step": 3500
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 8.03172804532578,
|
503 |
+
"grad_norm": 0.043722508869200226,
|
504 |
+
"learning_rate": 3.9002267573696154e-06,
|
505 |
+
"loss": 0.2109,
|
506 |
+
"step": 3550
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 8.145042492917847,
|
510 |
+
"grad_norm": 0.05138428044227004,
|
511 |
+
"learning_rate": 3.6734693877551024e-06,
|
512 |
+
"loss": 0.214,
|
513 |
+
"step": 3600
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 8.258356940509914,
|
517 |
+
"grad_norm": 0.043851337146329404,
|
518 |
+
"learning_rate": 3.44671201814059e-06,
|
519 |
+
"loss": 0.2138,
|
520 |
+
"step": 3650
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 8.371671388101984,
|
524 |
+
"grad_norm": 0.044279311539890204,
|
525 |
+
"learning_rate": 3.2199546485260772e-06,
|
526 |
+
"loss": 0.2139,
|
527 |
+
"step": 3700
|
528 |
+
},
|
529 |
+
{
|
530 |
+
"epoch": 8.48498583569405,
|
531 |
+
"grad_norm": 0.03446260373952044,
|
532 |
+
"learning_rate": 2.993197278911565e-06,
|
533 |
+
"loss": 0.2139,
|
534 |
+
"step": 3750
|
535 |
+
},
|
536 |
+
{
|
537 |
+
"epoch": 8.598300283286118,
|
538 |
+
"grad_norm": 0.0398317932843614,
|
539 |
+
"learning_rate": 2.7664399092970525e-06,
|
540 |
+
"loss": 0.2137,
|
541 |
+
"step": 3800
|
542 |
+
},
|
543 |
+
{
|
544 |
+
"epoch": 8.711614730878187,
|
545 |
+
"grad_norm": 0.03767500988119292,
|
546 |
+
"learning_rate": 2.53968253968254e-06,
|
547 |
+
"loss": 0.2136,
|
548 |
+
"step": 3850
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 8.824929178470255,
|
552 |
+
"grad_norm": 0.042385639923809684,
|
553 |
+
"learning_rate": 2.3129251700680273e-06,
|
554 |
+
"loss": 0.2137,
|
555 |
+
"step": 3900
|
556 |
+
},
|
557 |
+
{
|
558 |
+
"epoch": 8.938243626062324,
|
559 |
+
"grad_norm": 0.04600384237355533,
|
560 |
+
"learning_rate": 2.086167800453515e-06,
|
561 |
+
"loss": 0.2136,
|
562 |
+
"step": 3950
|
563 |
+
},
|
564 |
+
{
|
565 |
+
"epoch": 9.04985835694051,
|
566 |
+
"grad_norm": 0.04025841171568849,
|
567 |
+
"learning_rate": 1.8594104308390023e-06,
|
568 |
+
"loss": 0.2103,
|
569 |
+
"step": 4000
|
570 |
+
},
|
571 |
+
{
|
572 |
+
"epoch": 9.163172804532579,
|
573 |
+
"grad_norm": 0.04544163454051775,
|
574 |
+
"learning_rate": 1.6326530612244897e-06,
|
575 |
+
"loss": 0.2132,
|
576 |
+
"step": 4050
|
577 |
+
},
|
578 |
+
{
|
579 |
+
"epoch": 9.276487252124646,
|
580 |
+
"grad_norm": 0.04725026924810951,
|
581 |
+
"learning_rate": 1.4058956916099775e-06,
|
582 |
+
"loss": 0.2132,
|
583 |
+
"step": 4100
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"epoch": 9.389801699716713,
|
587 |
+
"grad_norm": 0.04900241251858758,
|
588 |
+
"learning_rate": 1.179138321995465e-06,
|
589 |
+
"loss": 0.2132,
|
590 |
+
"step": 4150
|
591 |
+
},
|
592 |
+
{
|
593 |
+
"epoch": 9.503116147308782,
|
594 |
+
"grad_norm": 0.040273641750525384,
|
595 |
+
"learning_rate": 9.523809523809525e-07,
|
596 |
+
"loss": 0.2131,
|
597 |
+
"step": 4200
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 9.61643059490085,
|
601 |
+
"grad_norm": 0.045928550994560016,
|
602 |
+
"learning_rate": 7.2562358276644e-07,
|
603 |
+
"loss": 0.2131,
|
604 |
+
"step": 4250
|
605 |
+
},
|
606 |
+
{
|
607 |
+
"epoch": 9.729745042492917,
|
608 |
+
"grad_norm": 0.04288769118414568,
|
609 |
+
"learning_rate": 4.988662131519275e-07,
|
610 |
+
"loss": 0.213,
|
611 |
+
"step": 4300
|
612 |
+
},
|
613 |
+
{
|
614 |
+
"epoch": 9.843059490084986,
|
615 |
+
"grad_norm": 0.04348109814106462,
|
616 |
+
"learning_rate": 2.72108843537415e-07,
|
617 |
+
"loss": 0.2129,
|
618 |
+
"step": 4350
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"epoch": 9.956373937677053,
|
622 |
+
"grad_norm": 0.03750811718272137,
|
623 |
+
"learning_rate": 4.53514739229025e-08,
|
624 |
+
"loss": 0.2128,
|
625 |
+
"step": 4400
|
626 |
+
}
|
627 |
+
],
|
628 |
+
"logging_steps": 50,
|
629 |
+
"max_steps": 4410,
|
630 |
+
"num_input_tokens_seen": 0,
|
631 |
+
"num_train_epochs": 10,
|
632 |
+
"save_steps": 1000,
|
633 |
+
"stateful_callbacks": {
|
634 |
+
"TrainerControl": {
|
635 |
+
"args": {
|
636 |
+
"should_epoch_stop": false,
|
637 |
+
"should_evaluate": false,
|
638 |
+
"should_log": false,
|
639 |
+
"should_save": true,
|
640 |
+
"should_training_stop": true
|
641 |
+
},
|
642 |
+
"attributes": {}
|
643 |
+
}
|
644 |
+
},
|
645 |
+
"total_flos": 1.1136582509658112e+16,
|
646 |
+
"train_batch_size": 8,
|
647 |
+
"trial_name": null,
|
648 |
+
"trial_params": null
|
649 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ca13d0e10fdb340d687c94409c9063082b4379853ae818ae9d7e54f77ce91cd
|
3 |
+
size 7224
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example:
|
14 |
+
# python zero_to_fp32.py . output_dir/
|
15 |
+
# or
|
16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import torch
|
20 |
+
import glob
|
21 |
+
import math
|
22 |
+
import os
|
23 |
+
import re
|
24 |
+
import json
|
25 |
+
from tqdm import tqdm
|
26 |
+
from collections import OrderedDict
|
27 |
+
from dataclasses import dataclass
|
28 |
+
|
29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
31 |
+
from deepspeed.utils import logger
|
32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
35 |
+
|
36 |
+
|
37 |
+
@dataclass
|
38 |
+
class zero_model_state:
|
39 |
+
buffers: dict()
|
40 |
+
param_shapes: dict()
|
41 |
+
shared_params: list
|
42 |
+
ds_version: int
|
43 |
+
frozen_param_shapes: dict()
|
44 |
+
frozen_param_fragments: dict()
|
45 |
+
|
46 |
+
|
47 |
+
debug = 0
|
48 |
+
|
49 |
+
# load to cpu
|
50 |
+
device = torch.device('cpu')
|
51 |
+
|
52 |
+
|
53 |
+
def atoi(text):
|
54 |
+
return int(text) if text.isdigit() else text
|
55 |
+
|
56 |
+
|
57 |
+
def natural_keys(text):
|
58 |
+
'''
|
59 |
+
alist.sort(key=natural_keys) sorts in human order
|
60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
61 |
+
(See Toothy's implementation in the comments)
|
62 |
+
'''
|
63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
64 |
+
|
65 |
+
|
66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
67 |
+
if not os.path.isdir(checkpoint_dir):
|
68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
69 |
+
|
70 |
+
# there should be only one file
|
71 |
+
if zero_stage <= 2:
|
72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
73 |
+
elif zero_stage == 3:
|
74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
75 |
+
|
76 |
+
if not os.path.exists(file):
|
77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
78 |
+
|
79 |
+
return file
|
80 |
+
|
81 |
+
|
82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
85 |
+
|
86 |
+
if len(ckpt_files) == 0:
|
87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
88 |
+
|
89 |
+
return ckpt_files
|
90 |
+
|
91 |
+
|
92 |
+
def get_optim_files(checkpoint_dir):
|
93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
94 |
+
|
95 |
+
|
96 |
+
def get_model_state_files(checkpoint_dir):
|
97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
98 |
+
|
99 |
+
|
100 |
+
def parse_model_states(files):
|
101 |
+
zero_model_states = []
|
102 |
+
for file in files:
|
103 |
+
state_dict = torch.load(file, map_location=device)
|
104 |
+
|
105 |
+
if BUFFER_NAMES not in state_dict:
|
106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
108 |
+
if debug:
|
109 |
+
print("Found buffers:", buffer_names)
|
110 |
+
|
111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
114 |
+
|
115 |
+
# collect parameters that are included in param_shapes
|
116 |
+
param_names = []
|
117 |
+
for s in param_shapes:
|
118 |
+
for name in s.keys():
|
119 |
+
param_names.append(name)
|
120 |
+
|
121 |
+
# update with frozen parameters
|
122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
123 |
+
if frozen_param_shapes is not None:
|
124 |
+
if debug:
|
125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
126 |
+
param_names += list(frozen_param_shapes.keys())
|
127 |
+
|
128 |
+
# handle shared params
|
129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
130 |
+
|
131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
132 |
+
|
133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
134 |
+
|
135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
136 |
+
param_shapes=param_shapes,
|
137 |
+
shared_params=shared_params,
|
138 |
+
ds_version=ds_version,
|
139 |
+
frozen_param_shapes=frozen_param_shapes,
|
140 |
+
frozen_param_fragments=frozen_param_fragments)
|
141 |
+
zero_model_states.append(z_model_state)
|
142 |
+
|
143 |
+
return zero_model_states
|
144 |
+
|
145 |
+
|
146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
147 |
+
total_files = len(files)
|
148 |
+
state_dicts = []
|
149 |
+
for f in files:
|
150 |
+
state_dict = torch.load(f, map_location=device)
|
151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
152 |
+
# and also handle the case where it was already removed by another helper script
|
153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
154 |
+
state_dicts.append(state_dict)
|
155 |
+
|
156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
160 |
+
|
161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
163 |
+
# use the max of the partition_count to get the dp world_size.
|
164 |
+
|
165 |
+
if type(world_size) is list:
|
166 |
+
world_size = max(world_size)
|
167 |
+
|
168 |
+
if world_size != total_files:
|
169 |
+
raise ValueError(
|
170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
172 |
+
)
|
173 |
+
|
174 |
+
# the groups are named differently in each stage
|
175 |
+
if zero_stage <= 2:
|
176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
177 |
+
elif zero_stage == 3:
|
178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
179 |
+
else:
|
180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
181 |
+
|
182 |
+
if zero_stage <= 2:
|
183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
184 |
+
elif zero_stage == 3:
|
185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
187 |
+
#
|
188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
190 |
+
|
191 |
+
fp32_flat_groups = [
|
192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
193 |
+
]
|
194 |
+
|
195 |
+
return zero_stage, world_size, fp32_flat_groups
|
196 |
+
|
197 |
+
|
198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
199 |
+
"""
|
200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
201 |
+
|
202 |
+
Args:
|
203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
204 |
+
|
205 |
+
"""
|
206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
207 |
+
|
208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
211 |
+
|
212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
213 |
+
|
214 |
+
zero_model_states = parse_model_states(model_files)
|
215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
216 |
+
|
217 |
+
if zero_stage <= 2:
|
218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
219 |
+
exclude_frozen_parameters)
|
220 |
+
elif zero_stage == 3:
|
221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
222 |
+
exclude_frozen_parameters)
|
223 |
+
|
224 |
+
|
225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
227 |
+
return
|
228 |
+
|
229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
231 |
+
|
232 |
+
if debug:
|
233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
235 |
+
|
236 |
+
wanted_params = len(frozen_param_shapes)
|
237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
241 |
+
|
242 |
+
total_params = 0
|
243 |
+
total_numel = 0
|
244 |
+
for name, shape in frozen_param_shapes.items():
|
245 |
+
total_params += 1
|
246 |
+
unpartitioned_numel = shape.numel()
|
247 |
+
total_numel += unpartitioned_numel
|
248 |
+
|
249 |
+
state_dict[name] = frozen_param_fragments[name]
|
250 |
+
|
251 |
+
if debug:
|
252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
253 |
+
|
254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
255 |
+
|
256 |
+
|
257 |
+
def _has_callable(obj, fn):
|
258 |
+
attr = getattr(obj, fn, None)
|
259 |
+
return callable(attr)
|
260 |
+
|
261 |
+
|
262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
263 |
+
param_shapes = zero_model_states[0].param_shapes
|
264 |
+
|
265 |
+
# Reconstruction protocol:
|
266 |
+
#
|
267 |
+
# XXX: document this
|
268 |
+
|
269 |
+
if debug:
|
270 |
+
for i in range(world_size):
|
271 |
+
for j in range(len(fp32_flat_groups[0])):
|
272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
273 |
+
|
274 |
+
# XXX: memory usage doubles here (zero2)
|
275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
276 |
+
merged_single_partition_of_fp32_groups = []
|
277 |
+
for i in range(num_param_groups):
|
278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
281 |
+
avail_numel = sum(
|
282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
283 |
+
|
284 |
+
if debug:
|
285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
287 |
+
# not asserting if there is a mismatch due to possible padding
|
288 |
+
print(f"Have {avail_numel} numels to process.")
|
289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
290 |
+
|
291 |
+
# params
|
292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
293 |
+
# out-of-core computing solution
|
294 |
+
total_numel = 0
|
295 |
+
total_params = 0
|
296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
297 |
+
offset = 0
|
298 |
+
avail_numel = full_single_fp32_vector.numel()
|
299 |
+
for name, shape in shapes.items():
|
300 |
+
|
301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
302 |
+
total_numel += unpartitioned_numel
|
303 |
+
total_params += 1
|
304 |
+
|
305 |
+
if debug:
|
306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
308 |
+
offset += unpartitioned_numel
|
309 |
+
|
310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
314 |
+
align_to = 2 * world_size
|
315 |
+
|
316 |
+
def zero2_align(x):
|
317 |
+
return align_to * math.ceil(x / align_to)
|
318 |
+
|
319 |
+
if debug:
|
320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
321 |
+
|
322 |
+
offset = zero2_align(offset)
|
323 |
+
avail_numel = zero2_align(avail_numel)
|
324 |
+
|
325 |
+
if debug:
|
326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
327 |
+
|
328 |
+
# Sanity check
|
329 |
+
if offset != avail_numel:
|
330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
331 |
+
|
332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
333 |
+
|
334 |
+
|
335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
336 |
+
exclude_frozen_parameters):
|
337 |
+
state_dict = OrderedDict()
|
338 |
+
|
339 |
+
# buffers
|
340 |
+
buffers = zero_model_states[0].buffers
|
341 |
+
state_dict.update(buffers)
|
342 |
+
if debug:
|
343 |
+
print(f"added {len(buffers)} buffers")
|
344 |
+
|
345 |
+
if not exclude_frozen_parameters:
|
346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
347 |
+
|
348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
349 |
+
|
350 |
+
# recover shared parameters
|
351 |
+
for pair in zero_model_states[0].shared_params:
|
352 |
+
if pair[1] in state_dict:
|
353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
354 |
+
|
355 |
+
return state_dict
|
356 |
+
|
357 |
+
|
358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
359 |
+
remainder = unpartitioned_numel % world_size
|
360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
362 |
+
return partitioned_numel, padding_numel
|
363 |
+
|
364 |
+
|
365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
367 |
+
return
|
368 |
+
|
369 |
+
if debug:
|
370 |
+
for i in range(world_size):
|
371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
373 |
+
|
374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
375 |
+
wanted_params = len(frozen_param_shapes)
|
376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
380 |
+
|
381 |
+
total_params = 0
|
382 |
+
total_numel = 0
|
383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
384 |
+
total_params += 1
|
385 |
+
unpartitioned_numel = shape.numel()
|
386 |
+
total_numel += unpartitioned_numel
|
387 |
+
|
388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
390 |
+
|
391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
392 |
+
|
393 |
+
if debug:
|
394 |
+
print(
|
395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
396 |
+
)
|
397 |
+
|
398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
399 |
+
|
400 |
+
|
401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
402 |
+
param_shapes = zero_model_states[0].param_shapes
|
403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
406 |
+
|
407 |
+
# merge list of dicts, preserving order
|
408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
409 |
+
|
410 |
+
if debug:
|
411 |
+
for i in range(world_size):
|
412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
413 |
+
|
414 |
+
wanted_params = len(param_shapes)
|
415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
416 |
+
# not asserting if there is a mismatch due to possible padding
|
417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
420 |
+
|
421 |
+
# params
|
422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
423 |
+
# out-of-core computing solution
|
424 |
+
offset = 0
|
425 |
+
total_numel = 0
|
426 |
+
total_params = 0
|
427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
428 |
+
unpartitioned_numel = shape.numel()
|
429 |
+
total_numel += unpartitioned_numel
|
430 |
+
total_params += 1
|
431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
432 |
+
|
433 |
+
if debug:
|
434 |
+
print(
|
435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
436 |
+
)
|
437 |
+
|
438 |
+
# XXX: memory usage doubles here
|
439 |
+
state_dict[name] = torch.cat(
|
440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
442 |
+
offset += partitioned_numel
|
443 |
+
|
444 |
+
offset *= world_size
|
445 |
+
|
446 |
+
# Sanity check
|
447 |
+
if offset != avail_numel:
|
448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
449 |
+
|
450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
451 |
+
|
452 |
+
|
453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
454 |
+
exclude_frozen_parameters):
|
455 |
+
state_dict = OrderedDict()
|
456 |
+
|
457 |
+
# buffers
|
458 |
+
buffers = zero_model_states[0].buffers
|
459 |
+
state_dict.update(buffers)
|
460 |
+
if debug:
|
461 |
+
print(f"added {len(buffers)} buffers")
|
462 |
+
|
463 |
+
if not exclude_frozen_parameters:
|
464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
465 |
+
|
466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
467 |
+
|
468 |
+
# recover shared parameters
|
469 |
+
for pair in zero_model_states[0].shared_params:
|
470 |
+
if pair[1] in state_dict:
|
471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
472 |
+
|
473 |
+
return state_dict
|
474 |
+
|
475 |
+
|
476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
477 |
+
"""
|
478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
480 |
+
via a model hub.
|
481 |
+
|
482 |
+
Args:
|
483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
486 |
+
|
487 |
+
Returns:
|
488 |
+
- pytorch ``state_dict``
|
489 |
+
|
490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
492 |
+
the checkpoint.
|
493 |
+
|
494 |
+
A typical usage might be ::
|
495 |
+
|
496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
497 |
+
# do the training and checkpoint saving
|
498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
499 |
+
model = model.cpu() # move to cpu
|
500 |
+
model.load_state_dict(state_dict)
|
501 |
+
# submit to model hub or save the model to share with others
|
502 |
+
|
503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
506 |
+
|
507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
508 |
+
|
509 |
+
"""
|
510 |
+
if tag is None:
|
511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
512 |
+
if os.path.isfile(latest_path):
|
513 |
+
with open(latest_path, 'r') as fd:
|
514 |
+
tag = fd.read().strip()
|
515 |
+
else:
|
516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
517 |
+
|
518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
519 |
+
|
520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
522 |
+
|
523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
524 |
+
|
525 |
+
|
526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
527 |
+
output_dir,
|
528 |
+
max_shard_size="5GB",
|
529 |
+
safe_serialization=False,
|
530 |
+
tag=None,
|
531 |
+
exclude_frozen_parameters=False):
|
532 |
+
"""
|
533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
535 |
+
|
536 |
+
Args:
|
537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
543 |
+
"""
|
544 |
+
# Dependency pre-check
|
545 |
+
if safe_serialization:
|
546 |
+
try:
|
547 |
+
from safetensors.torch import save_file
|
548 |
+
except ImportError:
|
549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
550 |
+
raise
|
551 |
+
if max_shard_size is not None:
|
552 |
+
try:
|
553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
554 |
+
except ImportError:
|
555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
556 |
+
raise
|
557 |
+
|
558 |
+
# Convert zero checkpoint to state_dict
|
559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
560 |
+
|
561 |
+
# Shard the model if it is too big.
|
562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
563 |
+
if max_shard_size is not None:
|
564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
566 |
+
filename_pattern=filename_pattern,
|
567 |
+
max_shard_size=max_shard_size)
|
568 |
+
else:
|
569 |
+
from collections import namedtuple
|
570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
573 |
+
|
574 |
+
# Save the model
|
575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
578 |
+
output_path = os.path.join(output_dir, shard_file)
|
579 |
+
if safe_serialization:
|
580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
581 |
+
else:
|
582 |
+
torch.save(shard, output_path)
|
583 |
+
|
584 |
+
# Save index if sharded
|
585 |
+
if state_dict_split.is_sharded:
|
586 |
+
index = {
|
587 |
+
"metadata": state_dict_split.metadata,
|
588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
589 |
+
}
|
590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
594 |
+
f.write(content)
|
595 |
+
|
596 |
+
|
597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
598 |
+
"""
|
599 |
+
1. Put the provided model to cpu
|
600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
601 |
+
3. Load it into the provided model
|
602 |
+
|
603 |
+
Args:
|
604 |
+
- ``model``: the model object to update
|
605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
607 |
+
|
608 |
+
Returns:
|
609 |
+
- ``model`: modified model
|
610 |
+
|
611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
613 |
+
conveniently placed for you in the checkpoint folder.
|
614 |
+
|
615 |
+
A typical usage might be ::
|
616 |
+
|
617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
619 |
+
# submit to model hub or save the model to share with others
|
620 |
+
|
621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
624 |
+
|
625 |
+
"""
|
626 |
+
logger.info(f"Extracting fp32 weights")
|
627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
628 |
+
|
629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
630 |
+
model = model.cpu()
|
631 |
+
model.load_state_dict(state_dict, strict=False)
|
632 |
+
|
633 |
+
return model
|
634 |
+
|
635 |
+
|
636 |
+
if __name__ == "__main__":
|
637 |
+
parser = argparse.ArgumentParser()
|
638 |
+
parser.add_argument("checkpoint_dir",
|
639 |
+
type=str,
|
640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
641 |
+
parser.add_argument("output_dir",
|
642 |
+
type=str,
|
643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
644 |
+
"(e.g. path/checkpoint-12-output/)")
|
645 |
+
parser.add_argument(
|
646 |
+
"--max_shard_size",
|
647 |
+
type=str,
|
648 |
+
default="5GB",
|
649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
652 |
+
"without CPU OOM issues.")
|
653 |
+
parser.add_argument(
|
654 |
+
"--safe_serialization",
|
655 |
+
default=False,
|
656 |
+
action='store_true',
|
657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
658 |
+
parser.add_argument("-t",
|
659 |
+
"--tag",
|
660 |
+
type=str,
|
661 |
+
default=None,
|
662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
665 |
+
args = parser.parse_args()
|
666 |
+
|
667 |
+
debug = args.debug
|
668 |
+
|
669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
670 |
+
args.output_dir,
|
671 |
+
max_shard_size=args.max_shard_size,
|
672 |
+
safe_serialization=args.safe_serialization,
|
673 |
+
tag=args.tag,
|
674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|