metadata
language: lo
license: apache-2.0
tags:
- automatic-speech-recognition
- speech
- audio
- lao
- wav2vec2
- xls-r
datasets:
- h3llohihi/lao-asr-thesis-dataset
library_name: transformers
pipeline_tag: automatic-speech-recognition
metrics:
- cer
base_model:
- facebook/wav2vec2-xls-r-300m
XLS-R Lao ASR
Fine-tuned XLS-R-300M model for Lao automatic speech recognition.
Model Performance
- Test CER: 15.14%
- Training Time: 2.1 hours
- Dialects: Central, Northern, Southern Lao
Usage
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
import torch
import librosa
# Load model and processor
model = Wav2Vec2ForCTC.from_pretrained("h3llohihi/xls-r-lao-asr")
processor = Wav2Vec2Processor.from_pretrained("h3llohihi/xls-r-lao-asr")
# Load audio
audio, sr = librosa.load("audio.wav", sr=16000)
# Process audio
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
# Generate prediction
with torch.no_grad():
logits = model(**inputs).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids)[0]
print(transcription)
Citation
@thesis{naovalath2025lao,
title={Lao Automatic Speech Recognition using Transfer Learning},
author={Souphaxay Naovalath and Sounmy Chanthavong},
advisor={Dr. Somsack Inthasone},
school={National University of Laos, Faculty of Natural Sciences, Computer Science Department},
year={2025}
}