Upload code
Browse files- configuration_prot2text.py +74 -0
- conversion.py +470 -0
- graphs.py +1137 -0
- modeling_prot2text.py +392 -0
- pdb2graph.py +171 -0
- utils.py +742 -0
- utils_convert.py +82 -0
- utils_dataset.py +60 -0
configuration_prot2text.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" Prot2Text configuration"""
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers import AutoConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
|
11 |
+
class Prot2TextConfig(PretrainedConfig):
|
12 |
+
model_type = "prot2text"
|
13 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
14 |
+
_keys_to_ignore_on_load_missing = [r"transformer"]
|
15 |
+
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
cross_esm_graph=True,
|
19 |
+
decoder_start_token_id=50257,
|
20 |
+
early_stopping=True,
|
21 |
+
eos_token_id=50258,
|
22 |
+
bos_token_id=50257,
|
23 |
+
esm=True,
|
24 |
+
esm_model_name="facebook/esm2_t6_8M_UR50D",
|
25 |
+
gpt_model_name="gpt2",
|
26 |
+
length_penalty=2.0,
|
27 |
+
max_new_tokens=256,
|
28 |
+
no_repeat_ngram_size=3,
|
29 |
+
pad_token_id=50256,
|
30 |
+
prot2text_version="1.1",
|
31 |
+
rgcn=True,
|
32 |
+
rgc_input_dim=67,
|
33 |
+
rgcn_n_layers=6,
|
34 |
+
gpt_config=None,
|
35 |
+
esm_config=None,
|
36 |
+
**kwargs,
|
37 |
+
):
|
38 |
+
self.cross_esm_graph = cross_esm_graph
|
39 |
+
self.decoder_start_token_id = decoder_start_token_id
|
40 |
+
self.early_stopping = early_stopping
|
41 |
+
self.eos_token_id = eos_token_id
|
42 |
+
self.esm = esm
|
43 |
+
self.esm_model_name = esm_model_name
|
44 |
+
self.gpt_model_name = gpt_model_name
|
45 |
+
self.length_penalty = length_penalty
|
46 |
+
self.max_new_tokens = max_new_tokens
|
47 |
+
self.no_repeat_ngram_size = no_repeat_ngram_size
|
48 |
+
self.pad_token_id = pad_token_id
|
49 |
+
self.prot2text_version = prot2text_version
|
50 |
+
self.rgcn = rgcn
|
51 |
+
self.rgc_input_dim = rgc_input_dim
|
52 |
+
self.rgcn_n_layers = rgcn_n_layers
|
53 |
+
if gpt_config is None:
|
54 |
+
self.gpt_config = AutoConfig.from_pretrained(gpt_model_name,
|
55 |
+
_name_or_path= gpt_model_name,
|
56 |
+
is_encoder_decoder=True,
|
57 |
+
use_cache=False,
|
58 |
+
add_cross_attention=True,
|
59 |
+
bos_token_id=bos_token_id,
|
60 |
+
decoder_start_token_id=decoder_start_token_id,
|
61 |
+
eos_token_id=eos_token_id,
|
62 |
+
max_new_tokens=max_new_tokens,
|
63 |
+
pad_token_id=50256,
|
64 |
+
vocab_size=50259,
|
65 |
+
num_beams=1,
|
66 |
+
max_length=256,
|
67 |
+
min_length=1).to_dict()
|
68 |
+
else:
|
69 |
+
self.gpt_config = gpt_config
|
70 |
+
if esm_config is None:
|
71 |
+
self.esm_config = AutoConfig.from_pretrained(esm_model_name).to_dict()
|
72 |
+
self.esm_config = esm_config
|
73 |
+
|
74 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
conversion.py
ADDED
@@ -0,0 +1,470 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities for converting Graphein Networks to Geometric Deep Learning formats.
|
2 |
+
"""
|
3 |
+
# %%
|
4 |
+
# Graphein
|
5 |
+
# Author: Kexin Huang, Arian Jamasb <[email protected]>
|
6 |
+
# License: MIT
|
7 |
+
# Project Website: https://github.com/a-r-j/graphein
|
8 |
+
# Code Repository: https://github.com/a-r-j/graphein
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import List, Optional
|
12 |
+
|
13 |
+
import networkx as nx
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from graphein.utils.dependencies import import_message
|
18 |
+
|
19 |
+
try:
|
20 |
+
import torch_geometric
|
21 |
+
from torch_geometric.data import Data
|
22 |
+
except ImportError:
|
23 |
+
import_message(
|
24 |
+
submodule="graphein.ml.conversion",
|
25 |
+
package="torch_geometric",
|
26 |
+
pip_install=True,
|
27 |
+
conda_channel="rusty1s",
|
28 |
+
)
|
29 |
+
|
30 |
+
try:
|
31 |
+
import dgl
|
32 |
+
except ImportError:
|
33 |
+
import_message(
|
34 |
+
submodule="graphein.ml.conversion",
|
35 |
+
package="dgl",
|
36 |
+
pip_install=True,
|
37 |
+
conda_channel="dglteam",
|
38 |
+
)
|
39 |
+
|
40 |
+
try:
|
41 |
+
import jax.numpy as jnp
|
42 |
+
except ImportError:
|
43 |
+
import_message(
|
44 |
+
submodule="graphein.ml.conversion",
|
45 |
+
package="jax",
|
46 |
+
pip_install=True,
|
47 |
+
conda_channel="conda-forge",
|
48 |
+
)
|
49 |
+
try:
|
50 |
+
import jraph
|
51 |
+
except ImportError:
|
52 |
+
import_message(
|
53 |
+
submodule="graphein.ml.conversion",
|
54 |
+
package="jraph",
|
55 |
+
pip_install=True,
|
56 |
+
conda_channel="conda-forge",
|
57 |
+
)
|
58 |
+
|
59 |
+
|
60 |
+
SUPPORTED_FORMATS = ["nx", "pyg", "dgl", "jraph"]
|
61 |
+
"""Supported conversion formats.
|
62 |
+
|
63 |
+
``"nx"``: NetworkX graph
|
64 |
+
|
65 |
+
``"pyg"``: PyTorch Geometric Data object
|
66 |
+
|
67 |
+
``"dgl"``: DGL graph
|
68 |
+
|
69 |
+
``"Jraph"``: Jraph GraphsTuple
|
70 |
+
"""
|
71 |
+
|
72 |
+
SUPPORTED_VERBOSITY = ["gnn", "default", "all_info"]
|
73 |
+
"""Supported verbosity levels for preserving graph features in conversion."""
|
74 |
+
|
75 |
+
|
76 |
+
class GraphFormatConvertor:
|
77 |
+
"""
|
78 |
+
Provides conversion utilities between NetworkX Graphs and geometric deep learning library destination formats.
|
79 |
+
Currently, we provide support for converstion from ``nx.Graph`` to ``dgl.DGLGraph`` and ``pytorch_geometric.Data``. Supported conversion
|
80 |
+
formats can be retrieved from :const:`~graphein.ml.conversion.SUPPORTED_FORMATS`.
|
81 |
+
|
82 |
+
:param src_format: The type of graph you'd like to convert from. Supported formats are available in :const:`~graphein.ml.conversion.SUPPORTED_FORMATS`
|
83 |
+
:type src_format: Literal["nx", "pyg", "dgl", "jraph"]
|
84 |
+
:param dst_format: The type of graph format you'd like to convert to. Supported formats are available in:
|
85 |
+
``graphein.ml.conversion.SUPPORTED_FORMATS``
|
86 |
+
:type dst_format: Literal["nx", "pyg", "dgl", "jraph"]
|
87 |
+
:param verbose: Select from ``"gnn"``, ``"default"``, ``"all_info"`` to determine how much information is preserved (features)
|
88 |
+
as some are unsupported by various downstream frameworks
|
89 |
+
:type verbose: graphein.ml.conversion.SUPPORTED_VERBOSITY
|
90 |
+
:param columns: List of columns in the node features to retain
|
91 |
+
:type columns: List[str], optional
|
92 |
+
"""
|
93 |
+
|
94 |
+
def __init__(
|
95 |
+
self,
|
96 |
+
src_format: str,
|
97 |
+
dst_format: str,
|
98 |
+
verbose: SUPPORTED_VERBOSITY = "gnn",
|
99 |
+
columns: Optional[List[str]] = None,
|
100 |
+
):
|
101 |
+
if (src_format not in SUPPORTED_FORMATS) or (
|
102 |
+
dst_format not in SUPPORTED_FORMATS
|
103 |
+
):
|
104 |
+
raise ValueError(
|
105 |
+
"Please specify from supported format, "
|
106 |
+
+ "/".join(SUPPORTED_FORMATS)
|
107 |
+
)
|
108 |
+
self.src_format = src_format
|
109 |
+
self.dst_format = dst_format
|
110 |
+
|
111 |
+
# supported_verbose_format = ["gnn", "default", "all_info"]
|
112 |
+
if (columns is None) and (verbose not in SUPPORTED_VERBOSITY):
|
113 |
+
raise ValueError(
|
114 |
+
"Please specify the supported verbose mode ("
|
115 |
+
+ "/".join(SUPPORTED_VERBOSITY)
|
116 |
+
+ ") or specify column names!"
|
117 |
+
)
|
118 |
+
|
119 |
+
if columns is None:
|
120 |
+
if verbose == "gnn":
|
121 |
+
columns = [
|
122 |
+
"edge_index",
|
123 |
+
"coords",
|
124 |
+
"dist_mat",
|
125 |
+
"name",
|
126 |
+
"node_id",
|
127 |
+
]
|
128 |
+
elif verbose == "default":
|
129 |
+
columns = [
|
130 |
+
"b_factor",
|
131 |
+
"chain_id",
|
132 |
+
"coords",
|
133 |
+
"dist_mat",
|
134 |
+
"edge_index",
|
135 |
+
"kind",
|
136 |
+
"name",
|
137 |
+
"node_id",
|
138 |
+
"residue_name",
|
139 |
+
]
|
140 |
+
elif verbose == "all_info":
|
141 |
+
columns = [
|
142 |
+
"atom_type",
|
143 |
+
"b_factor",
|
144 |
+
"chain_id",
|
145 |
+
"chain_ids",
|
146 |
+
"config",
|
147 |
+
"coords",
|
148 |
+
"dist_mat",
|
149 |
+
"edge_index",
|
150 |
+
"element_symbol",
|
151 |
+
"kind",
|
152 |
+
"name",
|
153 |
+
"node_id",
|
154 |
+
"node_type",
|
155 |
+
"pdb_df",
|
156 |
+
"raw_pdb_df",
|
157 |
+
"residue_name",
|
158 |
+
"residue_number",
|
159 |
+
"rgroup_df",
|
160 |
+
"sequence_A",
|
161 |
+
"sequence_B",
|
162 |
+
]
|
163 |
+
self.columns = columns
|
164 |
+
|
165 |
+
self.type2form = {
|
166 |
+
"atom_type": "str",
|
167 |
+
"b_factor": "float",
|
168 |
+
"chain_id": "str",
|
169 |
+
"coords": "np.array",
|
170 |
+
"dist_mat": "np.array",
|
171 |
+
"element_symbol": "str",
|
172 |
+
"node_id": "str",
|
173 |
+
"residue_name": "str",
|
174 |
+
"residue_number": "int",
|
175 |
+
"edge_index": "torch.tensor",
|
176 |
+
"kind": "str",
|
177 |
+
}
|
178 |
+
|
179 |
+
def convert_nx_to_dgl(self, G: nx.Graph) -> dgl.DGLGraph:
|
180 |
+
"""
|
181 |
+
Converts ``NetworkX`` graph to ``DGL``
|
182 |
+
|
183 |
+
:param G: ``nx.Graph`` to convert to ``DGLGraph``
|
184 |
+
:type G: nx.Graph
|
185 |
+
:return: ``DGLGraph`` object version of input ``NetworkX`` graph
|
186 |
+
:rtype: dgl.DGLGraph
|
187 |
+
"""
|
188 |
+
g = dgl.DGLGraph()
|
189 |
+
node_id = list(G.nodes())
|
190 |
+
G = nx.convert_node_labels_to_integers(G)
|
191 |
+
|
192 |
+
## add node level feat
|
193 |
+
|
194 |
+
node_dict = {}
|
195 |
+
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
|
196 |
+
for key, value in feat_dict.items():
|
197 |
+
if str(key) in self.columns:
|
198 |
+
node_dict[str(key)] = (
|
199 |
+
[value] if i == 0 else node_dict[str(key)] + [value]
|
200 |
+
)
|
201 |
+
|
202 |
+
string_dict = {}
|
203 |
+
node_dict_transformed = {}
|
204 |
+
for i, j in node_dict.items():
|
205 |
+
if i == "coords":
|
206 |
+
node_dict_transformed[i] = torch.Tensor(np.asarray(j)).type(
|
207 |
+
"torch.FloatTensor"
|
208 |
+
)
|
209 |
+
elif i == "dist_mat":
|
210 |
+
node_dict_transformed[i] = torch.Tensor(
|
211 |
+
np.asarray(j[0].values)
|
212 |
+
).type("torch.FloatTensor")
|
213 |
+
elif self.type2form[i] == "str":
|
214 |
+
string_dict[i] = j
|
215 |
+
elif self.type2form[i] in ["float", "int"]:
|
216 |
+
node_dict_transformed[i] = torch.Tensor(np.array(j))
|
217 |
+
g.add_nodes(
|
218 |
+
len(node_id),
|
219 |
+
node_dict_transformed,
|
220 |
+
)
|
221 |
+
|
222 |
+
edge_dict = {}
|
223 |
+
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
|
224 |
+
|
225 |
+
# add edge level features
|
226 |
+
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
|
227 |
+
for key, value in feat_dict.items():
|
228 |
+
if str(key) in self.columns:
|
229 |
+
edge_dict[str(key)] = (
|
230 |
+
list(value)
|
231 |
+
if i == 0
|
232 |
+
else edge_dict[str(key)] + list(value)
|
233 |
+
)
|
234 |
+
|
235 |
+
edge_transform_dict = {}
|
236 |
+
for i, j in node_dict.items():
|
237 |
+
if self.type2form[i] == "str":
|
238 |
+
string_dict[i] = j
|
239 |
+
elif self.type2form[i] in ["float", "int"]:
|
240 |
+
edge_transform_dict[i] = torch.Tensor(np.array(j))
|
241 |
+
g.add_edges(edge_index[0], edge_index[1], edge_transform_dict)
|
242 |
+
|
243 |
+
# add graph level features
|
244 |
+
graph_dict = {
|
245 |
+
str(feat_name): [G.graph[feat_name]]
|
246 |
+
for feat_name in G.graph
|
247 |
+
if str(feat_name) in self.columns
|
248 |
+
}
|
249 |
+
|
250 |
+
return g
|
251 |
+
|
252 |
+
def convert_nx_to_pyg(self, G: nx.Graph) -> Data:
|
253 |
+
"""
|
254 |
+
Converts ``NetworkX`` graph to ``pytorch_geometric.data.Data`` object. Requires ``PyTorch Geometric`` (https://pytorch-geometric.readthedocs.io/en/latest/) to be installed.
|
255 |
+
|
256 |
+
:param G: ``nx.Graph`` to convert to PyTorch Geometric ``Data`` object
|
257 |
+
:type G: nx.Graph
|
258 |
+
:return: ``Data`` object containing networkx graph data
|
259 |
+
:rtype: pytorch_geometric.data.Data
|
260 |
+
"""
|
261 |
+
|
262 |
+
# Initialise dict used to construct Data object & Assign node ids as a feature
|
263 |
+
data = {"node_id": list(G.nodes())}
|
264 |
+
G = nx.convert_node_labels_to_integers(G)
|
265 |
+
|
266 |
+
# Construct Edge Index
|
267 |
+
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
|
268 |
+
|
269 |
+
# Add node features
|
270 |
+
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
|
271 |
+
for key, value in feat_dict.items():
|
272 |
+
if str(key) in self.columns:
|
273 |
+
data[str(key)] = (
|
274 |
+
[value] if i == 0 else data[str(key)] + [value]
|
275 |
+
)
|
276 |
+
|
277 |
+
# Add edge features
|
278 |
+
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
|
279 |
+
for key, value in feat_dict.items():
|
280 |
+
if str(key) in self.columns:
|
281 |
+
data[str(key)] = (
|
282 |
+
list(value) if i == 0 else data[str(key)] + list(value)
|
283 |
+
)
|
284 |
+
|
285 |
+
# Add graph-level features
|
286 |
+
for feat_name in G.graph:
|
287 |
+
if str(feat_name) in self.columns:
|
288 |
+
data[str(feat_name)] = [G.graph[feat_name]]
|
289 |
+
|
290 |
+
if "edge_index" in self.columns:
|
291 |
+
data["edge_index"] = edge_index.view(2, -1)
|
292 |
+
|
293 |
+
data = Data.from_dict(data)
|
294 |
+
data.num_nodes = G.number_of_nodes()
|
295 |
+
return data
|
296 |
+
|
297 |
+
@staticmethod
|
298 |
+
def convert_nx_to_nx(G: nx.Graph) -> nx.Graph:
|
299 |
+
"""
|
300 |
+
Converts NetworkX graph (``nx.Graph``) to NetworkX graph (``nx.Graph``) object. Redundant - returns itself.
|
301 |
+
|
302 |
+
:param G: NetworkX Graph
|
303 |
+
:type G: nx.Graph
|
304 |
+
:return: NetworkX Graph
|
305 |
+
:rtype: nx.Graph
|
306 |
+
"""
|
307 |
+
return G
|
308 |
+
|
309 |
+
@staticmethod
|
310 |
+
def convert_dgl_to_nx(G: dgl.DGLGraph) -> nx.Graph:
|
311 |
+
"""
|
312 |
+
Converts a DGL Graph (``dgl.DGLGraph``) to a NetworkX (``nx.Graph``) object. Preserves node and edge attributes.
|
313 |
+
|
314 |
+
:param G: ``dgl.DGLGraph`` to convert to ``NetworkX`` graph.
|
315 |
+
:type G: dgl.DGLGraph
|
316 |
+
:return: NetworkX graph object.
|
317 |
+
:rtype: nx.Graph
|
318 |
+
"""
|
319 |
+
node_attrs = G.node_attr_schemes().keys()
|
320 |
+
edge_attrs = G.edge_attr_schemes().keys()
|
321 |
+
return dgl.to_networkx(G, node_attrs, edge_attrs)
|
322 |
+
|
323 |
+
@staticmethod
|
324 |
+
def convert_pyg_to_nx(G: Data) -> nx.Graph:
|
325 |
+
"""Converts PyTorch Geometric ``Data`` object to NetworkX graph (``nx.Graph``).
|
326 |
+
|
327 |
+
:param G: Pytorch Geometric Data.
|
328 |
+
:type G: torch_geometric.data.Data
|
329 |
+
:returns: NetworkX graph.
|
330 |
+
:rtype: nx.Graph
|
331 |
+
"""
|
332 |
+
return torch_geometric.utils.to_networkx(G)
|
333 |
+
|
334 |
+
def convert_nx_to_jraph(self, G: nx.Graph) -> jraph.GraphsTuple:
|
335 |
+
"""Converts NetworkX graph (``nx.Graph``) to Jraph GraphsTuple graph. Requires ``jax`` and ``Jraph``.
|
336 |
+
|
337 |
+
:param G: Networkx graph to convert.
|
338 |
+
:type G: nx.Graph
|
339 |
+
:return: Jraph GraphsTuple graph.
|
340 |
+
:rtype: jraph.GraphsTuple
|
341 |
+
"""
|
342 |
+
G = nx.convert_node_labels_to_integers(G)
|
343 |
+
|
344 |
+
n_node = len(G)
|
345 |
+
n_edge = G.number_of_edges()
|
346 |
+
edge_list = list(G.edges())
|
347 |
+
senders, receivers = zip(*edge_list)
|
348 |
+
senders, receivers = jnp.array(senders), jnp.array(receivers)
|
349 |
+
|
350 |
+
# Add node features
|
351 |
+
node_features = {}
|
352 |
+
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
|
353 |
+
for key, value in feat_dict.items():
|
354 |
+
if str(key) in self.columns:
|
355 |
+
# node_features[str(key)] = (
|
356 |
+
# [value]
|
357 |
+
# if i == 0
|
358 |
+
# else node_features[str(key)] + [value]
|
359 |
+
# )
|
360 |
+
feat = (
|
361 |
+
[value]
|
362 |
+
if i == 0
|
363 |
+
else node_features[str(key)] + [value]
|
364 |
+
)
|
365 |
+
try:
|
366 |
+
feat = torch.tensor(feat)
|
367 |
+
node_features[str(key)] = feat
|
368 |
+
except TypeError:
|
369 |
+
node_features[str(key)] = feat
|
370 |
+
|
371 |
+
# Add edge features
|
372 |
+
edge_features = {}
|
373 |
+
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
|
374 |
+
for key, value in feat_dict.items():
|
375 |
+
if str(key) in self.columns:
|
376 |
+
edge_features[str(key)] = (
|
377 |
+
list(value)
|
378 |
+
if i == 0
|
379 |
+
else edge_features[str(key)] + list(value)
|
380 |
+
)
|
381 |
+
|
382 |
+
# Add graph features
|
383 |
+
global_context = {
|
384 |
+
str(feat_name): [G.graph[feat_name]]
|
385 |
+
for feat_name in G.graph
|
386 |
+
if str(feat_name) in self.columns
|
387 |
+
}
|
388 |
+
|
389 |
+
return jraph.GraphsTuple(
|
390 |
+
nodes=node_features,
|
391 |
+
senders=senders,
|
392 |
+
receivers=receivers,
|
393 |
+
edges=edge_features,
|
394 |
+
n_node=n_node,
|
395 |
+
n_edge=n_edge,
|
396 |
+
globals=global_context,
|
397 |
+
)
|
398 |
+
|
399 |
+
def __call__(self, G: nx.Graph):
|
400 |
+
nx_g = eval("self.convert_" + self.src_format + "_to_nx(G)")
|
401 |
+
dst_g = eval("self.convert_nx_to_" + self.dst_format + "(nx_g)")
|
402 |
+
return dst_g
|
403 |
+
|
404 |
+
|
405 |
+
# def convert_nx_to_pyg_data(G: nx.Graph) -> Data:
|
406 |
+
# # Initialise dict used to construct Data object
|
407 |
+
# data = {"node_id": list(G.nodes())}
|
408 |
+
|
409 |
+
# G = nx.convert_node_labels_to_integers(G)
|
410 |
+
|
411 |
+
# # Construct Edge Index
|
412 |
+
# edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
|
413 |
+
|
414 |
+
# # Add node features
|
415 |
+
# for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
|
416 |
+
# for key, value in feat_dict.items():
|
417 |
+
# data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
|
418 |
+
|
419 |
+
# # Add edge features
|
420 |
+
# for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
|
421 |
+
# for key, value in feat_dict.items():
|
422 |
+
# data[str(key)] = (
|
423 |
+
# list(value) if i == 0 else data[str(key)] + list(value)
|
424 |
+
# )
|
425 |
+
|
426 |
+
# # Add graph-level features
|
427 |
+
# for feat_name in G.graph:
|
428 |
+
# data[str(feat_name)] = [G.graph[feat_name]]
|
429 |
+
|
430 |
+
# data["edge_index"] = edge_index.view(2, -1)
|
431 |
+
# data = Data.from_dict(data)
|
432 |
+
# data.num_nodes = G.number_of_nodes()
|
433 |
+
|
434 |
+
# return data
|
435 |
+
def convert_nx_to_pyg_data(G: nx.Graph) -> Data:
|
436 |
+
# Initialise dict used to construct Data object
|
437 |
+
data = {"node_id": list(G.nodes())}
|
438 |
+
|
439 |
+
G = nx.convert_node_labels_to_integers(G)
|
440 |
+
|
441 |
+
# Construct Edge Index
|
442 |
+
edge_index = torch.LongTensor(list(G.edges)).t().contiguous()
|
443 |
+
|
444 |
+
# Add node features
|
445 |
+
for i, (_, feat_dict) in enumerate(G.nodes(data=True)):
|
446 |
+
for key, value in feat_dict.items():
|
447 |
+
data[str(key)] = [value] if i == 0 else data[str(key)] + [value]
|
448 |
+
|
449 |
+
|
450 |
+
# Add edge features
|
451 |
+
for i, (_, _, feat_dict) in enumerate(G.edges(data=True)):
|
452 |
+
for key, value in feat_dict.items():
|
453 |
+
if key == 'distance':
|
454 |
+
data[str(key)] = (
|
455 |
+
[value] if i == 0 else data[str(key)] + [value]
|
456 |
+
)
|
457 |
+
else:
|
458 |
+
data[str(key)] = (
|
459 |
+
[list(value)] if i == 0 else data[str(key)] + [list(value)]
|
460 |
+
)
|
461 |
+
|
462 |
+
# Add graph-level features
|
463 |
+
for feat_name in G.graph:
|
464 |
+
data[str(feat_name)] = [G.graph[feat_name]]
|
465 |
+
|
466 |
+
data["edge_index"] = edge_index.view(2, -1)
|
467 |
+
data = Data.from_dict(data)
|
468 |
+
data.num_nodes = G.number_of_nodes()
|
469 |
+
|
470 |
+
return data
|
graphs.py
ADDED
@@ -0,0 +1,1137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Functions for working with Protein Structure Graphs."""
|
2 |
+
# %%
|
3 |
+
# Graphein
|
4 |
+
# Author: Arian Jamasb <[email protected]>, Eric Ma, Charlie Harris
|
5 |
+
# License: MIT
|
6 |
+
# Project Website: https://github.com/a-r-j/graphein
|
7 |
+
# Code Repository: https://github.com/a-r-j/graphein
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import logging
|
11 |
+
import traceback
|
12 |
+
from functools import partial
|
13 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
14 |
+
|
15 |
+
import networkx as nx
|
16 |
+
import numpy as np
|
17 |
+
import pandas as pd
|
18 |
+
# from Bio.PDB.Polypeptide import three_to_one
|
19 |
+
from biopandas.pdb import PandasPdb
|
20 |
+
from biopandas.mmcif import PandasMmcif
|
21 |
+
from rich.progress import Progress
|
22 |
+
from tqdm.contrib.concurrent import process_map
|
23 |
+
|
24 |
+
from graphein.protein.config import (
|
25 |
+
DSSPConfig,
|
26 |
+
GetContactsConfig,
|
27 |
+
ProteinGraphConfig,
|
28 |
+
)
|
29 |
+
from graphein.protein.edges.distance import (
|
30 |
+
add_distance_to_edges,
|
31 |
+
compute_distmat,
|
32 |
+
)
|
33 |
+
from graphein.protein.resi_atoms import BACKBONE_ATOMS, RESI_THREE_TO_1
|
34 |
+
from graphein.protein.subgraphs import extract_subgraph_from_chains
|
35 |
+
from graphein.protein.utils import (
|
36 |
+
ProteinGraphConfigurationError,
|
37 |
+
compute_rgroup_dataframe,
|
38 |
+
filter_dataframe,
|
39 |
+
get_protein_name_from_filename,
|
40 |
+
three_to_one_with_mods,
|
41 |
+
)
|
42 |
+
from graphein.rna.constants import RNA_ATOMS
|
43 |
+
from graphein.utils.utils import (
|
44 |
+
annotate_edge_metadata,
|
45 |
+
annotate_graph_metadata,
|
46 |
+
annotate_node_metadata,
|
47 |
+
compute_edges,
|
48 |
+
)
|
49 |
+
|
50 |
+
from .utils_convert import biopandas_mmcif2pdb
|
51 |
+
|
52 |
+
# logging.basicConfig(level="DEBUG")
|
53 |
+
log = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
def subset_structure_to_rna(
|
58 |
+
df: pd.DataFrame,
|
59 |
+
) -> pd.DataFrame:
|
60 |
+
"""
|
61 |
+
Return a subset of atomic dataframe that contains only certain atom names relevant for RNA structures.
|
62 |
+
|
63 |
+
:param df: Protein Structure dataframe to subset
|
64 |
+
:type df: pd.DataFrame
|
65 |
+
:returns: Subsetted protein structure dataframe
|
66 |
+
:rtype: pd.DataFrame
|
67 |
+
"""
|
68 |
+
return filter_dataframe(
|
69 |
+
df, by_column="atom_name", list_of_values=RNA_ATOMS, boolean=True
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
def read_pdb_to_dataframe(
|
74 |
+
pdb_path: Optional[str] = None,
|
75 |
+
pdb_code: Optional[str] = None,
|
76 |
+
uniprot_id: Optional[str] = None,
|
77 |
+
model_index: int = 1,
|
78 |
+
) -> pd.DataFrame:
|
79 |
+
"""
|
80 |
+
Reads PDB file to ``PandasPDB`` object.
|
81 |
+
|
82 |
+
Returns ``atomic_df``, which is a dataframe enumerating all atoms and their cartesian coordinates in 3D space. Also
|
83 |
+
contains associated metadata from the PDB file.
|
84 |
+
|
85 |
+
:param pdb_path: path to PDB file. Defaults to ``None``.
|
86 |
+
:type pdb_path: str, optional
|
87 |
+
:param pdb_code: 4-character PDB accession. Defaults to ``None``.
|
88 |
+
:type pdb_code: str, optional
|
89 |
+
:param uniprot_id: UniProt ID to build graph from AlphaFoldDB. Defaults to ``None``.
|
90 |
+
:type uniprot_id: str, optional
|
91 |
+
:param model_index: Index of model to read. Only relevant for structures containing ensembles. Defaults to ``1``.
|
92 |
+
:type model_index: int, optional
|
93 |
+
:param verbose: print dataframe?
|
94 |
+
:type verbose: bool
|
95 |
+
:param granularity: Specifies granularity of dataframe. See :class:`~graphein.protein.config.ProteinGraphConfig` for further
|
96 |
+
details.
|
97 |
+
:type granularity: str
|
98 |
+
:returns: ``pd.DataFrame`` containing protein structure
|
99 |
+
:rtype: pd.DataFrame
|
100 |
+
"""
|
101 |
+
if pdb_code is None and pdb_path is None and uniprot_id is None:
|
102 |
+
raise NameError(
|
103 |
+
"One of pdb_code, pdb_path or uniprot_id must be specified!"
|
104 |
+
)
|
105 |
+
|
106 |
+
if pdb_path is not None:
|
107 |
+
if pdb_path.endswith('cif'):
|
108 |
+
atomic_df = PandasMmcif().read_mmcif(pdb_path)
|
109 |
+
atomic_df = biopandas_mmcif2pdb(atomic_df, model_index)
|
110 |
+
else:
|
111 |
+
atomic_df = PandasPdb().read_pdb(pdb_path)
|
112 |
+
else:
|
113 |
+
if uniprot_id is not None:
|
114 |
+
atomic_df = PandasPdb().fetch_pdb(
|
115 |
+
uniprot_id=uniprot_id, source="alphafold2-v2"
|
116 |
+
)
|
117 |
+
else:
|
118 |
+
atomic_df = PandasPdb().fetch_pdb(pdb_code)
|
119 |
+
|
120 |
+
atomic_df = atomic_df.get_model(model_index)
|
121 |
+
if len(atomic_df.df["ATOM"]) == 0:
|
122 |
+
raise ValueError(f"No model found for index: {model_index}")
|
123 |
+
|
124 |
+
return pd.concat([atomic_df.df["ATOM"], atomic_df.df["HETATM"]])
|
125 |
+
|
126 |
+
|
127 |
+
def label_node_id(df: pd.DataFrame, granularity: str) -> pd.DataFrame:
|
128 |
+
df["node_id"] = (
|
129 |
+
df["chain_id"].apply(str)
|
130 |
+
+ ":"
|
131 |
+
+ df["residue_name"]
|
132 |
+
+ ":"
|
133 |
+
+ df["residue_number"].apply(str)
|
134 |
+
)
|
135 |
+
df["residue_id"] = df["node_id"]
|
136 |
+
if granularity == "atom":
|
137 |
+
df["node_id"] = df["node_id"] + ":" + df["atom_name"]
|
138 |
+
elif granularity in {"rna_atom", "rna_centroid"}:
|
139 |
+
df["node_id"] = (
|
140 |
+
df["node_id"]
|
141 |
+
+ ":"
|
142 |
+
+ df["atom_number"].apply(str)
|
143 |
+
+ ":"
|
144 |
+
+ df["atom_name"]
|
145 |
+
)
|
146 |
+
return df
|
147 |
+
|
148 |
+
|
149 |
+
def deprotonate_structure(df: pd.DataFrame) -> pd.DataFrame:
|
150 |
+
"""Remove protons from PDB dataframe.
|
151 |
+
|
152 |
+
:param df: Atomic dataframe.
|
153 |
+
:type df: pd.DataFrame
|
154 |
+
:returns: Atomic dataframe with all ``atom_name == "H"`` removed.
|
155 |
+
:rtype: pd.DataFrame
|
156 |
+
"""
|
157 |
+
log.debug(
|
158 |
+
"Deprotonating protein. This removes H atoms from the pdb_df dataframe"
|
159 |
+
)
|
160 |
+
return filter_dataframe(
|
161 |
+
df, by_column="element_symbol", list_of_values=["H"], boolean=False
|
162 |
+
)
|
163 |
+
|
164 |
+
|
165 |
+
def convert_structure_to_centroids(df: pd.DataFrame) -> pd.DataFrame:
|
166 |
+
"""Overwrite existing ``(x, y, z)`` coordinates with centroids of the amino acids.
|
167 |
+
|
168 |
+
:param df: Pandas Dataframe protein structure to convert into a dataframe of centroid positions.
|
169 |
+
:type df: pd.DataFrame
|
170 |
+
:return: pd.DataFrame with atoms/residues positions converted into centroid positions.
|
171 |
+
:rtype: pd.DataFrame
|
172 |
+
"""
|
173 |
+
log.debug(
|
174 |
+
"Converting dataframe to centroids. This averages XYZ coords of the atoms in a residue"
|
175 |
+
)
|
176 |
+
|
177 |
+
centroids = calculate_centroid_positions(df)
|
178 |
+
df = df.loc[df["atom_name"] == "CA"].reset_index(drop=True)
|
179 |
+
df["x_coord"] = centroids["x_coord"]
|
180 |
+
df["y_coord"] = centroids["y_coord"]
|
181 |
+
df["z_coord"] = centroids["z_coord"]
|
182 |
+
|
183 |
+
return df
|
184 |
+
|
185 |
+
|
186 |
+
def subset_structure_to_atom_type(
|
187 |
+
df: pd.DataFrame, granularity: str
|
188 |
+
) -> pd.DataFrame:
|
189 |
+
"""
|
190 |
+
Return a subset of atomic dataframe that contains only certain atom names.
|
191 |
+
|
192 |
+
:param df: Protein Structure dataframe to subset.
|
193 |
+
:type df: pd.DataFrame
|
194 |
+
:returns: Subsetted protein structure dataframe.
|
195 |
+
:rtype: pd.DataFrame
|
196 |
+
"""
|
197 |
+
return filter_dataframe(
|
198 |
+
df, by_column="atom_name", list_of_values=[granularity], boolean=True
|
199 |
+
)
|
200 |
+
|
201 |
+
|
202 |
+
def remove_insertions(df: pd.DataFrame, keep: str = "first") -> pd.DataFrame:
|
203 |
+
"""
|
204 |
+
This function removes insertions from PDB dataframes.
|
205 |
+
|
206 |
+
:param df: Protein Structure dataframe to remove insertions from.
|
207 |
+
:type df: pd.DataFrame
|
208 |
+
:param keep: Specifies which insertion to keep. Options are ``"first"`` or ``"last"``.
|
209 |
+
Default is ``"first"``
|
210 |
+
:type keep: str
|
211 |
+
:return: Protein structure dataframe with insertions removed
|
212 |
+
:rtype: pd.DataFrame
|
213 |
+
"""
|
214 |
+
# Catches unnamed insertions
|
215 |
+
duplicates = df.duplicated(
|
216 |
+
subset=["chain_id", "residue_number", "atom_name"], keep=keep
|
217 |
+
)
|
218 |
+
df = df[~duplicates]
|
219 |
+
|
220 |
+
# Catches explicit insertions
|
221 |
+
df = filter_dataframe(
|
222 |
+
df, by_column="insertion", list_of_values=[""], boolean=True
|
223 |
+
)
|
224 |
+
|
225 |
+
# Remove alt_locs
|
226 |
+
df = filter_dataframe(
|
227 |
+
df, by_column="alt_loc", list_of_values=["", "A"], boolean=True
|
228 |
+
)
|
229 |
+
|
230 |
+
return df
|
231 |
+
|
232 |
+
|
233 |
+
def filter_hetatms(
|
234 |
+
df: pd.DataFrame, keep_hets: List[str]
|
235 |
+
) -> List[pd.DataFrame]:
|
236 |
+
"""Return hetatms of interest.
|
237 |
+
|
238 |
+
:param df: Protein Structure dataframe to filter hetatoms from.
|
239 |
+
:type df: pd.DataFrame
|
240 |
+
:param keep_hets: List of hetero atom names to keep.
|
241 |
+
:returns: Protein structure dataframe with heteroatoms removed
|
242 |
+
:rtype: pd.DataFrame
|
243 |
+
"""
|
244 |
+
return [df.loc[df["residue_name"] == hetatm] for hetatm in keep_hets]
|
245 |
+
|
246 |
+
|
247 |
+
def process_dataframe(
|
248 |
+
protein_df: pd.DataFrame,
|
249 |
+
atom_df_processing_funcs: Optional[List[Callable]] = None,
|
250 |
+
hetatom_df_processing_funcs: Optional[List[Callable]] = None,
|
251 |
+
granularity: str = "centroids",
|
252 |
+
chain_selection: str = "all",
|
253 |
+
insertions: bool = False,
|
254 |
+
deprotonate: bool = True,
|
255 |
+
keep_hets: List[str] = [],
|
256 |
+
verbose: bool = False,
|
257 |
+
) -> pd.DataFrame:
|
258 |
+
"""
|
259 |
+
Process ATOM and HETATM dataframes to produce singular dataframe used for graph construction.
|
260 |
+
|
261 |
+
:param protein_df: Dataframe to process.
|
262 |
+
Should be the object returned from :func:`~graphein.protein.graphs.read_pdb_to_dataframe`.
|
263 |
+
:type protein_df: pd.DataFrame
|
264 |
+
:param atom_df_processing_funcs: List of functions to process dataframe. These must take in a dataframe and return a
|
265 |
+
dataframe. Defaults to None.
|
266 |
+
:type atom_df_processing_funcs: List[Callable], optional
|
267 |
+
:param hetatom_df_processing_funcs: List of functions to process the hetatom dataframe. These must take in a dataframe and return a dataframe
|
268 |
+
:type hetatom_df_processing_funcs: List[Callable], optional
|
269 |
+
:param granularity: The level of granularity for the graph. This determines the node definition.
|
270 |
+
Acceptable values include: ``"centroids"``, ``"atoms"``,
|
271 |
+
any of the atom_names in the PDB file (e.g. ``"CA"``, ``"CB"``, ``"OG"``, etc.).
|
272 |
+
See: :const:`~graphein.protein.config.GRAPH_ATOMS` and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
|
273 |
+
:type granularity: str
|
274 |
+
:param insertions: Whether or not to keep insertions.
|
275 |
+
:param insertions: bool
|
276 |
+
:param deprotonate: Whether or not to remove hydrogen atoms (i.e. deprotonation).
|
277 |
+
:type deprotonate: bool
|
278 |
+
:param keep_hets: Hetatoms to keep. Defaults to an empty list.
|
279 |
+
To keep a hetatom, pass it inside a list of hetatom names to keep.
|
280 |
+
:type keep_hets: List[str]
|
281 |
+
:param verbose: Verbosity level.
|
282 |
+
:type verbose: bool
|
283 |
+
:param chain_selection: Which protein chain to select. Defaults to ``"all"``. Eg can use ``"ACF"``
|
284 |
+
to select 3 chains (``A``, ``C`` & ``F``)
|
285 |
+
:type chain_selection: str
|
286 |
+
:return: A protein dataframe that can be consumed by
|
287 |
+
other graph construction functions.
|
288 |
+
:rtype: pd.DataFrame
|
289 |
+
"""
|
290 |
+
protein_df = label_node_id(protein_df, granularity=granularity)
|
291 |
+
# TODO: Need to properly define what "granularity" is supposed to do.
|
292 |
+
atoms = filter_dataframe(
|
293 |
+
protein_df,
|
294 |
+
by_column="record_name",
|
295 |
+
list_of_values=["ATOM"],
|
296 |
+
boolean=True,
|
297 |
+
)
|
298 |
+
hetatms = filter_dataframe(
|
299 |
+
protein_df,
|
300 |
+
by_column="record_name",
|
301 |
+
list_of_values=["HETATM"],
|
302 |
+
boolean=True,
|
303 |
+
)
|
304 |
+
|
305 |
+
# This block enables processing via a list of supplied functions operating on the atom and hetatom dataframes
|
306 |
+
# If these are provided, the dataframe returned will be computed only from these and the default workflow
|
307 |
+
# below this block will not execute.
|
308 |
+
if atom_df_processing_funcs is not None:
|
309 |
+
for func in atom_df_processing_funcs:
|
310 |
+
atoms = func(atoms)
|
311 |
+
if hetatom_df_processing_funcs is None:
|
312 |
+
return atoms
|
313 |
+
|
314 |
+
if hetatom_df_processing_funcs is not None:
|
315 |
+
for func in hetatom_df_processing_funcs:
|
316 |
+
hetatms = func(hetatms)
|
317 |
+
return pd.concat([atoms, hetatms])
|
318 |
+
|
319 |
+
if keep_hets:
|
320 |
+
hetatms_to_keep = filter_hetatms(hetatms, keep_hets)
|
321 |
+
atoms = pd.concat([atoms] + hetatms_to_keep)
|
322 |
+
|
323 |
+
# Deprotonate structure by removing H atoms
|
324 |
+
if deprotonate:
|
325 |
+
atoms = deprotonate_structure(atoms)
|
326 |
+
|
327 |
+
# Restrict DF to desired granularity
|
328 |
+
if granularity == "atom":
|
329 |
+
pass
|
330 |
+
elif granularity in {"centroids", "rna_centroid"}:
|
331 |
+
atoms = convert_structure_to_centroids(atoms)
|
332 |
+
elif granularity == "rna_atom":
|
333 |
+
atoms = subset_structure_to_rna(atoms)
|
334 |
+
else:
|
335 |
+
atoms = subset_structure_to_atom_type(atoms, granularity)
|
336 |
+
|
337 |
+
protein_df = atoms
|
338 |
+
|
339 |
+
# Remove alt_loc residues
|
340 |
+
if not insertions:
|
341 |
+
protein_df = remove_insertions(protein_df)
|
342 |
+
|
343 |
+
# perform chain selection
|
344 |
+
protein_df = select_chains(
|
345 |
+
protein_df, chain_selection=chain_selection, verbose=verbose
|
346 |
+
)
|
347 |
+
|
348 |
+
log.debug(f"Detected {len(protein_df)} total nodes")
|
349 |
+
|
350 |
+
# Sort dataframe to place HETATMs
|
351 |
+
protein_df = sort_dataframe(protein_df)
|
352 |
+
|
353 |
+
return protein_df
|
354 |
+
|
355 |
+
|
356 |
+
def sort_dataframe(df: pd.DataFrame) -> pd.DataFrame:
|
357 |
+
"""Sorts a protein dataframe by chain->residue number->atom number
|
358 |
+
|
359 |
+
This is useful for distributing hetatms/modified residues through the DF.
|
360 |
+
|
361 |
+
:param df: Protein dataframe to sort.
|
362 |
+
:type df: pd.DataFrame
|
363 |
+
:return: Sorted protein dataframe.
|
364 |
+
:rtype: pd.DataFrame
|
365 |
+
"""
|
366 |
+
return df.sort_values(by=["chain_id", "residue_number", "atom_number"])
|
367 |
+
|
368 |
+
|
369 |
+
def assign_node_id_to_dataframe(
|
370 |
+
protein_df: pd.DataFrame, granularity: str
|
371 |
+
) -> pd.DataFrame:
|
372 |
+
"""
|
373 |
+
Assigns the node ID back to the ``pdb_df`` dataframe
|
374 |
+
|
375 |
+
:param protein_df: Structure Dataframe
|
376 |
+
:type protein_df: pd.DataFrame
|
377 |
+
:param granularity: Granularity of graph. Atom-level,
|
378 |
+
residue (e.g. ``CA``) or ``centroids``.
|
379 |
+
See: :const:`~graphein.protein.config.GRAPH_ATOMS`
|
380 |
+
and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
|
381 |
+
:type granularity: str
|
382 |
+
:return: Returns dataframe with added ``node_ids``
|
383 |
+
:rtype: pd.DataFrame
|
384 |
+
"""
|
385 |
+
protein_df["node_id"] = (
|
386 |
+
protein_df["chain_id"].apply(str)
|
387 |
+
+ ":"
|
388 |
+
+ protein_df["residue_name"]
|
389 |
+
+ ":"
|
390 |
+
+ protein_df["residue_number"].apply(str)
|
391 |
+
)
|
392 |
+
if granularity in {"atom", "rna_atom"}:
|
393 |
+
protein_df[
|
394 |
+
"node_id"
|
395 |
+
] = f'{protein_df["node_id"]}:{protein_df["atom_name"]}'
|
396 |
+
|
397 |
+
|
398 |
+
def select_chains(
|
399 |
+
protein_df: pd.DataFrame, chain_selection: str, verbose: bool = False
|
400 |
+
) -> pd.DataFrame:
|
401 |
+
"""
|
402 |
+
Extracts relevant chains from ``protein_df``.
|
403 |
+
|
404 |
+
:param protein_df: pandas dataframe of PDB subsetted to relevant atoms
|
405 |
+
(``CA``, ``CB``).
|
406 |
+
:type protein_df: pd.DataFrame
|
407 |
+
:param chain_selection: Specifies chains that should be extracted from
|
408 |
+
the larger complexed structure.
|
409 |
+
:type chain_selection: str
|
410 |
+
:param verbose: Print dataframe?
|
411 |
+
:type verbose: bool
|
412 |
+
:return: Protein structure dataframe containing only entries in the
|
413 |
+
chain selection.
|
414 |
+
:rtype: pd.DataFrame
|
415 |
+
"""
|
416 |
+
if chain_selection != "all":
|
417 |
+
protein_df = filter_dataframe(
|
418 |
+
protein_df,
|
419 |
+
by_column="chain_id",
|
420 |
+
list_of_values=list(chain_selection),
|
421 |
+
boolean=True,
|
422 |
+
)
|
423 |
+
|
424 |
+
return protein_df
|
425 |
+
|
426 |
+
|
427 |
+
def initialise_graph_with_metadata(
|
428 |
+
protein_df: pd.DataFrame,
|
429 |
+
raw_pdb_df: pd.DataFrame,
|
430 |
+
granularity: str,
|
431 |
+
name: Optional[str] = None,
|
432 |
+
pdb_code: Optional[str] = None,
|
433 |
+
pdb_path: Optional[str] = None,
|
434 |
+
) -> nx.Graph:
|
435 |
+
"""
|
436 |
+
Initializes the nx Graph object with initial metadata.
|
437 |
+
|
438 |
+
:param protein_df: Processed Dataframe of protein structure.
|
439 |
+
:type protein_df: pd.DataFrame
|
440 |
+
:param raw_pdb_df: Unprocessed dataframe of protein structure for comparison and traceability downstream.
|
441 |
+
:type raw_pdb_df: pd.DataFrame
|
442 |
+
:param granularity: Granularity of the graph (eg ``"atom"``, ``"CA"``, ``"CB"`` etc or ``"centroid"``).
|
443 |
+
See: :const:`~graphein.protein.config.GRAPH_ATOMS` and :const:`~graphein.protein.config.GRANULARITY_OPTS`.
|
444 |
+
:type granularity: str
|
445 |
+
:param name: specified given name for the graph. If None, the PDB code or the file name will be used to name the graph.
|
446 |
+
:type name: Optional[str], defaults to ``None``
|
447 |
+
:param pdb_code: PDB ID / Accession code, if the PDB is available on the PDB database.
|
448 |
+
:type pdb_code: Optional[str], defaults to ``None``
|
449 |
+
:param pdb_path: path to local PDB file, if constructing a graph from a local file.
|
450 |
+
:type pdb_path: Optional[str], defaults to ``None``
|
451 |
+
:return: Returns initial protein structure graph with metadata.
|
452 |
+
:rtype: nx.Graph
|
453 |
+
"""
|
454 |
+
|
455 |
+
# Get name for graph if no name was provided
|
456 |
+
if name is None:
|
457 |
+
if pdb_path is not None:
|
458 |
+
name = get_protein_name_from_filename(pdb_path)
|
459 |
+
else:
|
460 |
+
name = pdb_code
|
461 |
+
|
462 |
+
G = nx.Graph(
|
463 |
+
name=name,
|
464 |
+
pdb_code=pdb_code,
|
465 |
+
pdb_path=pdb_path,
|
466 |
+
chain_ids=list(protein_df["chain_id"].unique()),
|
467 |
+
pdb_df=protein_df,
|
468 |
+
raw_pdb_df=raw_pdb_df,
|
469 |
+
rgroup_df=compute_rgroup_dataframe(remove_insertions(raw_pdb_df)),
|
470 |
+
coords=np.asarray(protein_df[["x_coord", "y_coord", "z_coord"]]),
|
471 |
+
)
|
472 |
+
|
473 |
+
# Create graph and assign intrinsic graph-level metadata
|
474 |
+
G.graph["node_type"] = granularity
|
475 |
+
|
476 |
+
# Add Sequences to graph metadata
|
477 |
+
for c in G.graph["chain_ids"]:
|
478 |
+
if granularity == "rna_atom":
|
479 |
+
sequence = protein_df.loc[protein_df["chain_id"] == c][
|
480 |
+
"residue_name"
|
481 |
+
].str.cat()
|
482 |
+
else:
|
483 |
+
sequence = (
|
484 |
+
protein_df.loc[protein_df["chain_id"] == c]["residue_name"]
|
485 |
+
.apply(three_to_one_with_mods)
|
486 |
+
.str.cat()
|
487 |
+
)
|
488 |
+
G.graph[f"sequence_{c}"] = sequence
|
489 |
+
return G
|
490 |
+
|
491 |
+
|
492 |
+
def add_nodes_to_graph(
|
493 |
+
G: nx.Graph,
|
494 |
+
protein_df: Optional[pd.DataFrame] = None,
|
495 |
+
verbose: bool = False,
|
496 |
+
) -> nx.Graph:
|
497 |
+
"""Add nodes into protein graph.
|
498 |
+
|
499 |
+
:param G: ``nx.Graph`` with metadata to populate with nodes.
|
500 |
+
:type G: nx.Graph
|
501 |
+
:protein_df: DataFrame of protein structure containing nodes & initial node metadata to add to the graph.
|
502 |
+
:type protein_df: pd.DataFrame, optional
|
503 |
+
:param verbose: Controls verbosity of this step.
|
504 |
+
:type verbose: bool
|
505 |
+
:returns: nx.Graph with nodes added.
|
506 |
+
:rtype: nx.Graph
|
507 |
+
"""
|
508 |
+
|
509 |
+
# If no protein dataframe is supplied, use the one stored in the Graph object
|
510 |
+
if protein_df is None:
|
511 |
+
protein_df = G.graph["pdb_df"]
|
512 |
+
# Assign intrinsic node attributes
|
513 |
+
chain_id = protein_df["chain_id"].apply(str)
|
514 |
+
residue_name = protein_df["residue_name"]
|
515 |
+
residue_number = protein_df["residue_number"] # .apply(str)
|
516 |
+
coords = np.asarray(protein_df[["x_coord", "y_coord", "z_coord"]])
|
517 |
+
b_factor = protein_df["b_factor"]
|
518 |
+
atom_type = protein_df["atom_name"]
|
519 |
+
nodes = protein_df["node_id"]
|
520 |
+
element_symbol = protein_df["element_symbol"]
|
521 |
+
G.add_nodes_from(nodes)
|
522 |
+
|
523 |
+
# Set intrinsic node attributes
|
524 |
+
nx.set_node_attributes(G, dict(zip(nodes, chain_id)), "chain_id")
|
525 |
+
nx.set_node_attributes(G, dict(zip(nodes, residue_name)), "residue_name")
|
526 |
+
nx.set_node_attributes(
|
527 |
+
G, dict(zip(nodes, residue_number)), "residue_number"
|
528 |
+
)
|
529 |
+
nx.set_node_attributes(G, dict(zip(nodes, atom_type)), "atom_type")
|
530 |
+
nx.set_node_attributes(
|
531 |
+
G, dict(zip(nodes, element_symbol)), "element_symbol"
|
532 |
+
)
|
533 |
+
nx.set_node_attributes(G, dict(zip(nodes, coords)), "coords")
|
534 |
+
nx.set_node_attributes(G, dict(zip(nodes, b_factor)), "b_factor")
|
535 |
+
|
536 |
+
# TODO: include charge, line_idx for traceability?
|
537 |
+
if verbose:
|
538 |
+
print(nx.info(G))
|
539 |
+
print(G.nodes())
|
540 |
+
|
541 |
+
return G
|
542 |
+
|
543 |
+
|
544 |
+
def calculate_centroid_positions(
|
545 |
+
atoms: pd.DataFrame, verbose: bool = False
|
546 |
+
) -> pd.DataFrame:
|
547 |
+
"""
|
548 |
+
Calculates position of sidechain centroids.
|
549 |
+
|
550 |
+
:param atoms: ATOM df of protein structure.
|
551 |
+
:type atoms: pd.DataFrame
|
552 |
+
:param verbose: bool controlling verbosity.
|
553 |
+
:type verbose: bool
|
554 |
+
:return: centroids (df).
|
555 |
+
:rtype: pd.DataFrame
|
556 |
+
"""
|
557 |
+
centroids = (
|
558 |
+
atoms.groupby("residue_number")
|
559 |
+
.mean()[["x_coord", "y_coord", "z_coord"]]
|
560 |
+
.reset_index()
|
561 |
+
)
|
562 |
+
if verbose:
|
563 |
+
print(f"Calculated {len(centroids)} centroid nodes")
|
564 |
+
log.debug(f"Calculated {len(centroids)} centroid nodes")
|
565 |
+
return centroids
|
566 |
+
|
567 |
+
|
568 |
+
def compute_edges(
|
569 |
+
G: nx.Graph,
|
570 |
+
funcs: List[Callable],
|
571 |
+
get_contacts_config: Optional[GetContactsConfig] = None,
|
572 |
+
) -> nx.Graph:
|
573 |
+
"""
|
574 |
+
Computes edges for the protein structure graph. Will compute a pairwise
|
575 |
+
distance matrix between nodes which is
|
576 |
+
added to the graph metadata to facilitate some edge computations.
|
577 |
+
|
578 |
+
:param G: nx.Graph with nodes to add edges to.
|
579 |
+
:type G: nx.Graph
|
580 |
+
:param funcs: List of edge construction functions.
|
581 |
+
:type funcs: List[Callable]
|
582 |
+
:param get_contacts_config: Config object for ``GetContacts`` if
|
583 |
+
intramolecular edges are being used.
|
584 |
+
:type get_contacts_config: graphein.protein.config.GetContactsConfig
|
585 |
+
:return: Graph with added edges.
|
586 |
+
:rtype: nx.Graph
|
587 |
+
"""
|
588 |
+
# This control flow prevents unnecessary computation of the distance matrices
|
589 |
+
if "config" in G.graph:
|
590 |
+
if G.graph["config"].granularity == "atom":
|
591 |
+
G.graph["atomic_dist_mat"] = compute_distmat(G.graph["pdb_df"])
|
592 |
+
else:
|
593 |
+
G.graph["dist_mat"] = compute_distmat(G.graph["pdb_df"])
|
594 |
+
|
595 |
+
for func in funcs:
|
596 |
+
func(G)
|
597 |
+
|
598 |
+
return add_distance_to_edges(G)
|
599 |
+
|
600 |
+
|
601 |
+
def construct_graph(
|
602 |
+
config: Optional[ProteinGraphConfig] = None,
|
603 |
+
name: Optional[str] = None,
|
604 |
+
pdb_path: Optional[str] = None,
|
605 |
+
uniprot_id: Optional[str] = None,
|
606 |
+
pdb_code: Optional[str] = None,
|
607 |
+
chain_selection: str = "all",
|
608 |
+
model_index: int = 1,
|
609 |
+
df_processing_funcs: Optional[List[Callable]] = None,
|
610 |
+
edge_construction_funcs: Optional[List[Callable]] = None,
|
611 |
+
edge_annotation_funcs: Optional[List[Callable]] = None,
|
612 |
+
node_annotation_funcs: Optional[List[Callable]] = None,
|
613 |
+
graph_annotation_funcs: Optional[List[Callable]] = None,
|
614 |
+
) -> nx.Graph:
|
615 |
+
"""
|
616 |
+
Constructs protein structure graph from a ``pdb_code`` or ``pdb_path``.
|
617 |
+
|
618 |
+
Users can provide a :class:`~graphein.protein.config.ProteinGraphConfig`
|
619 |
+
object to specify construction parameters.
|
620 |
+
|
621 |
+
However, config parameters can be overridden by passing arguments directly to the function.
|
622 |
+
|
623 |
+
:param config: :class:`~graphein.protein.config.ProteinGraphConfig` object. If None, defaults to config in ``graphein.protein.config``.
|
624 |
+
:type config: graphein.protein.config.ProteinGraphConfig, optional
|
625 |
+
:param name: an optional given name for the graph. the PDB ID or PDB file name will be used if not specified.
|
626 |
+
:type name: str, optional
|
627 |
+
:param pdb_path: Path to ``pdb_file`` when constructing a graph from a local pdb file. Default is ``None``.
|
628 |
+
:type pdb_path: Optional[str], defaults to ``None``
|
629 |
+
:param pdb_code: A 4-character PDB ID / accession to be used to construct the graph, if available. Default is ``None``.
|
630 |
+
:type pdb_code: Optional[str], defaults to ``None``
|
631 |
+
:param uniprot_id: UniProt accession ID to build graph from AlphaFold2DB. Default is ``None``.
|
632 |
+
:type uniprot_id: str, optional
|
633 |
+
:param chain_selection: String of polypeptide chains to include in graph. E.g ``"ABDF"`` or ``"all"``. Default is ``"all"``.
|
634 |
+
:type chain_selection: str
|
635 |
+
:param model_index: Index of model to use in the case of structural ensembles. Default is ``1``.
|
636 |
+
:type model_index: int
|
637 |
+
:param df_processing_funcs: List of dataframe processing functions. Default is ``None``.
|
638 |
+
:type df_processing_funcs: List[Callable], optional
|
639 |
+
:param edge_construction_funcs: List of edge construction functions. Default is ``None``.
|
640 |
+
:type edge_construction_funcs: List[Callable], optional
|
641 |
+
:param edge_annotation_funcs: List of edge annotation functions. Default is ``None``.
|
642 |
+
:type edge_annotation_funcs: List[Callable], optional
|
643 |
+
:param node_annotation_funcs: List of node annotation functions. Default is ``None``.
|
644 |
+
:type node_annotation_funcs: List[Callable], optional
|
645 |
+
:param graph_annotation_funcs: List of graph annotation function. Default is ``None``.
|
646 |
+
:type graph_annotation_funcs: List[Callable]
|
647 |
+
:return: Protein Structure Graph
|
648 |
+
:rtype: nx.Graph
|
649 |
+
"""
|
650 |
+
|
651 |
+
if pdb_code is None and pdb_path is None and uniprot_id is None:
|
652 |
+
raise ValueError(
|
653 |
+
"Either a PDB ID, UniProt ID or a path to a local PDB file"
|
654 |
+
" must be specified to construct a graph"
|
655 |
+
)
|
656 |
+
|
657 |
+
# If no config is provided, use default
|
658 |
+
if config is None:
|
659 |
+
config = ProteinGraphConfig()
|
660 |
+
with Progress(transient=True) as progress:
|
661 |
+
task1 = progress.add_task("Reading PDB file...", total=1)
|
662 |
+
# Get name from pdb_file is no pdb_code is provided
|
663 |
+
# if pdb_path and (pdb_code is None and uniprot_id is None):
|
664 |
+
# pdb_code = get_protein_name_from_filename(pdb_path)
|
665 |
+
# pdb_code = pdb_code if len(pdb_code) == 4 else None
|
666 |
+
progress.advance(task1)
|
667 |
+
|
668 |
+
# If config params are provided, overwrite them
|
669 |
+
config.protein_df_processing_functions = (
|
670 |
+
df_processing_funcs
|
671 |
+
if config.protein_df_processing_functions is None
|
672 |
+
else config.protein_df_processing_functions
|
673 |
+
)
|
674 |
+
config.edge_construction_functions = (
|
675 |
+
edge_construction_funcs
|
676 |
+
if config.edge_construction_functions is None
|
677 |
+
else config.edge_construction_functions
|
678 |
+
)
|
679 |
+
config.node_metadata_functions = (
|
680 |
+
node_annotation_funcs
|
681 |
+
if config.node_metadata_functions is None
|
682 |
+
else config.node_metadata_functions
|
683 |
+
)
|
684 |
+
config.graph_metadata_functions = (
|
685 |
+
graph_annotation_funcs
|
686 |
+
if config.graph_metadata_functions is None
|
687 |
+
else config.graph_metadata_functions
|
688 |
+
)
|
689 |
+
config.edge_metadata_functions = (
|
690 |
+
edge_annotation_funcs
|
691 |
+
if config.edge_metadata_functions is None
|
692 |
+
else config.edge_metadata_functions
|
693 |
+
)
|
694 |
+
|
695 |
+
raw_df = read_pdb_to_dataframe(
|
696 |
+
pdb_path,
|
697 |
+
pdb_code,
|
698 |
+
uniprot_id,
|
699 |
+
model_index=model_index,
|
700 |
+
)
|
701 |
+
|
702 |
+
|
703 |
+
task2 = progress.add_task("Processing PDB dataframe...", total=1)
|
704 |
+
# raw_df = label_node_id(raw_df, granularity=config.granularity)
|
705 |
+
# raw_df.df["ATOM"] = label_node_id(
|
706 |
+
# raw_df.df["ATOM"], granularity=config.granularity
|
707 |
+
# )
|
708 |
+
# raw_df.df["HETATM"] = label_node_id(
|
709 |
+
# raw_df.df["HETATM"], granularity=config.granularity
|
710 |
+
# )
|
711 |
+
raw_df = sort_dataframe(raw_df)
|
712 |
+
protein_df = process_dataframe(
|
713 |
+
raw_df,
|
714 |
+
chain_selection=chain_selection,
|
715 |
+
granularity=config.granularity,
|
716 |
+
insertions=config.insertions,
|
717 |
+
keep_hets=config.keep_hets,
|
718 |
+
)
|
719 |
+
progress.advance(task2)
|
720 |
+
|
721 |
+
task3 = progress.add_task("Initializing graph...", total=1)
|
722 |
+
# Initialise graph with metadata
|
723 |
+
g = initialise_graph_with_metadata(
|
724 |
+
protein_df=protein_df,
|
725 |
+
raw_pdb_df=raw_df,
|
726 |
+
name=name,
|
727 |
+
pdb_code=pdb_code,
|
728 |
+
pdb_path=pdb_path,
|
729 |
+
granularity=config.granularity,
|
730 |
+
)
|
731 |
+
# Add nodes to graph
|
732 |
+
g = add_nodes_to_graph(g)
|
733 |
+
# Add config to graph
|
734 |
+
g.graph["config"] = config
|
735 |
+
g.graph["path"] = g.graph["pdb_path"]
|
736 |
+
|
737 |
+
# Annotate additional node metadata
|
738 |
+
if config.node_metadata_functions is not None:
|
739 |
+
g = annotate_node_metadata(g, config.node_metadata_functions)
|
740 |
+
progress.advance(task3)
|
741 |
+
task4 = progress.add_task("Constructing edges...", total=1)
|
742 |
+
# Compute graph edges
|
743 |
+
g = compute_edges(
|
744 |
+
g,
|
745 |
+
funcs=config.edge_construction_functions,
|
746 |
+
get_contacts_config=None,
|
747 |
+
)
|
748 |
+
progress.advance(task4)
|
749 |
+
|
750 |
+
# Annotate additional graph metadata
|
751 |
+
# print(g.graph['dssp_df'])
|
752 |
+
if config.graph_metadata_functions is not None:
|
753 |
+
g = annotate_graph_metadata(g, config.graph_metadata_functions)
|
754 |
+
|
755 |
+
# Annotate additional edge metadata
|
756 |
+
if config.edge_metadata_functions is not None:
|
757 |
+
g = annotate_edge_metadata(g, config.edge_metadata_functions)
|
758 |
+
|
759 |
+
return g
|
760 |
+
|
761 |
+
|
762 |
+
def _mp_graph_constructor(
|
763 |
+
args: Tuple[str, str, int], source: str, config: ProteinGraphConfig
|
764 |
+
) -> Union[nx.Graph, None]:
|
765 |
+
"""
|
766 |
+
Protein graph constructor for use in multiprocessing several protein structure graphs.
|
767 |
+
|
768 |
+
:param args: Tuple of pdb code/path and the chain selection for that PDB.
|
769 |
+
:type args: Tuple[str, str]
|
770 |
+
:param use_pdb_code: Whether we are using ``"pdb_code"``s, ``pdb_path``s or ``"uniprot_id"``s.
|
771 |
+
:type use_pdb_code: bool
|
772 |
+
:param config: Protein structure graph construction config (see: :class:`graphein.protein.config.ProteinGraphConfig`).
|
773 |
+
:type config: ProteinGraphConfig
|
774 |
+
:return: Protein structure graph or ``None`` if an error is encountered.
|
775 |
+
:rtype: Union[nx.Graph, None]
|
776 |
+
"""
|
777 |
+
log.info(
|
778 |
+
f"Constructing graph for: {args[0]}. Chain selection: {args[1]}. Model index: {args[2]}"
|
779 |
+
)
|
780 |
+
func = partial(construct_graph, config=config)
|
781 |
+
try:
|
782 |
+
if source == "pdb_code":
|
783 |
+
return func(
|
784 |
+
pdb_code=args[0], chain_selection=args[1], model_index=args[2]
|
785 |
+
)
|
786 |
+
elif source == "pdb_path":
|
787 |
+
return func(
|
788 |
+
pdb_path=args[0], chain_selection=args[1], model_index=args[2]
|
789 |
+
)
|
790 |
+
elif source == "uniprot_id":
|
791 |
+
return func(
|
792 |
+
uniprot_id=args[0],
|
793 |
+
chain_selection=args[1],
|
794 |
+
model_index=args[2],
|
795 |
+
)
|
796 |
+
|
797 |
+
except Exception as ex:
|
798 |
+
log.info(
|
799 |
+
f"Graph construction error (PDB={args[0]})! {traceback.format_exc()}"
|
800 |
+
)
|
801 |
+
log.info(ex)
|
802 |
+
return None
|
803 |
+
|
804 |
+
|
805 |
+
def construct_graphs_mp(
|
806 |
+
pdb_code_it: Optional[List[str]] = None,
|
807 |
+
pdb_path_it: Optional[List[str]] = None,
|
808 |
+
uniprot_id_it: Optional[List[str]] = None,
|
809 |
+
chain_selections: Optional[List[str]] = None,
|
810 |
+
model_indices: Optional[List[str]] = None,
|
811 |
+
config: ProteinGraphConfig = ProteinGraphConfig(),
|
812 |
+
num_cores: int = 16,
|
813 |
+
return_dict: bool = True,
|
814 |
+
out_path: Optional[str] = None,
|
815 |
+
) -> Union[List[nx.Graph], Dict[str, nx.Graph]]:
|
816 |
+
"""
|
817 |
+
Constructs protein graphs for a list of pdb codes or pdb paths using multiprocessing.
|
818 |
+
|
819 |
+
:param pdb_code_it: List of pdb codes to use for protein graph construction
|
820 |
+
:type pdb_code_it: Optional[List[str]], defaults to ``None``
|
821 |
+
:param pdb_path_it: List of paths to PDB files to use for protein graph construction
|
822 |
+
:type pdb_path_it: Optional[List[str]], defaults to ``None``
|
823 |
+
:param chain_selections: List of chains to select from the protein structures (e.g. ``["ABC", "A", "L", "CD"...]``)
|
824 |
+
:type chain_selections: Optional[List[str]], defaults to ``None``
|
825 |
+
:param model_indices: List of model indices to use for protein graph construction. Only relevant for structures containing ensembles of models.
|
826 |
+
:type model_indices: Optional[List[str]], defaults to ``None``
|
827 |
+
:param config: ProteinGraphConfig to use.
|
828 |
+
:type config: graphein.protein.config.ProteinGraphConfig, defaults to default config params
|
829 |
+
:param num_cores: Number of cores to use for multiprocessing. The more the merrier
|
830 |
+
:type num_cores: int, defaults to ``16``
|
831 |
+
:param return_dict: Whether or not to return a dictionary (indexed by pdb codes/paths) or a list of graphs.
|
832 |
+
:type return_dict: bool, default to ``True``
|
833 |
+
:param out_path: Path to save the graphs to. If None, graphs are not saved.
|
834 |
+
:type out_path: Optional[str], defaults to ``None``
|
835 |
+
:return: Iterable of protein graphs. None values indicate there was a problem in constructing the graph for this particular pdb
|
836 |
+
:rtype: Union[List[nx.Graph], Dict[str, nx.Graph]]
|
837 |
+
"""
|
838 |
+
assert (
|
839 |
+
pdb_code_it is not None or pdb_path_it is not None
|
840 |
+
), "Iterable of pdb codes, pdb paths or uniprot IDs required."
|
841 |
+
|
842 |
+
if pdb_code_it is not None:
|
843 |
+
pdbs = pdb_code_it
|
844 |
+
source = "pdb_code"
|
845 |
+
|
846 |
+
if pdb_path_it is not None:
|
847 |
+
pdbs = pdb_path_it
|
848 |
+
source = "pdb_path"
|
849 |
+
|
850 |
+
if uniprot_id_it is not None:
|
851 |
+
pdbs = uniprot_id_it
|
852 |
+
source = "uniprot_id"
|
853 |
+
|
854 |
+
if chain_selections is None:
|
855 |
+
chain_selections = ["all"] * len(pdbs)
|
856 |
+
|
857 |
+
if model_indices is None:
|
858 |
+
model_indices = [1] * len(pdbs)
|
859 |
+
|
860 |
+
constructor = partial(_mp_graph_constructor, source=source, config=config)
|
861 |
+
|
862 |
+
graphs = list(
|
863 |
+
process_map(
|
864 |
+
constructor,
|
865 |
+
[
|
866 |
+
(pdb, chain_selections[i], model_indices[i])
|
867 |
+
for i, pdb in enumerate(pdbs)
|
868 |
+
],
|
869 |
+
max_workers=num_cores,
|
870 |
+
)
|
871 |
+
)
|
872 |
+
if out_path is not None:
|
873 |
+
[
|
874 |
+
nx.write_gpickle(
|
875 |
+
g, str(f"{out_path}/" + f"{g.graph['name']}.pickle")
|
876 |
+
)
|
877 |
+
for g in graphs
|
878 |
+
]
|
879 |
+
|
880 |
+
if return_dict:
|
881 |
+
graphs = {pdb: graphs[i] for i, pdb in enumerate(pdbs)}
|
882 |
+
|
883 |
+
return graphs
|
884 |
+
|
885 |
+
|
886 |
+
def compute_chain_graph(
|
887 |
+
g: nx.Graph,
|
888 |
+
chain_list: Optional[List[str]] = None,
|
889 |
+
remove_self_loops: bool = False,
|
890 |
+
return_weighted_graph: bool = False,
|
891 |
+
) -> Union[nx.Graph, nx.MultiGraph]:
|
892 |
+
"""Computes a chain-level graph from a protein structure graph.
|
893 |
+
|
894 |
+
This graph features nodes as individual chains in a complex and edges as
|
895 |
+
the interactions between constituent nodes in each chain. You have the
|
896 |
+
option of returning an unweighted graph (multigraph,
|
897 |
+
``return_weighted_graph=False``) or a weighted graph
|
898 |
+
(``return_weighted_graph=True``). The difference between these is the
|
899 |
+
unweighted graph features and edge for each interaction between chains
|
900 |
+
(ie the number of edges will be equal to the number of edges in the input
|
901 |
+
protein structure graph), while the weighted graph sums these interactions
|
902 |
+
to a single edge between chains with the counts stored as features.
|
903 |
+
|
904 |
+
:param g: A protein structure graph to compute the chain graph of.
|
905 |
+
:type g: nx.Graph
|
906 |
+
:param chain_list: A list of chains to extract from the input graph.
|
907 |
+
If ``None``, all chains will be used. This is provided as input to
|
908 |
+
``extract_subgraph_from_chains``. Default is ``None``.
|
909 |
+
:type chain_list: Optional[List[str]]
|
910 |
+
:param remove_self_loops: Whether to remove self-loops from the graph.
|
911 |
+
Default is False.
|
912 |
+
:type remove_self_loops: bool
|
913 |
+
:return: A chain-level graph.
|
914 |
+
:rtype: Union[nx.Graph, nx.MultiGraph]
|
915 |
+
"""
|
916 |
+
# If we are extracting specific chains, do it here.
|
917 |
+
if chain_list is not None:
|
918 |
+
g = extract_subgraph_from_chains(g, chain_list)
|
919 |
+
|
920 |
+
# Initialise new graph with Metadata
|
921 |
+
h = nx.MultiGraph()
|
922 |
+
h.graph = g.graph
|
923 |
+
h.graph["node_type"] = "chain"
|
924 |
+
|
925 |
+
# Set nodes
|
926 |
+
nodes_per_chain = {chain: 0 for chain in g.graph["chain_ids"]}
|
927 |
+
sequences = {chain: "" for chain in g.graph["chain_ids"]}
|
928 |
+
for n, d in g.nodes(data=True):
|
929 |
+
nodes_per_chain[d["chain_id"]] += 1
|
930 |
+
sequences[d["chain_id"]] += RESI_THREE_TO_1[d["residue_name"]]
|
931 |
+
|
932 |
+
h.add_nodes_from(g.graph["chain_ids"])
|
933 |
+
|
934 |
+
for n, d in h.nodes(data=True):
|
935 |
+
d["num_residues"] = nodes_per_chain[n]
|
936 |
+
d["sequence"] = sequences[n]
|
937 |
+
|
938 |
+
# Add edges
|
939 |
+
for u, v, d in g.edges(data=True):
|
940 |
+
h.add_edge(
|
941 |
+
g.nodes[u]["chain_id"], g.nodes[v]["chain_id"], kind=d["kind"]
|
942 |
+
)
|
943 |
+
# Remove self-loops if necessary. Checks for equality between nodes in a given edge.
|
944 |
+
if remove_self_loops:
|
945 |
+
edges_to_remove: List[Tuple[str]] = [
|
946 |
+
(u, v) for u, v in h.edges() if u == v
|
947 |
+
]
|
948 |
+
h.remove_edges_from(edges_to_remove)
|
949 |
+
|
950 |
+
# Compute a weighted graph if required.
|
951 |
+
if return_weighted_graph:
|
952 |
+
return compute_weighted_graph_from_multigraph(h)
|
953 |
+
return h
|
954 |
+
|
955 |
+
|
956 |
+
def compute_weighted_graph_from_multigraph(g: nx.MultiGraph) -> nx.Graph:
|
957 |
+
"""Computes a weighted graph from a multigraph.
|
958 |
+
|
959 |
+
This function is used to convert a multigraph to a weighted graph. The
|
960 |
+
weights of the edges are the number of interactions between the nodes.
|
961 |
+
|
962 |
+
:param g: A multigraph.
|
963 |
+
:type g: nx.MultiGraph
|
964 |
+
:return: A weighted graph.
|
965 |
+
:rtype: nx.Graph
|
966 |
+
"""
|
967 |
+
H = nx.Graph()
|
968 |
+
H.graph = g.graph
|
969 |
+
H.add_nodes_from(g.nodes(data=True))
|
970 |
+
for u, v, d in g.edges(data=True):
|
971 |
+
if H.has_edge(u, v):
|
972 |
+
H[u][v]["weight"] += len(d["kind"])
|
973 |
+
H[u][v]["kind"].update(d["kind"])
|
974 |
+
for kind in list(d["kind"]):
|
975 |
+
try:
|
976 |
+
H[u][v][kind] += 1
|
977 |
+
except KeyError:
|
978 |
+
H[u][v][kind] = 1
|
979 |
+
else:
|
980 |
+
H.add_edge(u, v, weight=len(d["kind"]), kind=d["kind"])
|
981 |
+
for kind in list(d["kind"]):
|
982 |
+
H[u][v][kind] = 1
|
983 |
+
return H
|
984 |
+
|
985 |
+
|
986 |
+
def number_groups_of_runs(list_of_values: List[Any]) -> List[str]:
|
987 |
+
"""Numbers groups of runs in a list of values.
|
988 |
+
|
989 |
+
E.g. ``["A", "A", "B", "A", "A", "A", "B", "B"] ->
|
990 |
+
["A1", "A1", "B1", "A2", "A2", "A2", "B2", "B2"]``
|
991 |
+
|
992 |
+
:param list_of_values: List of values to number.
|
993 |
+
:type list_of_values: List[Any]
|
994 |
+
:return: List of numbered values.
|
995 |
+
:rtype: List[str]
|
996 |
+
"""
|
997 |
+
df = pd.DataFrame({"val": list_of_values})
|
998 |
+
df["idx"] = df["val"].shift() != df["val"]
|
999 |
+
df["sum"] = df.groupby("val")["idx"].cumsum()
|
1000 |
+
return list(df["val"].astype(str) + df["sum"].astype(str))
|
1001 |
+
|
1002 |
+
|
1003 |
+
def compute_secondary_structure_graph(
|
1004 |
+
g: nx.Graph,
|
1005 |
+
allowable_ss_elements: Optional[List[str]] = None,
|
1006 |
+
remove_non_ss: bool = True,
|
1007 |
+
remove_self_loops: bool = False,
|
1008 |
+
return_weighted_graph: bool = False,
|
1009 |
+
) -> Union[nx.Graph, nx.MultiGraph]:
|
1010 |
+
"""Computes a secondary structure graph from a protein structure graph.
|
1011 |
+
|
1012 |
+
:param g: A protein structure graph to compute the secondary structure
|
1013 |
+
graph of.
|
1014 |
+
:type g: nx.Graph
|
1015 |
+
:param remove_non_ss: Whether to remove non-secondary structure nodes from
|
1016 |
+
the graph. These are denoted as ``"-"`` by DSSP. Default is True.
|
1017 |
+
:type remove_non_ss: bool
|
1018 |
+
:param remove_self_loops: Whether to remove self-loops from the graph.
|
1019 |
+
Default is ``False``.
|
1020 |
+
:type remove_self_loops: bool
|
1021 |
+
:param return_weighted_graph: Whether to return a weighted graph.
|
1022 |
+
Default is False.
|
1023 |
+
:type return_weighted_graph: bool
|
1024 |
+
:raises ProteinGraphConfigurationError: If the protein structure graph is
|
1025 |
+
not configured correctly with secondary structure assignments on all
|
1026 |
+
nodes.
|
1027 |
+
:return: A secondary structure graph.
|
1028 |
+
:rtype: Union[nx.Graph, nx.MultiGraph]
|
1029 |
+
"""
|
1030 |
+
# Initialise list of secondary structure elements we use to build the graph
|
1031 |
+
ss_list: List[str] = []
|
1032 |
+
|
1033 |
+
# Check nodes have secondary structure assignment & store them in list
|
1034 |
+
for _, d in g.nodes(data=True):
|
1035 |
+
if "ss" not in d.keys():
|
1036 |
+
raise ProteinGraphConfigurationError(
|
1037 |
+
"Secondary structure not defined for all nodes."
|
1038 |
+
)
|
1039 |
+
ss_list.append(d["ss"])
|
1040 |
+
|
1041 |
+
# Number SS elements
|
1042 |
+
ss_list = pd.Series(number_groups_of_runs(ss_list))
|
1043 |
+
ss_list.index = list(g.nodes())
|
1044 |
+
|
1045 |
+
# Remove unstructured elements if necessary
|
1046 |
+
if remove_non_ss:
|
1047 |
+
ss_list = ss_list[~ss_list.str.contains("-")]
|
1048 |
+
# Subset to only allowable SS elements if necessary
|
1049 |
+
if allowable_ss_elements:
|
1050 |
+
ss_list = ss_list[
|
1051 |
+
ss_list.str.contains("|".join(allowable_ss_elements))
|
1052 |
+
]
|
1053 |
+
|
1054 |
+
constituent_residues: Dict[str, List[str]] = ss_list.index.groupby(
|
1055 |
+
ss_list.values
|
1056 |
+
)
|
1057 |
+
constituent_residues = {
|
1058 |
+
k: list(v) for k, v in constituent_residues.items()
|
1059 |
+
}
|
1060 |
+
residue_counts: Dict[str, int] = ss_list.groupby(ss_list).count().to_dict()
|
1061 |
+
|
1062 |
+
# Add Nodes from secondary structure list
|
1063 |
+
h = nx.MultiGraph()
|
1064 |
+
h.add_nodes_from(ss_list)
|
1065 |
+
nx.set_node_attributes(h, residue_counts, "residue_counts")
|
1066 |
+
nx.set_node_attributes(h, constituent_residues, "constituent_residues")
|
1067 |
+
# Assign ss
|
1068 |
+
for n, d in h.nodes(data=True):
|
1069 |
+
d["ss"] = n[0]
|
1070 |
+
|
1071 |
+
# Add graph-level metadata
|
1072 |
+
h.graph = g.graph
|
1073 |
+
h.graph["node_type"] = "secondary_structure"
|
1074 |
+
|
1075 |
+
# Iterate over edges in source graph and add SS-SS edges to new graph.
|
1076 |
+
for u, v, d in g.edges(data=True):
|
1077 |
+
try:
|
1078 |
+
h.add_edge(
|
1079 |
+
ss_list[u], ss_list[v], kind=d["kind"], source=f"{u}_{v}"
|
1080 |
+
)
|
1081 |
+
except KeyError as e:
|
1082 |
+
log.debug(
|
1083 |
+
f"Edge {u}-{v} not added to secondary structure graph. \
|
1084 |
+
Reason: {e} not in graph"
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
# Remove self-loops if necessary.
|
1088 |
+
# Checks for equality between nodes in a given edge.
|
1089 |
+
if remove_self_loops:
|
1090 |
+
edges_to_remove: List[Tuple[str]] = [
|
1091 |
+
(u, v) for u, v in h.edges() if u == v
|
1092 |
+
]
|
1093 |
+
h.remove_edges_from(edges_to_remove)
|
1094 |
+
|
1095 |
+
# Create weighted graph from h
|
1096 |
+
if return_weighted_graph:
|
1097 |
+
return compute_weighted_graph_from_multigraph(h)
|
1098 |
+
return h
|
1099 |
+
|
1100 |
+
|
1101 |
+
def compute_line_graph(g: nx.Graph, repopulate_data: bool = True) -> nx.Graph:
|
1102 |
+
"""Computes the line graph of a graph.
|
1103 |
+
|
1104 |
+
The line graph of a graph G has a node for each edge in G and an edge
|
1105 |
+
joining those nodes if the two edges in G share a common node. For directed
|
1106 |
+
graphs, nodes are adjacent exactly when the edges they represent form a
|
1107 |
+
directed path of length two.
|
1108 |
+
|
1109 |
+
The nodes of the line graph are 2-tuples of nodes in the original graph (or
|
1110 |
+
3-tuples for multigraphs, with the key of the edge as the third element).
|
1111 |
+
|
1112 |
+
:param g: Graph to compute the line graph of.
|
1113 |
+
:type g: nx.Graph
|
1114 |
+
:param repopulate_data: Whether or not to map node and edge data to edges
|
1115 |
+
and nodes of the line graph, defaults to True
|
1116 |
+
:type repopulate_data: bool, optional
|
1117 |
+
:return: Line graph of g.
|
1118 |
+
:rtype: nx.Graph
|
1119 |
+
"""
|
1120 |
+
l_g = nx.generators.line_graph(g)
|
1121 |
+
l_g.graph = g.graph
|
1122 |
+
|
1123 |
+
if repopulate_data:
|
1124 |
+
source_edge_data = {(u, v): d for u, v, d in g.edges(data=True)}
|
1125 |
+
nx.set_node_attributes(l_g, source_edge_data)
|
1126 |
+
|
1127 |
+
node_list = {}
|
1128 |
+
for u, v, d in l_g.edges(data=True):
|
1129 |
+
node_union = u + v
|
1130 |
+
for n in node_union:
|
1131 |
+
if node_union.count(n) > 1:
|
1132 |
+
node_list[(u, v)] = n
|
1133 |
+
break
|
1134 |
+
|
1135 |
+
source_node_data = {k: g.nodes[v] for k, v in node_list.items()}
|
1136 |
+
nx.set_edge_attributes(l_g, source_node_data)
|
1137 |
+
return l_g
|
modeling_prot2text.py
ADDED
@@ -0,0 +1,392 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Config, AutoTokenizer, GPT2Config
|
2 |
+
from transformers import PretrainedConfig, PreTrainedModel
|
3 |
+
import transformers
|
4 |
+
from typing import Optional, Tuple, Callable
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from transformers.modeling_utils import PreTrainedModel, PretrainedConfig
|
8 |
+
from .utils import CABlock, _GPT2LMHeadModel
|
9 |
+
from .configuration_prot2text import Prot2TextConfig
|
10 |
+
import os
|
11 |
+
import numpy as np
|
12 |
+
from transformers.generation.configuration_utils import GenerationConfig
|
13 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
14 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
15 |
+
|
16 |
+
from .pdb2graph import PDB2Graph, download_alphafold_structure
|
17 |
+
from .graphs import *
|
18 |
+
from .utils_dataset import *
|
19 |
+
|
20 |
+
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
|
21 |
+
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
|
22 |
+
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
|
23 |
+
from graphein.protein.edges.distance import (add_peptide_bonds,
|
24 |
+
add_hydrogen_bond_interactions,
|
25 |
+
add_distance_threshold,
|
26 |
+
)
|
27 |
+
|
28 |
+
from torch_geometric.nn import RGCNConv, global_mean_pool
|
29 |
+
|
30 |
+
|
31 |
+
|
32 |
+
class EncoderRGCN(PreTrainedModel):
|
33 |
+
'''
|
34 |
+
This class implement the RGCN encoder to encode the protein structure
|
35 |
+
'''
|
36 |
+
def __init__(self, input_dim, hidden_dim=512, n_layers=6, emb_dim=512, dropout=0.2, num_relation=7, prot2text_version='1.0'):
|
37 |
+
super(EncoderRGCN, self).__init__(PretrainedConfig(name='RGCN'))
|
38 |
+
self.n_layers = n_layers
|
39 |
+
self.output_dim = emb_dim
|
40 |
+
self.prot2text_version = prot2text_version
|
41 |
+
|
42 |
+
self.fc0 = nn.Linear(input_dim, hidden_dim)
|
43 |
+
self.batchnorm_final = nn.BatchNorm1d(hidden_dim)
|
44 |
+
|
45 |
+
self.batch_norms = nn.ModuleList()
|
46 |
+
self.batch_norms.append(nn.BatchNorm1d(hidden_dim))
|
47 |
+
lst = list()
|
48 |
+
|
49 |
+
lst.append(RGCNConv(hidden_dim, hidden_dim, num_relations=num_relation))
|
50 |
+
|
51 |
+
for i in range(n_layers-1):
|
52 |
+
lst.append(RGCNConv(hidden_dim,hidden_dim, num_relations=num_relation))
|
53 |
+
|
54 |
+
self.conv = nn.ModuleList(lst)
|
55 |
+
|
56 |
+
self.fc1 = nn.Linear(hidden_dim, hidden_dim)
|
57 |
+
self.fc2 = nn.Linear(hidden_dim, self.output_dim)
|
58 |
+
|
59 |
+
self.dropout = nn.Dropout(p=dropout)
|
60 |
+
self.relu = nn.LeakyReLU()
|
61 |
+
self.batchnorm = nn.BatchNorm1d(hidden_dim)
|
62 |
+
self.main_input_name = 'nothing'
|
63 |
+
|
64 |
+
def forward(self, x:Optional[torch.FloatTensor] = None,
|
65 |
+
edge_index:Optional[torch.LongTensor] = None,
|
66 |
+
edge_type:Optional[torch.LongTensor] = None,
|
67 |
+
batch:Optional[torch.LongTensor] = None,
|
68 |
+
**kargs):
|
69 |
+
#construct pyg edge index shape (2, num_edges) from edge_list
|
70 |
+
x = self.relu(self.fc0(x))
|
71 |
+
|
72 |
+
for i in range(self.n_layers):
|
73 |
+
x = self.conv[i](x, edge_index, edge_type)
|
74 |
+
|
75 |
+
out = global_mean_pool(x, batch)
|
76 |
+
out = self.relu(self.fc1(out))
|
77 |
+
out = self.relu(self.fc2(out))
|
78 |
+
|
79 |
+
return out.unsqueeze(1)
|
80 |
+
|
81 |
+
class Prot2TextModel(PreTrainedModel):
|
82 |
+
config_class = Prot2TextConfig
|
83 |
+
_keys_to_ignore_on_load_missing = [r"transformer"]
|
84 |
+
base_model_prefix = "decoder"
|
85 |
+
def __init__(self, config):
|
86 |
+
super().__init__(config)
|
87 |
+
|
88 |
+
self.gpt_config = GPT2Config.from_dict(config.gpt_config)
|
89 |
+
|
90 |
+
# if we are using RGCN to encode the protein's structure, define the RGCN encoder
|
91 |
+
if config.rgcn:
|
92 |
+
self.encoder = EncoderRGCN(input_dim=config.rgcn_input_dim, hidden_dim=self.gpt_config.n_embd, n_layers=config.rgcn_n_layers, emb_dim=self.gpt_config.n_embd, prot2text_version=self.config.prot2text_version)
|
93 |
+
|
94 |
+
# define the GPT2 decoder
|
95 |
+
self.decoder = _GPT2LMHeadModel(self.gpt_config)
|
96 |
+
|
97 |
+
# if using ESM to encode protein's sequence, define the ESM layer, the Projection layer and the fusion layer
|
98 |
+
if config.esm:
|
99 |
+
self.esm_config = PretrainedConfig.from_dict(config.esm_config)
|
100 |
+
self.esm = transformers.EsmModel(self.esm_config)
|
101 |
+
self.to_embedding = nn.Linear(self.esm_config.hidden_size, self.gpt_config.n_embd)
|
102 |
+
if config.cross_esm_graph and config.rgcn:
|
103 |
+
self.h = nn.ModuleList([CABlock(self.gpt_config, layer_idx=i) for i in range(4)])
|
104 |
+
self.ln_f = nn.LayerNorm(self.gpt_config.n_embd, eps=self.gpt_config.layer_norm_epsilon)
|
105 |
+
|
106 |
+
self.config = config
|
107 |
+
|
108 |
+
|
109 |
+
def get_encoder(self):
|
110 |
+
return self.encoder
|
111 |
+
|
112 |
+
def get_decoder(self):
|
113 |
+
return self.decoder
|
114 |
+
|
115 |
+
def get_input_embeddings(self):
|
116 |
+
if hasattr(self, "transformer"):
|
117 |
+
return self.transformer.wte
|
118 |
+
return self.decoder.transformer.wte
|
119 |
+
|
120 |
+
def warm_up(self, gpt_model=None, esm_model=None):
|
121 |
+
if esm_model is not None:
|
122 |
+
self.esm = transformers.EsmModel.from_pretrained(esm_model)
|
123 |
+
if gpt_model is not None:
|
124 |
+
self.decoder = _GPT2LMHeadModel.from_pretrained(gpt_model, add_cross_attention=True, use_cache=False)
|
125 |
+
self.decoder.resize_token_embeddings(self.gpt_config.vocab_size)
|
126 |
+
self.decoder.config = self.gpt_config
|
127 |
+
|
128 |
+
|
129 |
+
def forward(self,
|
130 |
+
encoder_input_ids: Optional[torch.LongTensor] = None,
|
131 |
+
edge_index: Optional[torch.LongTensor] = None,
|
132 |
+
batch: Optional[torch.LongTensor] = None,
|
133 |
+
x: Optional[torch.FloatTensor] = None,
|
134 |
+
edge_type: Optional[torch.LongTensor] = None,
|
135 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
136 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
137 |
+
past_key_values_graph_esm: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
138 |
+
decoder_attention_mask: Optional[torch.FloatTensor] = None,
|
139 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
140 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
141 |
+
position_ids: Optional[torch.LongTensor] = None,
|
142 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
143 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
144 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
145 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
146 |
+
labels: Optional[torch.LongTensor] = None,
|
147 |
+
use_cache: Optional[bool] = None,
|
148 |
+
output_attentions: Optional[bool] = None,
|
149 |
+
output_hidden_states: Optional[bool] = None,
|
150 |
+
return_dict: Optional[bool] = None,
|
151 |
+
get_graph_emb: Optional[bool] = False,
|
152 |
+
**delete_args,
|
153 |
+
):
|
154 |
+
use_cache = use_cache if use_cache is not None else self.gpt_config.use_cache
|
155 |
+
return_dict = return_dict if return_dict is not None else self.gpt_config.use_return_dict
|
156 |
+
|
157 |
+
|
158 |
+
if decoder_input_ids is not None and len(decoder_input_ids.size()) == 3:
|
159 |
+
decoder_input_ids = decoder_input_ids.squeeze(0)
|
160 |
+
|
161 |
+
if x is not None and self.config.rgcn:
|
162 |
+
graph_emb = self.encoder(x, edge_index, edge_type, batch)
|
163 |
+
graph_mask = None
|
164 |
+
|
165 |
+
if self.config.esm:
|
166 |
+
if self.config.prot2text_version=='1.0':
|
167 |
+
if encoder_input_ids.size()[1] != 1021:
|
168 |
+
raise ValueError("For this version of the model you need to PAD/Truncate the amino acid sequence for the ESM model to 1021")
|
169 |
+
|
170 |
+
esm_emb = self.esm(input_ids=encoder_input_ids, attention_mask=attention_mask, return_dict=return_dict).last_hidden_state
|
171 |
+
esm_emb = self.to_embedding(esm_emb)
|
172 |
+
if not self.config.cross_esm_graph and self.config.rgcn:
|
173 |
+
graph_emb = torch.cat((graph_emb, esm_emb), dim=1)
|
174 |
+
t_add = torch.ones((attention_mask.size(0), 1)).to(attention_mask.get_device())
|
175 |
+
attention_mask = torch.cat((t_add, attention_mask), dim=1)
|
176 |
+
elif self.config.cross_esm_graph and self.config.rgcn:
|
177 |
+
if past_key_values_graph_esm is None:
|
178 |
+
past_length = 0
|
179 |
+
past_key_values_graph_esm = tuple([None] * len(self.h))
|
180 |
+
else:
|
181 |
+
past_length = past_key_values_graph_esm[0][0].size(-2)
|
182 |
+
output_shape = esm_emb.size()
|
183 |
+
|
184 |
+
all_self_attentions = () if output_attentions else None
|
185 |
+
all_cross_attentions = () if output_attentions and self.gpt_config.add_cross_attention else None
|
186 |
+
all_hidden_states = () if output_hidden_states else None
|
187 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values_graph_esm)):
|
188 |
+
outputs = block(
|
189 |
+
esm_emb,
|
190 |
+
layer_past=layer_past,
|
191 |
+
attention_mask=attention_mask,
|
192 |
+
encoder_hidden_states=graph_emb,
|
193 |
+
encoder_attention_mask=graph_mask,
|
194 |
+
use_cache=use_cache,
|
195 |
+
output_attentions=False,
|
196 |
+
)
|
197 |
+
esm_emb = outputs[0]
|
198 |
+
|
199 |
+
esm_emb = self.ln_f(esm_emb)
|
200 |
+
esm_emb = esm_emb.view(output_shape)
|
201 |
+
graph_emb = esm_emb
|
202 |
+
else:
|
203 |
+
graph_emb = esm_emb
|
204 |
+
else:
|
205 |
+
attention_mask = None
|
206 |
+
if self.config.prot2text_version=='1.0':
|
207 |
+
attention_mask = None
|
208 |
+
if get_graph_emb:
|
209 |
+
return graph_emb
|
210 |
+
|
211 |
+
transformer_outputs = self.decoder(input_ids=decoder_input_ids,
|
212 |
+
past_key_values=past_key_values,
|
213 |
+
attention_mask=decoder_attention_mask,
|
214 |
+
token_type_ids=token_type_ids,
|
215 |
+
position_ids=position_ids,
|
216 |
+
head_mask=head_mask,
|
217 |
+
inputs_embeds=inputs_embeds,
|
218 |
+
encoder_hidden_states=graph_emb,
|
219 |
+
encoder_attention_mask=attention_mask,
|
220 |
+
labels=labels,
|
221 |
+
use_cache=use_cache,
|
222 |
+
output_attentions=output_attentions,
|
223 |
+
output_hidden_states=output_hidden_states,
|
224 |
+
return_dict=return_dict,
|
225 |
+
)
|
226 |
+
|
227 |
+
return transformer_outputs
|
228 |
+
|
229 |
+
@torch.no_grad()
|
230 |
+
def generate_protein_description(self,
|
231 |
+
protein_pdbID=None,
|
232 |
+
protein_sequence=None,
|
233 |
+
edge_index: Optional[torch.LongTensor] = None,
|
234 |
+
x: Optional[torch.FloatTensor] = None,
|
235 |
+
edge_type: Optional[torch.LongTensor] = None,
|
236 |
+
tokenizer=None,
|
237 |
+
device='cpu'
|
238 |
+
):
|
239 |
+
|
240 |
+
if self.config.esm and not self.config.rgcn and protein_sequence==None:
|
241 |
+
raise ValueError(
|
242 |
+
"The model you are trying to use is based only on protein sequence, please provide an amino-acid protein_sequence"
|
243 |
+
)
|
244 |
+
if self.config.rgcn and protein_pdbID==None and (x==None or edge_index==None or edge_type==None):
|
245 |
+
raise ValueError(
|
246 |
+
"The model you are trying to use is based on protein structure, please provide a AlphaFold ID (you must have to have internet connection using protein_pdbID, or provide the triplet inputs: x (node features), edge_index and edge_type"
|
247 |
+
)
|
248 |
+
if self.config.esm:
|
249 |
+
esmtokenizer = AutoTokenizer.from_pretrained(self.config.esm_model_name)
|
250 |
+
|
251 |
+
if protein_pdbID==None and protein_sequence==None:
|
252 |
+
raise ValueError(
|
253 |
+
"you need to provide either a protein AlphaFold Id or an amino-acid sequence"
|
254 |
+
)
|
255 |
+
|
256 |
+
if protein_pdbID!=None:
|
257 |
+
config = {"node_metadata_functions": [amino_acid_one_hot,
|
258 |
+
expasy_protein_scale,
|
259 |
+
meiler_embedding,
|
260 |
+
hydrogen_bond_acceptor, hydrogen_bond_donor
|
261 |
+
],
|
262 |
+
"edge_construction_functions": [add_peptide_bonds,
|
263 |
+
add_hydrogen_bond_interactions,
|
264 |
+
partial(add_distance_threshold, long_interaction_threshold=3, threshold=10.),],
|
265 |
+
"graph_metadata_functions":[asa,phi, psi, secondary_structure, rsa],
|
266 |
+
"dssp_config": DSSPConfig()}
|
267 |
+
config = ProteinGraphConfig(**config)
|
268 |
+
|
269 |
+
PATH_TO_DATA = f"~/.tmp/pdb/pdb"
|
270 |
+
OUTPUT_FOLDER = f"~/.tmp/pdb/raw"
|
271 |
+
save_dir = f"~/.tmp/pdb/"
|
272 |
+
isExist = os.path.exists(PATH_TO_DATA)
|
273 |
+
if not isExist:
|
274 |
+
os.makedirs(PATH_TO_DATA)
|
275 |
+
isExist = os.path.exists(OUTPUT_FOLDER)
|
276 |
+
if not isExist:
|
277 |
+
os.makedirs(OUTPUT_FOLDER)
|
278 |
+
isExist = os.path.exists(save_dir+'processed')
|
279 |
+
if not isExist:
|
280 |
+
os.makedirs(save_dir+'processed')
|
281 |
+
|
282 |
+
structure_filename = download_alphafold_structure(uniprot_id=protein_pdbID, out_dir=PATH_TO_DATA)
|
283 |
+
if structure_filename is None:
|
284 |
+
raise ValueError("Error! the ID does not exist in AlphaFoldDB or you do not have internet connection")
|
285 |
+
graph_filename = structure_filename.split('/')
|
286 |
+
graph_filename[-2] = 'raw'
|
287 |
+
graph_filename[-1] = graph_filename[-1].replace('.pdb', '.pt')
|
288 |
+
graph_filename = '/'.join(graph_filename)
|
289 |
+
process_filename = structure_filename.split('/')
|
290 |
+
process_filename[-2] = 'processed'
|
291 |
+
process_filename[-1] = process_filename[-1].replace('.pdb', '.pt')
|
292 |
+
process_filename = '/'.join(process_filename)
|
293 |
+
try:
|
294 |
+
gpdb = PDB2Graph(root = PATH_TO_DATA, output_folder = OUTPUT_FOLDER, config=config, n_processors=1).create_pyg_graph(structure_filename)
|
295 |
+
seq = esmtokenizer(gpdb.sequence, add_special_tokens=True, truncation=True, max_length=1021, padding='max_length',return_tensors="pt") #
|
296 |
+
torch.save(gpdb, graph_filename)
|
297 |
+
gpdb.edge_type = [np.array(gpdb.edge_type.transpose(0,1))]
|
298 |
+
gpdb.encoder_input_ids = seq['input_ids']
|
299 |
+
gpdb.attention_mask = seq['attention_mask']
|
300 |
+
torch.save(gpdb, process_filename)
|
301 |
+
except:
|
302 |
+
os.remove(structure_filename)
|
303 |
+
raise ValueError('creating graphs did not work, probably the pdb file of alphaFold is damaged')
|
304 |
+
|
305 |
+
self.eval()
|
306 |
+
inputs = gpdb
|
307 |
+
inputs = inputs.to_dict()
|
308 |
+
|
309 |
+
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
|
310 |
+
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
|
311 |
+
for key in ['num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates']:
|
312 |
+
inputs.pop(key)
|
313 |
+
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
|
314 |
+
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
|
315 |
+
inputs["decoder_attention_mask"] = torch.ones(inputs['decoder_input_ids'].shape[0], 1)
|
316 |
+
self.to(device)
|
317 |
+
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
318 |
+
encoder_state = dict()
|
319 |
+
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
|
320 |
+
encoder_state['attentions'] = inputs['attention_mask']
|
321 |
+
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids']:
|
322 |
+
inputs.pop(key)
|
323 |
+
tok_ids = self.decoder.generate(input_ids=inputs['decoder_input_ids'],
|
324 |
+
encoder_outputs=encoder_state,
|
325 |
+
use_cache=True,
|
326 |
+
output_attentions=False,
|
327 |
+
output_scores=False,
|
328 |
+
return_dict_in_generate=True,
|
329 |
+
encoder_attention_mask=inputs['attention_mask'],
|
330 |
+
length_penalty=1.0,
|
331 |
+
no_repeat_ngram_size=None,
|
332 |
+
early_stopping=False,
|
333 |
+
num_beams=1)
|
334 |
+
|
335 |
+
generated = tokenizer.batch_decode(tok_ids.get('sequences'), skip_special_tokens=True)
|
336 |
+
|
337 |
+
os.remove(structure_filename)
|
338 |
+
os.remove(graph_filename)
|
339 |
+
os.remove(process_filename)
|
340 |
+
|
341 |
+
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
|
342 |
+
|
343 |
+
else:
|
344 |
+
seq = esmtokenizer([protein_sequence], add_special_tokens=True, truncation=True, max_length=1021, padding='max_length', return_tensors="pt")
|
345 |
+
inputs={}
|
346 |
+
inputs['encoder_input_ids'] = seq['input_ids']
|
347 |
+
inputs['attention_mask'] = seq['attention_mask']
|
348 |
+
inputs['decoder_input_ids'] = inputs['encoder_input_ids'][:,0:1].clone()
|
349 |
+
inputs['decoder_input_ids'][:,0] = tokenizer.bos_token_id
|
350 |
+
|
351 |
+
self.to(device)
|
352 |
+
inputs = {k: v.to(device=device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
353 |
+
encoder_state = dict()
|
354 |
+
encoder_state['hidden_states'] = self(**inputs, get_graph_emb=True, output_attentions=True)
|
355 |
+
generated = tokenizer.batch_decode(self.decoder.generate(input_ids=inputs['decoder_input_ids'], encoder_outputs=encoder_state, use_cache=True), skip_special_tokens=True)
|
356 |
+
|
357 |
+
return generated[0].replace('<|stop_token|>', '').replace('<|graph_token|>', '')
|
358 |
+
|
359 |
+
@torch.no_grad()
|
360 |
+
def generate(self,
|
361 |
+
inputs: Optional[torch.Tensor] = None,
|
362 |
+
generation_config: Optional[GenerationConfig] = None,
|
363 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
364 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
365 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
366 |
+
synced_gpus: Optional[bool] = None,
|
367 |
+
assistant_model: Optional["PreTrainedModel"] = None,
|
368 |
+
streamer: Optional["BaseStreamer"] = None,
|
369 |
+
**kwargs,
|
370 |
+
):
|
371 |
+
encoder_state = self(**kwargs, get_graph_emb=True)
|
372 |
+
input_ids = kwargs['decoder_input_ids']
|
373 |
+
attention_mask = kwargs['decoder_attention_mask']
|
374 |
+
kwargs['encoder_attention_mask'] = kwargs['attention_mask']
|
375 |
+
if not self.config.cross_esm_graph and self.config.rgcn and self.config.esm:
|
376 |
+
t_add = torch.ones((kwargs['encoder_attention_mask'].size(0), 1)).to(kwargs['encoder_attention_mask'].get_device())
|
377 |
+
kwargs['encoder_attention_mask'] = torch.cat((t_add, kwargs['encoder_attention_mask']), dim=1)
|
378 |
+
for key in ['edge_index', 'edge_type', 'x', 'encoder_input_ids', 'decoder_input_ids', 'decoder_attention_mask', 'batch', 'attention_mask', 'max_length',
|
379 |
+
'_num_nodes', 'node_id', 'name', 'sequence', 'distance_matrix', 'distance', 'coordinates', 'ptr', 'num_nodes',]:
|
380 |
+
if key in kwargs.keys():
|
381 |
+
kwargs.pop(key)
|
382 |
+
return self.decoder.generate(input_ids=input_ids,
|
383 |
+
generation_config=generation_config,
|
384 |
+
logits_processor=logits_processor,
|
385 |
+
stopping_criteria=stopping_criteria,
|
386 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
387 |
+
synced_gpus=synced_gpus,
|
388 |
+
assistant_model=assistant_model,
|
389 |
+
streamer=streamer,
|
390 |
+
encoder_outputs={'hidden_states': encoder_state, 'attentions':0},
|
391 |
+
**kwargs
|
392 |
+
)
|
pdb2graph.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import multiprocessing
|
2 |
+
import os
|
3 |
+
from tqdm import tqdm
|
4 |
+
from sklearn.preprocessing import MultiLabelBinarizer
|
5 |
+
|
6 |
+
from torch_geometric.data import Data
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from .conversion import convert_nx_to_pyg_data
|
12 |
+
from graphein.protein.config import ProteinGraphConfig, DSSPConfig
|
13 |
+
from graphein.protein.features.nodes.amino_acid import amino_acid_one_hot, meiler_embedding, expasy_protein_scale, hydrogen_bond_acceptor, hydrogen_bond_donor
|
14 |
+
from graphein.protein.features.nodes.dssp import phi, psi, asa, rsa, secondary_structure
|
15 |
+
from graphein.protein.edges.distance import (add_peptide_bonds,
|
16 |
+
add_hydrogen_bond_interactions,
|
17 |
+
add_disulfide_interactions,
|
18 |
+
add_ionic_interactions,
|
19 |
+
add_delaunay_triangulation,
|
20 |
+
add_distance_threshold,
|
21 |
+
add_sequence_distance_edges,
|
22 |
+
add_k_nn_edges)
|
23 |
+
|
24 |
+
from functools import partial
|
25 |
+
from .graphs import *
|
26 |
+
from .utils_dataset import *
|
27 |
+
import os
|
28 |
+
import sys
|
29 |
+
import subprocess
|
30 |
+
import wget
|
31 |
+
|
32 |
+
|
33 |
+
class PDB2Graph():
|
34 |
+
def __init__(self, root, output_folder, config, n_processors=int(multiprocessing.cpu_count())):
|
35 |
+
self.root = root
|
36 |
+
self.output_folder = output_folder
|
37 |
+
self.map_secondary_structure = {'-':0, 'H':1, 'B':2, 'E':3, 'G':4, 'I':5, 'T':6, 'S':7}
|
38 |
+
self.init_ohe_edge_type()
|
39 |
+
self.config = config
|
40 |
+
self.features = ['phi', 'psi', 'rsa', 'asa', 'ss', 'expasy']
|
41 |
+
self.n_processors = n_processors
|
42 |
+
self.raw_dir = root
|
43 |
+
self.processed_dir = self._processed_dir()
|
44 |
+
self.raw_file_names = self._raw_file_names()
|
45 |
+
self.processed_file_names = self._processed_file_names()
|
46 |
+
|
47 |
+
|
48 |
+
def _processed_dir(self):
|
49 |
+
#processed_dir = os.path.join(os.path.split(self.root)[0], "processed_new")
|
50 |
+
if not os.path.exists(self.output_folder):
|
51 |
+
os.makedirs(self.output_folder)
|
52 |
+
return self.output_folder
|
53 |
+
|
54 |
+
def _raw_file_names(self):
|
55 |
+
return os.listdir(self.raw_dir)
|
56 |
+
|
57 |
+
def _processed_file_names(self):
|
58 |
+
return [self.pdb2pathdata(pdb_path.split(".")[0]) for pdb_path in self.raw_file_names]
|
59 |
+
|
60 |
+
def create_nx_graph(self, path_to_structure):
|
61 |
+
return construct_graph(self.config, pdb_path = path_to_structure)
|
62 |
+
|
63 |
+
def create_pyg_graph(self, path_to_structure):
|
64 |
+
pyg_graph = convert_nx_to_pyg_data(self.create_nx_graph(path_to_structure))
|
65 |
+
|
66 |
+
graph = Data(edge_index = pyg_graph.edge_index,
|
67 |
+
num_nodes = len(pyg_graph.node_id),
|
68 |
+
node_id = pyg_graph.node_id,
|
69 |
+
name = pyg_graph.name[0],
|
70 |
+
sequence = getattr(pyg_graph, f"sequence_{pyg_graph.chain_id[0]}"),
|
71 |
+
distance_matrix = pyg_graph.dist_mat,
|
72 |
+
distance = pyg_graph.distance,
|
73 |
+
coordinates = torch.FloatTensor(np.array(pyg_graph.coords[0])))
|
74 |
+
#create the features
|
75 |
+
x = np.array([np.argmax(pyg_graph.amino_acid_one_hot, axis=1)]).reshape(-1,1)
|
76 |
+
for feat in self.features:
|
77 |
+
if feat == "ss":
|
78 |
+
feature = np.array([[self.map_secondary_structure.get(feat_node, 0)] \
|
79 |
+
for feat_node in pyg_graph[feat]])
|
80 |
+
else:
|
81 |
+
feature = np.array(pyg_graph[feat])
|
82 |
+
if len(feature.shape) == 1:
|
83 |
+
feature = feature.reshape(-1,1)
|
84 |
+
x = np.concatenate((x, feature), axis = 1)
|
85 |
+
graph.edge_type = self.mlb.transform(pyg_graph.kind)
|
86 |
+
graph.x = torch.FloatTensor(x)
|
87 |
+
# y = self.annotations[graph.name.split("_")[0]]
|
88 |
+
# if self.task == 'GeneOntology' :
|
89 |
+
# graph.y_mf = torch.FloatTensor(y["mf"])
|
90 |
+
# graph.y_cc = torch.FloatTensor(y["cc"])
|
91 |
+
# graph.y_bp = torch.FloatTensor(y["bp"])
|
92 |
+
# else:
|
93 |
+
# graph.y_ec = torch.FloatTensor(y["ec"])
|
94 |
+
return graph
|
95 |
+
|
96 |
+
def init_ohe_edge_type(self):
|
97 |
+
self.mlb = MultiLabelBinarizer(classes = ['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
|
98 |
+
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn'])
|
99 |
+
self.mlb.fit([['peptide_bond', 'sequence_distance_2', 'sequence_distance_3'
|
100 |
+
, 'distance_threshold', 'delaunay', 'hbond', 'k_nn']])
|
101 |
+
|
102 |
+
def process(self):
|
103 |
+
"""Convert the PDB files into torch geometric graphs"""
|
104 |
+
# self.pdb2graph = PDB2Graph(self.config)
|
105 |
+
to_be_processed = self.get_files_to_process()
|
106 |
+
|
107 |
+
# pool = multiprocessing.Pool(self.n_processors)
|
108 |
+
# for _ in tqdm(pool.imap_unordered(self.graph_creation, to_be_processed), total=len(to_be_processed)):
|
109 |
+
# continue
|
110 |
+
# pool.close()
|
111 |
+
# pool.join()
|
112 |
+
|
113 |
+
|
114 |
+
|
115 |
+
processes = []
|
116 |
+
for prot in tqdm(to_be_processed):
|
117 |
+
p = multiprocessing.Process(target=self.graph_creation, args=(prot,))
|
118 |
+
processes.append(p)
|
119 |
+
p.start()
|
120 |
+
|
121 |
+
for process in processes:
|
122 |
+
process.join()
|
123 |
+
|
124 |
+
|
125 |
+
def graph_creation(self, pdb):
|
126 |
+
"""Create a graph from the PDB file"""
|
127 |
+
|
128 |
+
# Define the path_to_structure from the pdb name file
|
129 |
+
path_to_structure = self.pdb2pathstructure(pdb)
|
130 |
+
|
131 |
+
# Convert the structure into a graph
|
132 |
+
g = self.create_pyg_graph(path_to_structure)
|
133 |
+
# Save the graph
|
134 |
+
torch.save(g, os.path.join(self.output_folder, self.pdb2pathdata(pdb)))
|
135 |
+
|
136 |
+
return None
|
137 |
+
|
138 |
+
def pdb2pathdata(self, pdb):
|
139 |
+
return pdb+'.pt'
|
140 |
+
|
141 |
+
def pdb2pathstructure(self, pdb):
|
142 |
+
return os.path.join(self.raw_dir, pdb+'.pdb')
|
143 |
+
|
144 |
+
def get_files_to_process(self):
|
145 |
+
RAW_FILES = self.processed_file_names
|
146 |
+
PROCESSED_FILES = os.listdir(self.processed_dir)
|
147 |
+
to_be_processed = set(RAW_FILES).difference(set(PROCESSED_FILES))
|
148 |
+
to_be_processed = [path.split('.')[0] for path in to_be_processed]
|
149 |
+
return to_be_processed
|
150 |
+
|
151 |
+
def download_alphafold_structure(
|
152 |
+
uniprot_id: str,
|
153 |
+
out_dir: str,
|
154 |
+
version: int = 4
|
155 |
+
):
|
156 |
+
|
157 |
+
BASE_URL = "https://alphafold.ebi.ac.uk/files/"
|
158 |
+
uniprot_id = uniprot_id.upper()
|
159 |
+
|
160 |
+
query_url = f"{BASE_URL}AF-{uniprot_id}-F1-model_v{version}.pdb"
|
161 |
+
structure_filename = os.path.join(out_dir, f"AF-{uniprot_id}-F1-model_v{version}.pdb")
|
162 |
+
if os.path.exists(structure_filename):
|
163 |
+
return structure_filename
|
164 |
+
try:
|
165 |
+
structure_filename = wget.download(query_url, out=out_dir)
|
166 |
+
except:
|
167 |
+
print('Error.. could not download: ', f"AF-{uniprot_id}-F1-model_v{version}.pdb")
|
168 |
+
return None
|
169 |
+
return structure_filename
|
170 |
+
|
171 |
+
|
utils.py
ADDED
@@ -0,0 +1,742 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP
|
3 |
+
from typing import Optional, Tuple, Union, Any, Dict, List
|
4 |
+
from transformers import Seq2SeqTrainer, GPT2LMHeadModel
|
5 |
+
from torch.utils.data.distributed import DistributedSampler
|
6 |
+
import torch
|
7 |
+
from transformers.deepspeed import is_deepspeed_zero3_enabled
|
8 |
+
from transformers.generation.logits_process import LogitsProcessorList
|
9 |
+
from transformers.generation.stopping_criteria import StoppingCriteriaList
|
10 |
+
from transformers.generation.utils import GreedySearchOutput, GreedySearchEncoderDecoderOutput, BeamSearchOutput, BeamSearchEncoderDecoderOutput
|
11 |
+
from transformers.generation.beam_search import BeamScorer
|
12 |
+
|
13 |
+
from torch_geometric.loader import DataLoader
|
14 |
+
from torch_geometric.data import Dataset
|
15 |
+
|
16 |
+
class _GPT2LMHeadModel(GPT2LMHeadModel):
|
17 |
+
def _init_(self, config):
|
18 |
+
super(GPT2LMHeadModel, self).init_(config)
|
19 |
+
self.config = config
|
20 |
+
|
21 |
+
|
22 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, encoder_outputs=None, **kwargs):
|
23 |
+
'''
|
24 |
+
This function is an edited version of the prepare_inputs_for_generation function from HuggingFace's transformers
|
25 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
26 |
+
'''
|
27 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
28 |
+
# only last token for inputs_ids if past is defined in kwargs
|
29 |
+
if past_key_values:
|
30 |
+
input_ids = input_ids[:, -1].unsqueeze(-1)
|
31 |
+
if token_type_ids is not None:
|
32 |
+
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
33 |
+
|
34 |
+
attention_mask = kwargs.get("attention_mask", None)
|
35 |
+
position_ids = kwargs.get("position_ids", None)
|
36 |
+
if self.config.prot2text_version=="1.1" or self.config.prot2text_version=="1.2":
|
37 |
+
encoder_attention_mask = kwargs.get("encoder_attention_mask", None)
|
38 |
+
elif self.config.prot2text_version=="1.0":
|
39 |
+
encoder_attention_mask = None
|
40 |
+
|
41 |
+
if attention_mask is not None and position_ids is None:
|
42 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
43 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
44 |
+
if past_key_values:
|
45 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
46 |
+
else:
|
47 |
+
position_ids = None
|
48 |
+
|
49 |
+
model_specific_kwargs = {
|
50 |
+
"encoder_hidden_states": encoder_outputs['hidden_states'],
|
51 |
+
}
|
52 |
+
|
53 |
+
return {
|
54 |
+
"input_ids": input_ids,
|
55 |
+
"past_key_values": past_key_values,
|
56 |
+
"use_cache": kwargs.get("use_cache"),
|
57 |
+
"position_ids": position_ids,
|
58 |
+
"attention_mask": attention_mask,
|
59 |
+
"token_type_ids": token_type_ids,
|
60 |
+
"encoder_attention_mask": encoder_attention_mask,
|
61 |
+
**model_specific_kwargs
|
62 |
+
}
|
63 |
+
|
64 |
+
|
65 |
+
def greedy_search(
|
66 |
+
self,
|
67 |
+
input_ids: torch.LongTensor,
|
68 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
69 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
70 |
+
max_length: Optional[int] = None,
|
71 |
+
pad_token_id: Optional[int] = None,
|
72 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
73 |
+
output_attentions: Optional[bool] = None,
|
74 |
+
output_hidden_states: Optional[bool] = None,
|
75 |
+
output_scores: Optional[bool] = None,
|
76 |
+
return_dict_in_generate: Optional[bool] = None,
|
77 |
+
synced_gpus: bool = False,
|
78 |
+
streamer: Optional["BaseStreamer"] = None,
|
79 |
+
**model_kwargs,
|
80 |
+
) -> Union[GreedySearchOutput, torch.LongTensor]:
|
81 |
+
'''
|
82 |
+
This function is an edited version of the greedy_search function from HuggingFace's transformers
|
83 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
84 |
+
'''
|
85 |
+
|
86 |
+
# init values
|
87 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
88 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
89 |
+
if max_length is not None:
|
90 |
+
warnings.warn(
|
91 |
+
"`max_length` is deprecated in this function, use"
|
92 |
+
" `stopping_criteria=StoppingCriteriaList([MaxLengthCriteria(max_length=max_length)])` instead.",
|
93 |
+
UserWarning,
|
94 |
+
)
|
95 |
+
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
96 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
97 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
98 |
+
if isinstance(eos_token_id, int):
|
99 |
+
eos_token_id = [eos_token_id]
|
100 |
+
eos_token_id_tensor = torch.tensor(eos_token_id).to(input_ids.device) if eos_token_id is not None else None
|
101 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
102 |
+
output_attentions = (
|
103 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
104 |
+
)
|
105 |
+
output_hidden_states = (
|
106 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
107 |
+
)
|
108 |
+
return_dict_in_generate = (
|
109 |
+
return_dict_in_generate
|
110 |
+
if return_dict_in_generate is not None
|
111 |
+
else self.generation_config.return_dict_in_generate
|
112 |
+
)
|
113 |
+
|
114 |
+
# init attention / hidden states / scores tuples
|
115 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
116 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
117 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
118 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
119 |
+
|
120 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
121 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
122 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
123 |
+
encoder_hidden_states = (
|
124 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
125 |
+
)
|
126 |
+
|
127 |
+
# keep track of which sequences are already finished
|
128 |
+
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
|
129 |
+
|
130 |
+
this_peer_finished = False # used by synced_gpus only
|
131 |
+
while True:
|
132 |
+
if synced_gpus:
|
133 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
134 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
135 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
136 |
+
# send 0.0 if we finished, 1.0 otherwise
|
137 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
138 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
139 |
+
if this_peer_finished_flag.item() == 0.0:
|
140 |
+
break
|
141 |
+
|
142 |
+
# prepare model inputs
|
143 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
144 |
+
|
145 |
+
# forward pass to get next token
|
146 |
+
outputs = self(
|
147 |
+
**model_inputs,
|
148 |
+
return_dict=True,
|
149 |
+
output_attentions=output_attentions,
|
150 |
+
output_hidden_states=output_hidden_states,
|
151 |
+
)
|
152 |
+
|
153 |
+
if synced_gpus and this_peer_finished:
|
154 |
+
continue # don't waste resources running the code we don't need
|
155 |
+
|
156 |
+
next_token_logits = outputs.logits[:, -1, :]
|
157 |
+
|
158 |
+
# pre-process distribution
|
159 |
+
next_tokens_scores = logits_processor(input_ids, next_token_logits)
|
160 |
+
|
161 |
+
# Store scores, attentions and hidden_states when required
|
162 |
+
if return_dict_in_generate:
|
163 |
+
if output_scores:
|
164 |
+
scores += (next_tokens_scores,)
|
165 |
+
if output_attentions:
|
166 |
+
decoder_attentions += (
|
167 |
+
(outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
|
168 |
+
)
|
169 |
+
if self.config.is_encoder_decoder:
|
170 |
+
cross_attentions += (outputs.cross_attentions,)
|
171 |
+
|
172 |
+
if output_hidden_states:
|
173 |
+
decoder_hidden_states += (
|
174 |
+
(outputs.decoder_hidden_states,)
|
175 |
+
if self.config.is_encoder_decoder
|
176 |
+
else (outputs.hidden_states,)
|
177 |
+
)
|
178 |
+
|
179 |
+
# argmax
|
180 |
+
next_tokens = torch.argmax(next_tokens_scores, dim=-1)
|
181 |
+
|
182 |
+
# finished sentences should have their next token be a padding token
|
183 |
+
if eos_token_id is not None:
|
184 |
+
if pad_token_id is None:
|
185 |
+
raise ValueError("If `eos_token_id` is defined, make sure that `pad_token_id` is defined.")
|
186 |
+
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
|
187 |
+
|
188 |
+
# update generated ids, model inputs, and length for next step
|
189 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
190 |
+
if streamer is not None:
|
191 |
+
streamer.put(next_tokens.cpu())
|
192 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
193 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
194 |
+
)
|
195 |
+
|
196 |
+
# if eos_token was found in one sentence, set sentence to finished
|
197 |
+
if eos_token_id_tensor is not None:
|
198 |
+
unfinished_sequences = unfinished_sequences.mul(
|
199 |
+
next_tokens.tile(eos_token_id_tensor.shape[0], 1).ne(eos_token_id_tensor.unsqueeze(1)).prod(dim=0)
|
200 |
+
)
|
201 |
+
|
202 |
+
# stop when each sentence is finished
|
203 |
+
if unfinished_sequences.max() == 0:
|
204 |
+
this_peer_finished = True
|
205 |
+
|
206 |
+
# stop if we exceed the maximum length
|
207 |
+
try:
|
208 |
+
if stopping_criteria(input_ids, scores):
|
209 |
+
this_peer_finished = True
|
210 |
+
except:
|
211 |
+
if all(stopping_criteria(input_ids, scores)):
|
212 |
+
this_peer_finished = True
|
213 |
+
|
214 |
+
if this_peer_finished and not synced_gpus:
|
215 |
+
break
|
216 |
+
|
217 |
+
if streamer is not None:
|
218 |
+
streamer.end()
|
219 |
+
|
220 |
+
if return_dict_in_generate:
|
221 |
+
if self.config.is_encoder_decoder:
|
222 |
+
return GreedySearchEncoderDecoderOutput(
|
223 |
+
sequences=input_ids,
|
224 |
+
scores=scores,
|
225 |
+
encoder_attentions=encoder_attentions,
|
226 |
+
encoder_hidden_states=encoder_hidden_states,
|
227 |
+
decoder_attentions=decoder_attentions,
|
228 |
+
cross_attentions=cross_attentions,
|
229 |
+
decoder_hidden_states=decoder_hidden_states,
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
return GreedySearchDecoderOnlyOutput(
|
233 |
+
sequences=input_ids,
|
234 |
+
scores=scores,
|
235 |
+
attentions=decoder_attentions,
|
236 |
+
hidden_states=decoder_hidden_states,
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
return input_ids
|
240 |
+
|
241 |
+
def _greedy_search(
|
242 |
+
self,
|
243 |
+
input_ids: torch.LongTensor,
|
244 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
245 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
246 |
+
max_length: Optional[int] = None,
|
247 |
+
pad_token_id: Optional[int] = None,
|
248 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
249 |
+
output_attentions: Optional[bool] = None,
|
250 |
+
output_hidden_states: Optional[bool] = None,
|
251 |
+
output_scores: Optional[bool] = None,
|
252 |
+
return_dict_in_generate: Optional[bool] = None,
|
253 |
+
synced_gpus: bool = False,
|
254 |
+
streamer: Optional["BaseStreamer"] = None,
|
255 |
+
**model_kwargs,
|
256 |
+
) -> Union[GreedySearchOutput, torch.LongTensor]:
|
257 |
+
|
258 |
+
return self.greedy_search(
|
259 |
+
input_ids,
|
260 |
+
logits_processor,
|
261 |
+
stopping_criteria,
|
262 |
+
max_length,
|
263 |
+
pad_token_id,
|
264 |
+
eos_token_id,
|
265 |
+
output_attentions,
|
266 |
+
output_hidden_states,
|
267 |
+
output_scores,
|
268 |
+
return_dict_in_generate,
|
269 |
+
synced_gpus,
|
270 |
+
streamer,
|
271 |
+
**model_kwargs,
|
272 |
+
)
|
273 |
+
def _beam_search(
|
274 |
+
self,
|
275 |
+
input_ids: torch.LongTensor,
|
276 |
+
beam_scorer: BeamScorer,
|
277 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
278 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
279 |
+
max_length: Optional[int] = None,
|
280 |
+
pad_token_id: Optional[int] = None,
|
281 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
282 |
+
output_attentions: Optional[bool] = None,
|
283 |
+
output_hidden_states: Optional[bool] = None,
|
284 |
+
output_scores: Optional[bool] = None,
|
285 |
+
return_dict_in_generate: Optional[bool] = None,
|
286 |
+
synced_gpus: bool = False,
|
287 |
+
**model_kwargs,
|
288 |
+
) -> Union[BeamSearchOutput, torch.LongTensor]:
|
289 |
+
|
290 |
+
return self.beam_search(
|
291 |
+
input_ids,
|
292 |
+
beam_scorer,
|
293 |
+
logits_processor,
|
294 |
+
stopping_criteria,
|
295 |
+
max_length,
|
296 |
+
pad_token_id,
|
297 |
+
eos_token_id,
|
298 |
+
output_attentions,
|
299 |
+
output_hidden_states,
|
300 |
+
output_scores,
|
301 |
+
return_dict_in_generate,
|
302 |
+
synced_gpus,
|
303 |
+
**model_kwargs,
|
304 |
+
)
|
305 |
+
|
306 |
+
def beam_search(
|
307 |
+
self,
|
308 |
+
input_ids: torch.LongTensor,
|
309 |
+
beam_scorer: BeamScorer,
|
310 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
311 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
312 |
+
max_length: Optional[int] = None,
|
313 |
+
pad_token_id: Optional[int] = None,
|
314 |
+
eos_token_id: Optional[Union[int, List[int]]] = None,
|
315 |
+
output_attentions: Optional[bool] = None,
|
316 |
+
output_hidden_states: Optional[bool] = None,
|
317 |
+
output_scores: Optional[bool] = None,
|
318 |
+
return_dict_in_generate: Optional[bool] = None,
|
319 |
+
synced_gpus: bool = False,
|
320 |
+
**model_kwargs,
|
321 |
+
) -> Union[BeamSearchOutput, torch.LongTensor]:
|
322 |
+
'''
|
323 |
+
This function is an edited version of the beam_search function from HuggingFace's transformers
|
324 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/generation/utils.py
|
325 |
+
'''
|
326 |
+
# init values
|
327 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
328 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
329 |
+
if max_length is not None:
|
330 |
+
warnings.warn(
|
331 |
+
"`max_length` is deprecated in this function, use"
|
332 |
+
" `stopping_criteria=StoppingCriteriaList(MaxLengthCriteria(max_length=max_length))` instead.",
|
333 |
+
UserWarning,
|
334 |
+
)
|
335 |
+
stopping_criteria = validate_stopping_criteria(stopping_criteria, max_length)
|
336 |
+
if len(stopping_criteria) == 0:
|
337 |
+
warnings.warn("You don't have defined any stopping_criteria, this will likely loop forever", UserWarning)
|
338 |
+
pad_token_id = pad_token_id if pad_token_id is not None else self.generation_config.pad_token_id
|
339 |
+
eos_token_id = eos_token_id if eos_token_id is not None else self.generation_config.eos_token_id
|
340 |
+
if isinstance(eos_token_id, int):
|
341 |
+
eos_token_id = [eos_token_id]
|
342 |
+
output_scores = output_scores if output_scores is not None else self.generation_config.output_scores
|
343 |
+
output_attentions = (
|
344 |
+
output_attentions if output_attentions is not None else self.generation_config.output_attentions
|
345 |
+
)
|
346 |
+
output_hidden_states = (
|
347 |
+
output_hidden_states if output_hidden_states is not None else self.generation_config.output_hidden_states
|
348 |
+
)
|
349 |
+
return_dict_in_generate = (
|
350 |
+
return_dict_in_generate
|
351 |
+
if return_dict_in_generate is not None
|
352 |
+
else self.generation_config.return_dict_in_generate
|
353 |
+
)
|
354 |
+
|
355 |
+
batch_size = len(beam_scorer._beam_hyps)
|
356 |
+
num_beams = beam_scorer.num_beams
|
357 |
+
|
358 |
+
batch_beam_size, cur_len = input_ids.shape
|
359 |
+
|
360 |
+
if num_beams * batch_size != batch_beam_size:
|
361 |
+
raise ValueError(
|
362 |
+
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
|
363 |
+
)
|
364 |
+
|
365 |
+
# init attention / hidden states / scores tuples
|
366 |
+
scores = () if (return_dict_in_generate and output_scores) else None
|
367 |
+
beam_indices = (
|
368 |
+
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
|
369 |
+
)
|
370 |
+
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
|
371 |
+
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
|
372 |
+
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
|
373 |
+
|
374 |
+
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
|
375 |
+
if return_dict_in_generate and self.config.is_encoder_decoder:
|
376 |
+
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
|
377 |
+
encoder_hidden_states = (
|
378 |
+
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
|
379 |
+
)
|
380 |
+
|
381 |
+
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
|
382 |
+
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
|
383 |
+
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
|
384 |
+
beam_scores[:, 1:] = -1e9
|
385 |
+
beam_scores = beam_scores.view((batch_size * num_beams,))
|
386 |
+
|
387 |
+
this_peer_finished = False # used by synced_gpus only
|
388 |
+
while True:
|
389 |
+
if synced_gpus:
|
390 |
+
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
|
391 |
+
# The following logic allows an early break if all peers finished generating their sequence
|
392 |
+
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(input_ids.device)
|
393 |
+
# send 0.0 if we finished, 1.0 otherwise
|
394 |
+
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
|
395 |
+
# did all peers finish? the reduced sum will be 0.0 then
|
396 |
+
if this_peer_finished_flag.item() == 0.0:
|
397 |
+
break
|
398 |
+
|
399 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
400 |
+
|
401 |
+
outputs = self(
|
402 |
+
**model_inputs,
|
403 |
+
return_dict=True,
|
404 |
+
output_attentions=output_attentions,
|
405 |
+
output_hidden_states=output_hidden_states,
|
406 |
+
)
|
407 |
+
|
408 |
+
if synced_gpus and this_peer_finished:
|
409 |
+
cur_len = cur_len + 1
|
410 |
+
continue # don't waste resources running the code we don't need
|
411 |
+
|
412 |
+
next_token_logits = outputs.logits[:, -1, :]
|
413 |
+
# hack: adjust tokens for Marian. For Marian we have to make sure that the `pad_token_id`
|
414 |
+
# cannot be generated both before and after the `nn.functional.log_softmax` operation.
|
415 |
+
# next_token_logits = self.adjust_logits_during_generation(next_token_logits, cur_len=cur_len)
|
416 |
+
next_token_scores = nn.functional.log_softmax(
|
417 |
+
next_token_logits, dim=-1
|
418 |
+
) # (batch_size * num_beams, vocab_size)
|
419 |
+
|
420 |
+
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
|
421 |
+
# next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(next_token_scores)
|
422 |
+
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
|
423 |
+
next_token_scores_processed
|
424 |
+
)
|
425 |
+
|
426 |
+
# Store scores, attentions and hidden_states when required
|
427 |
+
if return_dict_in_generate:
|
428 |
+
if output_scores:
|
429 |
+
scores += (next_token_scores_processed,)
|
430 |
+
if output_attentions:
|
431 |
+
decoder_attentions += (
|
432 |
+
(outputs.decoder_attentions,) if not self.config.is_encoder_decoder else (outputs.attentions,)
|
433 |
+
)
|
434 |
+
if self.config.is_encoder_decoder:
|
435 |
+
cross_attentions += (outputs.cross_attentions,)
|
436 |
+
|
437 |
+
if output_hidden_states:
|
438 |
+
decoder_hidden_states += (
|
439 |
+
(outputs.decoder_hidden_states,)
|
440 |
+
if self.config.is_encoder_decoder
|
441 |
+
else (outputs.hidden_states,)
|
442 |
+
)
|
443 |
+
|
444 |
+
# reshape for beam search
|
445 |
+
vocab_size = next_token_scores.shape[-1]
|
446 |
+
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
+
# Sample 2 next tokens for each beam (so we have some spare tokens and match output of beam search)
|
451 |
+
next_token_scores, next_tokens = torch.topk(
|
452 |
+
next_token_scores, 2 * num_beams, dim=1, largest=True, sorted=True
|
453 |
+
)
|
454 |
+
|
455 |
+
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
|
456 |
+
next_tokens = next_tokens % vocab_size
|
457 |
+
|
458 |
+
# stateless
|
459 |
+
beam_outputs = beam_scorer.process(
|
460 |
+
input_ids,
|
461 |
+
next_token_scores,
|
462 |
+
next_tokens,
|
463 |
+
next_indices,
|
464 |
+
pad_token_id=pad_token_id,
|
465 |
+
eos_token_id=eos_token_id,
|
466 |
+
beam_indices=beam_indices,
|
467 |
+
)
|
468 |
+
|
469 |
+
beam_scores = beam_outputs["next_beam_scores"]
|
470 |
+
beam_next_tokens = beam_outputs["next_beam_tokens"]
|
471 |
+
beam_idx = beam_outputs["next_beam_indices"]
|
472 |
+
|
473 |
+
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
|
474 |
+
|
475 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
476 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
477 |
+
)
|
478 |
+
if model_kwargs["past_key_values"] is not None:
|
479 |
+
model_kwargs["past_key_values"] = self._reorder_cache(model_kwargs["past_key_values"], beam_idx)
|
480 |
+
|
481 |
+
if return_dict_in_generate and output_scores:
|
482 |
+
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
|
483 |
+
|
484 |
+
# increase cur_len
|
485 |
+
cur_len = cur_len + 1
|
486 |
+
|
487 |
+
try:
|
488 |
+
if beam_scorer.is_done or stopping_criteria(input_ids, scores):
|
489 |
+
if not synced_gpus:
|
490 |
+
break
|
491 |
+
else:
|
492 |
+
this_peer_finished = True
|
493 |
+
except:
|
494 |
+
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
|
495 |
+
if not synced_gpus:
|
496 |
+
break
|
497 |
+
else:
|
498 |
+
this_peer_finished = True
|
499 |
+
|
500 |
+
|
501 |
+
sequence_outputs = beam_scorer.finalize(
|
502 |
+
input_ids,
|
503 |
+
beam_scores,
|
504 |
+
next_tokens,
|
505 |
+
next_indices,
|
506 |
+
pad_token_id=pad_token_id,
|
507 |
+
eos_token_id=eos_token_id,
|
508 |
+
max_length=stopping_criteria.max_length,
|
509 |
+
beam_indices=beam_indices,
|
510 |
+
)
|
511 |
+
|
512 |
+
if return_dict_in_generate:
|
513 |
+
if not output_scores:
|
514 |
+
sequence_outputs["sequence_scores"] = None
|
515 |
+
|
516 |
+
if self.config.is_encoder_decoder:
|
517 |
+
return BeamSearchEncoderDecoderOutput(
|
518 |
+
sequences=sequence_outputs["sequences"],
|
519 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
520 |
+
scores=scores,
|
521 |
+
beam_indices=sequence_outputs["beam_indices"],
|
522 |
+
encoder_attentions=encoder_attentions,
|
523 |
+
encoder_hidden_states=encoder_hidden_states,
|
524 |
+
decoder_attentions=decoder_attentions,
|
525 |
+
cross_attentions=cross_attentions,
|
526 |
+
decoder_hidden_states=decoder_hidden_states,
|
527 |
+
)
|
528 |
+
else:
|
529 |
+
return BeamSearchDecoderOnlyOutput(
|
530 |
+
sequences=sequence_outputs["sequences"],
|
531 |
+
sequences_scores=sequence_outputs["sequence_scores"],
|
532 |
+
scores=scores,
|
533 |
+
beam_indices=sequence_outputs["beam_indices"],
|
534 |
+
attentions=decoder_attentions,
|
535 |
+
hidden_states=decoder_hidden_states,
|
536 |
+
)
|
537 |
+
else:
|
538 |
+
return sequence_outputs["sequences"]
|
539 |
+
|
540 |
+
|
541 |
+
class CABlock(nn.Module):
|
542 |
+
'''
|
543 |
+
This function is an edited version of the gpt2 decoder block function from HuggingFace's transformers
|
544 |
+
https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py
|
545 |
+
'''
|
546 |
+
def __init__(self, config, layer_idx=None):
|
547 |
+
super().__init__()
|
548 |
+
hidden_size = config.hidden_size
|
549 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
550 |
+
|
551 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
552 |
+
|
553 |
+
self.crossattention = GPT2Attention(config, is_cross_attention=True, layer_idx=layer_idx)
|
554 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
555 |
+
|
556 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
557 |
+
|
558 |
+
def forward(
|
559 |
+
self,
|
560 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
561 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
562 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
563 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
564 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
565 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
566 |
+
use_cache: Optional[bool] = False,
|
567 |
+
output_attentions: Optional[bool] = False,
|
568 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
569 |
+
|
570 |
+
|
571 |
+
residual = hidden_states
|
572 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
573 |
+
cross_attn_outputs = self.crossattention(
|
574 |
+
hidden_states,
|
575 |
+
attention_mask=attention_mask,
|
576 |
+
head_mask=head_mask,
|
577 |
+
encoder_hidden_states=encoder_hidden_states,
|
578 |
+
encoder_attention_mask=encoder_attention_mask,
|
579 |
+
output_attentions=output_attentions,
|
580 |
+
)
|
581 |
+
attn_output = cross_attn_outputs[0]
|
582 |
+
# residual connection
|
583 |
+
hidden_states = residual + attn_output
|
584 |
+
|
585 |
+
residual = hidden_states
|
586 |
+
hidden_states = self.ln_2(hidden_states)
|
587 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
588 |
+
# residual connection
|
589 |
+
hidden_states = residual + feed_forward_hidden_states
|
590 |
+
|
591 |
+
return (hidden_states,)
|
592 |
+
|
593 |
+
class Prot2TextTrainer(Seq2SeqTrainer):
|
594 |
+
'''
|
595 |
+
This function is an edited version of the Seq2SeqTrainer from HuggingFace's transformers
|
596 |
+
'''
|
597 |
+
def get_eval_dataloader(self, eval_dataset: Optional[Dataset] = None) -> DataLoader:
|
598 |
+
if self.args.world_size > 1:
|
599 |
+
eval_sampler = DistributedSampler(self.eval_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
|
600 |
+
else:
|
601 |
+
eval_sampler = None
|
602 |
+
return DataLoader(
|
603 |
+
self.eval_dataset,
|
604 |
+
batch_size=self.args.eval_batch_size,
|
605 |
+
collate_fn=None,
|
606 |
+
num_workers=self.args.dataloader_num_workers,
|
607 |
+
pin_memory=self.args.dataloader_pin_memory,
|
608 |
+
sampler=eval_sampler,
|
609 |
+
)
|
610 |
+
def get_train_dataloader(self) -> DataLoader:
|
611 |
+
if self.args.world_size > 1:
|
612 |
+
train_sampler = DistributedSampler(self.train_dataset, num_replicas=self.args.world_size, rank=self.args.process_index)
|
613 |
+
else:
|
614 |
+
train_sampler = None
|
615 |
+
return DataLoader(
|
616 |
+
self.train_dataset,
|
617 |
+
batch_size=self.args.per_device_train_batch_size,
|
618 |
+
collate_fn=None,
|
619 |
+
num_workers=self.args.dataloader_num_workers,
|
620 |
+
pin_memory=self.args.dataloader_pin_memory,
|
621 |
+
sampler=train_sampler,
|
622 |
+
)
|
623 |
+
def _prepare_inputs(self, inputs: Dict[str, Union[torch.Tensor, Any]]) -> Dict[str, Union[torch.Tensor, Any]]:
|
624 |
+
"""
|
625 |
+
Prepare `inputs` before feeding them to the model, converting them to tensors if they are not already and
|
626 |
+
handling potential state.
|
627 |
+
"""
|
628 |
+
inputs = self._prepare_input(inputs)
|
629 |
+
if len(inputs) == 0:
|
630 |
+
raise ValueError(
|
631 |
+
"The batch received was empty, your model won't be able to train on it. Double-check that your "
|
632 |
+
f"training dataset contains keys expected by the model: {','.join(self._signature_columns)}."
|
633 |
+
)
|
634 |
+
if self.args.past_index >= 0 and self._past is not None:
|
635 |
+
inputs["mems"] = self._past
|
636 |
+
|
637 |
+
inputs = inputs.to_dict()
|
638 |
+
inputs['edge_type'] = torch.cat([torch.tensor(inputs['edge_type'][i]) for i in range(len(inputs['edge_type']))], dim=0)
|
639 |
+
inputs['edge_type'] = torch.argmax(inputs['edge_type'], dim=1)
|
640 |
+
inputs = {k: v.to(device=self.args.device, non_blocking=True) if hasattr(v, 'to') else v for k, v in inputs.items()}
|
641 |
+
return inputs
|
642 |
+
|
643 |
+
def prediction_step(
|
644 |
+
self,
|
645 |
+
model: nn.Module,
|
646 |
+
inputs: Dict[str, Union[torch.Tensor, Any]],
|
647 |
+
prediction_loss_only: bool,
|
648 |
+
ignore_keys: Optional[List[str]] = None,
|
649 |
+
) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
|
650 |
+
"""
|
651 |
+
Perform an evaluation step on `model` using `inputs`.
|
652 |
+
|
653 |
+
Subclass and override to inject custom behavior.
|
654 |
+
|
655 |
+
Args:
|
656 |
+
model (`nn.Module`):
|
657 |
+
The model to evaluate.
|
658 |
+
inputs (`Dict[str, Union[torch.Tensor, Any]]`):
|
659 |
+
The inputs and targets of the model.
|
660 |
+
|
661 |
+
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
662 |
+
argument `labels`. Check your model's documentation for all accepted arguments.
|
663 |
+
prediction_loss_only (`bool`):
|
664 |
+
Whether or not to return the loss only.
|
665 |
+
|
666 |
+
Return:
|
667 |
+
Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: A tuple with the loss, logits and
|
668 |
+
labels (each being optional).
|
669 |
+
"""
|
670 |
+
|
671 |
+
if not self.args.predict_with_generate or prediction_loss_only:
|
672 |
+
return super().prediction_step(
|
673 |
+
model, inputs, prediction_loss_only=prediction_loss_only, ignore_keys=ignore_keys
|
674 |
+
)
|
675 |
+
|
676 |
+
has_labels = "labels" in inputs
|
677 |
+
inputs = self._prepare_inputs(inputs)
|
678 |
+
|
679 |
+
# XXX: adapt synced_gpus for fairscale as well
|
680 |
+
gen_kwargs = self._gen_kwargs.copy()
|
681 |
+
if gen_kwargs.get("max_length") is None and gen_kwargs.get("max_new_tokens") is None:
|
682 |
+
gen_kwargs["max_length"] = self.model.config.max_length
|
683 |
+
gen_kwargs["num_beams"] = (
|
684 |
+
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams") is not None else self.model.config.num_beams
|
685 |
+
)
|
686 |
+
default_synced_gpus = True if is_deepspeed_zero3_enabled() else False
|
687 |
+
gen_kwargs["synced_gpus"] = (
|
688 |
+
gen_kwargs["synced_gpus"] if gen_kwargs.get("synced_gpus") is not None else default_synced_gpus
|
689 |
+
)
|
690 |
+
|
691 |
+
if "attention_mask" in inputs:
|
692 |
+
gen_kwargs["attention_mask"] = inputs.get("attention_mask", None)
|
693 |
+
if "global_attention_mask" in inputs:
|
694 |
+
gen_kwargs["global_attention_mask"] = inputs.get("global_attention_mask", None)
|
695 |
+
|
696 |
+
generation_inputs = None
|
697 |
+
gen_kwargs['x'] = inputs.get('x', None)
|
698 |
+
gen_kwargs['edge_index'] = inputs.get('edge_index', None)
|
699 |
+
gen_kwargs['edge_type'] = inputs.get('edge_type', None)
|
700 |
+
gen_kwargs['batch'] = inputs.get('batch', None)
|
701 |
+
gen_kwargs['encoder_input_ids'] = inputs.get('encoder_input_ids', None)
|
702 |
+
gen_kwargs['decoder_input_ids'] = inputs.get('decoder_input_ids', None)[:,0:1]
|
703 |
+
gen_kwargs["decoder_attention_mask"] = torch.ones(gen_kwargs['decoder_input_ids'].shape[0], 1).to(self.args.device)
|
704 |
+
|
705 |
+
generated_tokens = self.model.generate(
|
706 |
+
generation_inputs,
|
707 |
+
**gen_kwargs,
|
708 |
+
)
|
709 |
+
# in case the batch is shorter than max length, the output should be padded
|
710 |
+
if gen_kwargs.get("max_length") is not None and generated_tokens.shape[-1] < gen_kwargs["max_length"]:
|
711 |
+
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_length"])
|
712 |
+
elif gen_kwargs.get("max_new_tokens") is not None and generated_tokens.shape[-1] < (
|
713 |
+
gen_kwargs["max_new_tokens"] + 1
|
714 |
+
):
|
715 |
+
generated_tokens = self._pad_tensors_to_max_len(generated_tokens, gen_kwargs["max_new_tokens"] + 1)
|
716 |
+
|
717 |
+
with torch.no_grad():
|
718 |
+
if has_labels:
|
719 |
+
with self.compute_loss_context_manager():
|
720 |
+
outputs = model(**inputs)
|
721 |
+
if self.label_smoother is not None:
|
722 |
+
loss = self.label_smoother(outputs, inputs["labels"]).mean().detach()
|
723 |
+
else:
|
724 |
+
loss = (outputs["loss"] if isinstance(outputs, dict) else outputs[0]).mean().detach()
|
725 |
+
else:
|
726 |
+
loss = None
|
727 |
+
|
728 |
+
if self.args.prediction_loss_only:
|
729 |
+
return (loss, None, None)
|
730 |
+
|
731 |
+
if has_labels:
|
732 |
+
labels = inputs["labels"]
|
733 |
+
if gen_kwargs.get("max_length") is not None and labels.shape[-1] < gen_kwargs["max_length"]:
|
734 |
+
labels = self._pad_tensors_to_max_len(labels, gen_kwargs["max_length"])
|
735 |
+
elif gen_kwargs.get("max_new_tokens") is not None and labels.shape[-1] < (
|
736 |
+
gen_kwargs["max_new_tokens"] + 1
|
737 |
+
):
|
738 |
+
labels = self._pad_tensors_to_max_len(labels, (gen_kwargs["max_new_tokens"] + 1))
|
739 |
+
else:
|
740 |
+
labels = None
|
741 |
+
|
742 |
+
return (loss, generated_tokens, labels)
|
utils_convert.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from biopandas.pdb import PandasPdb
|
3 |
+
|
4 |
+
pdb_order = [
|
5 |
+
"record_name",
|
6 |
+
"atom_number",
|
7 |
+
"blank_1",
|
8 |
+
"atom_name",
|
9 |
+
"alt_loc",
|
10 |
+
"residue_name",
|
11 |
+
"blank_2",
|
12 |
+
"chain_id",
|
13 |
+
"residue_number",
|
14 |
+
"insertion",
|
15 |
+
"blank_3",
|
16 |
+
"x_coord",
|
17 |
+
"y_coord",
|
18 |
+
"z_coord",
|
19 |
+
"occupancy",
|
20 |
+
"b_factor",
|
21 |
+
"blank_4",
|
22 |
+
"segment_id",
|
23 |
+
"element_symbol",
|
24 |
+
"charge",
|
25 |
+
"line_idx",
|
26 |
+
]
|
27 |
+
mmcif_read = {
|
28 |
+
"group_PDB": "record_name",
|
29 |
+
"id": "atom_number",
|
30 |
+
"auth_atom_id": "atom_name",
|
31 |
+
"auth_comp_id": "residue_name",
|
32 |
+
"auth_asym_id": "chain_id",
|
33 |
+
"auth_seq_id": "residue_number",
|
34 |
+
"Cartn_x": "x_coord",
|
35 |
+
"Cartn_y": "y_coord",
|
36 |
+
"Cartn_z": "z_coord",
|
37 |
+
"occupancy": "occupancy",
|
38 |
+
"B_iso_or_equiv": "b_factor",
|
39 |
+
"type_symbol": "element_symbol",
|
40 |
+
}
|
41 |
+
|
42 |
+
nonefields = [
|
43 |
+
"blank_1",
|
44 |
+
"alt_loc",
|
45 |
+
"blank_2",
|
46 |
+
"insertion",
|
47 |
+
"blank_3",
|
48 |
+
"blank_4",
|
49 |
+
"segment_id",
|
50 |
+
"charge",
|
51 |
+
"line_idx",
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
def biopandas_mmcif2pdb(pandasmmcif, model_index = 1):
|
56 |
+
"""
|
57 |
+
Converts the ATOM and HETATM dataframes of PandasMmcif() to PandasPdb() format.
|
58 |
+
"""
|
59 |
+
pandaspdb = PandasPdb()
|
60 |
+
for a in ["ATOM", "HETATM"]:
|
61 |
+
dfa = pandasmmcif.df[a]
|
62 |
+
dfa = dfa.loc[dfa.pdbx_PDB_model_num == model_index]
|
63 |
+
if a =='ATOM':
|
64 |
+
if len(dfa) == 0:
|
65 |
+
raise ValueError(f"No model found for index: {model_index}")
|
66 |
+
# keep only those fields found in pdb
|
67 |
+
dfa = dfa[mmcif_read.keys()]
|
68 |
+
# rename fields
|
69 |
+
dfa = dfa.rename(columns=mmcif_read)
|
70 |
+
# add empty fields
|
71 |
+
for i in nonefields:
|
72 |
+
dfa[i] = ""
|
73 |
+
dfa["charge"] = np.nan
|
74 |
+
# reorder columns to PandasPdb order
|
75 |
+
dfa = dfa[pdb_order]
|
76 |
+
pandaspdb.df[a] = dfa
|
77 |
+
|
78 |
+
# update line_idx
|
79 |
+
pandaspdb.df["ATOM"]["line_idx"] = pandaspdb.df["ATOM"].index.values
|
80 |
+
pandaspdb.df["HETATM"]["line_idx"] = pandaspdb.df["HETATM"].index
|
81 |
+
|
82 |
+
return pandaspdb
|
utils_dataset.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import csv
|
3 |
+
|
4 |
+
def load_GO_annot(filename):
|
5 |
+
# Load GO annotations
|
6 |
+
onts = ['mf', 'bp', 'cc']
|
7 |
+
prot2annot = {}
|
8 |
+
goterms = {ont: [] for ont in onts}
|
9 |
+
gonames = {ont: [] for ont in onts}
|
10 |
+
with open(filename, mode='r') as tsvfile:
|
11 |
+
reader = csv.reader(tsvfile, delimiter='\t')
|
12 |
+
|
13 |
+
# molecular function
|
14 |
+
next(reader, None) # skip the headers
|
15 |
+
goterms[onts[0]] = next(reader)
|
16 |
+
next(reader, None) # skip the headers
|
17 |
+
gonames[onts[0]] = next(reader)
|
18 |
+
|
19 |
+
# biological process
|
20 |
+
next(reader, None) # skip the headers
|
21 |
+
goterms[onts[1]] = next(reader)
|
22 |
+
next(reader, None) # skip the headers
|
23 |
+
gonames[onts[1]] = next(reader)
|
24 |
+
|
25 |
+
# cellular component
|
26 |
+
next(reader, None) # skip the headers
|
27 |
+
goterms[onts[2]] = next(reader)
|
28 |
+
next(reader, None) # skip the headers
|
29 |
+
gonames[onts[2]] = next(reader)
|
30 |
+
|
31 |
+
next(reader, None) # skip the headers
|
32 |
+
counts = {ont: np.zeros(len(goterms[ont]), dtype=float) for ont in onts}
|
33 |
+
for row in reader:
|
34 |
+
prot, prot_goterms = row[0], row[1:]
|
35 |
+
prot2annot[prot] = {ont: [] for ont in onts}
|
36 |
+
for i in range(3):
|
37 |
+
goterm_indices = [goterms[onts[i]].index(goterm) for goterm in prot_goterms[i].split(',') if goterm != '']
|
38 |
+
prot2annot[prot][onts[i]] = np.zeros(len(goterms[onts[i]]))
|
39 |
+
prot2annot[prot][onts[i]][goterm_indices] = 1.0
|
40 |
+
counts[onts[i]][goterm_indices] += 1.0
|
41 |
+
return prot2annot, goterms, gonames, counts
|
42 |
+
|
43 |
+
|
44 |
+
def load_EC_annot(filename):
|
45 |
+
# Load EC annotations """
|
46 |
+
prot2annot = {}
|
47 |
+
with open(filename, mode='r') as tsvfile:
|
48 |
+
reader = csv.reader(tsvfile, delimiter='\t')
|
49 |
+
|
50 |
+
# molecular function
|
51 |
+
next(reader, None) # skip the headers
|
52 |
+
ec_numbers = {'ec': next(reader)}
|
53 |
+
next(reader, None) # skip the headers
|
54 |
+
counts = {'ec': np.zeros(len(ec_numbers['ec']), dtype=float)}
|
55 |
+
for row in reader:
|
56 |
+
prot, prot_ec_numbers = row[0], row[1]
|
57 |
+
ec_indices = [ec_numbers['ec'].index(ec_num) for ec_num in prot_ec_numbers.split(',')]
|
58 |
+
prot2annot[prot] = {'ec': np.zeros(len(ec_numbers['ec']), dtype=np.int64)}
|
59 |
+
prot2annot[prot]['ec'][ec_indices] = 1.0
|
60 |
+
counts['ec'][ec_indices] += 1
|