Upload chart_elementnet_swin.py
Browse files- chart_elementnet_swin.py +399 -0
chart_elementnet_swin.py
ADDED
@@ -0,0 +1,399 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# cascade_rcnn_r50_fpn_meta.py - Enhanced config with Swin Transformer backbone
|
2 |
+
#
|
3 |
+
# PROGRESSIVE LOSS STRATEGY:
|
4 |
+
# - All 3 Cascade stages start with SmoothL1Loss for stable initial training
|
5 |
+
# - At epoch 5, Stage 3 (final stage) switches to GIoULoss via ProgressiveLossHook
|
6 |
+
# - Stage 1 & 2 remain SmoothL1Loss throughout training
|
7 |
+
# - This ensures model stability before introducing more complex IoU-based losses
|
8 |
+
_base_ = [
|
9 |
+
'../../mmdetection/configs/_base_/datasets/coco_detection.py',
|
10 |
+
'../../mmdetection/configs/_base_/schedules/schedule_1x.py',
|
11 |
+
'../../mmdetection/configs/_base_/default_runtime.py'
|
12 |
+
]
|
13 |
+
|
14 |
+
# Custom imports - this registers our modules without polluting config namespace
|
15 |
+
custom_imports = dict(
|
16 |
+
imports=[
|
17 |
+
'legend_match_swin.custom_models.custom_dataset',
|
18 |
+
'legend_match_swin.custom_models.register',
|
19 |
+
'legend_match_swin.custom_models.custom_hooks',
|
20 |
+
'legend_match_swin.custom_models.progressive_loss_hook',
|
21 |
+
],
|
22 |
+
allow_failed_imports=False
|
23 |
+
)
|
24 |
+
|
25 |
+
# Add to Python path
|
26 |
+
import sys
|
27 |
+
import os
|
28 |
+
# Use a simpler path approach that doesn't rely on __file__
|
29 |
+
sys.path.insert(0, os.path.join(os.getcwd(), '..', '..'))
|
30 |
+
|
31 |
+
# Custom Cascade model with coordinate handling for chart data
|
32 |
+
model = dict(
|
33 |
+
type='CustomCascadeWithMeta', # Use custom model with coordinate handling
|
34 |
+
coordinate_standardization=dict(
|
35 |
+
enabled=True,
|
36 |
+
origin='bottom_left', # Match annotation creation coordinate system
|
37 |
+
normalize=True,
|
38 |
+
relative_to_plot=False, # Keep simple for now
|
39 |
+
scale_to_axis=False # Keep simple for now
|
40 |
+
),
|
41 |
+
data_preprocessor=dict(
|
42 |
+
type='DetDataPreprocessor',
|
43 |
+
mean=[123.675, 116.28, 103.53],
|
44 |
+
std=[58.395, 57.12, 57.375],
|
45 |
+
bgr_to_rgb=True,
|
46 |
+
pad_size_divisor=32),
|
47 |
+
# ----- Swin Transformer Base (22K) Backbone + FPN -----
|
48 |
+
backbone=dict(
|
49 |
+
type='SwinTransformer',
|
50 |
+
embed_dims=128, # Swin Base embedding dimensions
|
51 |
+
depths=[2, 2, 18, 2], # Swin Base depths
|
52 |
+
num_heads=[4, 8, 16, 32], # Swin Base attention heads
|
53 |
+
window_size=7,
|
54 |
+
mlp_ratio=4,
|
55 |
+
qkv_bias=True,
|
56 |
+
qk_scale=None,
|
57 |
+
drop_rate=0.0,
|
58 |
+
attn_drop_rate=0.0,
|
59 |
+
drop_path_rate=0.3, # Slightly higher for more complex model
|
60 |
+
patch_norm=True,
|
61 |
+
out_indices=(0, 1, 2, 3),
|
62 |
+
with_cp=False,
|
63 |
+
convert_weights=True,
|
64 |
+
init_cfg=dict(
|
65 |
+
type='Pretrained',
|
66 |
+
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_base_patch4_window7_224_22k_20220317-4f79f7c0.pth'
|
67 |
+
)
|
68 |
+
),
|
69 |
+
neck=dict(
|
70 |
+
type='FPN',
|
71 |
+
in_channels=[128, 256, 512, 1024], # Swin Base: embed_dims * 2^(stage)
|
72 |
+
out_channels=256,
|
73 |
+
num_outs=6,
|
74 |
+
start_level=0,
|
75 |
+
add_extra_convs='on_input'
|
76 |
+
),
|
77 |
+
# Enhanced RPN with smaller anchors for tiny objects + improved losses
|
78 |
+
rpn_head=dict(
|
79 |
+
type='RPNHead',
|
80 |
+
in_channels=256,
|
81 |
+
feat_channels=256,
|
82 |
+
anchor_generator=dict(
|
83 |
+
type='AnchorGenerator',
|
84 |
+
scales=[1, 2, 4, 8], # Even smaller scales for tiny objects
|
85 |
+
ratios=[0.5, 1.0, 2.0], # Multiple aspect ratios
|
86 |
+
strides=[4, 8, 16, 32, 64, 128]), # Extended FPN strides
|
87 |
+
bbox_coder=dict(
|
88 |
+
type='DeltaXYWHBBoxCoder',
|
89 |
+
target_means=[.0, .0, .0, .0],
|
90 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
91 |
+
loss_cls=dict(
|
92 |
+
type='CrossEntropyLoss',
|
93 |
+
use_sigmoid=True,
|
94 |
+
loss_weight=1.0),
|
95 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
96 |
+
# Progressive Loss Strategy: Start with SmoothL1 for all 3 stages
|
97 |
+
# Stage 3 (final stage) will switch to GIoU at epoch 5 via ProgressiveLossHook
|
98 |
+
roi_head=dict(
|
99 |
+
type='CascadeRoIHead',
|
100 |
+
num_stages=3,
|
101 |
+
stage_loss_weights=[1, 0.5, 0.25],
|
102 |
+
bbox_roi_extractor=dict(
|
103 |
+
type='SingleRoIExtractor',
|
104 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
105 |
+
out_channels=256,
|
106 |
+
featmap_strides=[4, 8, 16, 32]),
|
107 |
+
bbox_head=[
|
108 |
+
# Stage 1: Always SmoothL1Loss (coarse detection)
|
109 |
+
dict(
|
110 |
+
type='Shared2FCBBoxHead',
|
111 |
+
in_channels=256,
|
112 |
+
fc_out_channels=1024,
|
113 |
+
roi_feat_size=7,
|
114 |
+
num_classes=21, # 21 enhanced categories
|
115 |
+
bbox_coder=dict(
|
116 |
+
type='DeltaXYWHBBoxCoder',
|
117 |
+
target_means=[0., 0., 0., 0.],
|
118 |
+
target_stds=[0.05, 0.05, 0.1, 0.1]),
|
119 |
+
reg_class_agnostic=True,
|
120 |
+
loss_cls=dict(
|
121 |
+
type='CrossEntropyLoss',
|
122 |
+
use_sigmoid=False,
|
123 |
+
loss_weight=1.0),
|
124 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
125 |
+
# Stage 2: Always SmoothL1Loss (intermediate refinement)
|
126 |
+
dict(
|
127 |
+
type='Shared2FCBBoxHead',
|
128 |
+
in_channels=256,
|
129 |
+
fc_out_channels=1024,
|
130 |
+
roi_feat_size=7,
|
131 |
+
num_classes=21, # 21 enhanced categories
|
132 |
+
bbox_coder=dict(
|
133 |
+
type='DeltaXYWHBBoxCoder',
|
134 |
+
target_means=[0., 0., 0., 0.],
|
135 |
+
target_stds=[0.033, 0.033, 0.067, 0.067]),
|
136 |
+
reg_class_agnostic=True,
|
137 |
+
loss_cls=dict(
|
138 |
+
type='CrossEntropyLoss',
|
139 |
+
use_sigmoid=False,
|
140 |
+
loss_weight=1.0),
|
141 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)),
|
142 |
+
# Stage 3: SmoothL1 → GIoU at epoch 5 (progressive switching)
|
143 |
+
dict(
|
144 |
+
type='Shared2FCBBoxHead',
|
145 |
+
in_channels=256,
|
146 |
+
fc_out_channels=1024,
|
147 |
+
roi_feat_size=7,
|
148 |
+
num_classes=21, # 21 enhanced categories
|
149 |
+
bbox_coder=dict(
|
150 |
+
type='DeltaXYWHBBoxCoder',
|
151 |
+
target_means=[0., 0., 0., 0.],
|
152 |
+
target_stds=[0.02, 0.02, 0.05, 0.05]),
|
153 |
+
reg_class_agnostic=True,
|
154 |
+
loss_cls=dict(
|
155 |
+
type='CrossEntropyLoss',
|
156 |
+
use_sigmoid=False,
|
157 |
+
loss_weight=1.0),
|
158 |
+
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0))
|
159 |
+
]),
|
160 |
+
train_cfg=dict(
|
161 |
+
rpn=dict(
|
162 |
+
assigner=dict(
|
163 |
+
type='MaxIoUAssigner',
|
164 |
+
pos_iou_thr=0.7,
|
165 |
+
neg_iou_thr=0.3,
|
166 |
+
min_pos_iou=0.3,
|
167 |
+
match_low_quality=True,
|
168 |
+
ignore_iof_thr=-1),
|
169 |
+
sampler=dict(
|
170 |
+
type='RandomSampler',
|
171 |
+
num=256,
|
172 |
+
pos_fraction=0.5,
|
173 |
+
neg_pos_ub=-1,
|
174 |
+
add_gt_as_proposals=False),
|
175 |
+
allowed_border=0,
|
176 |
+
pos_weight=-1,
|
177 |
+
debug=False),
|
178 |
+
rpn_proposal=dict(
|
179 |
+
nms_pre=2000,
|
180 |
+
max_per_img=2000,
|
181 |
+
nms=dict(type='nms', iou_threshold=0.8),
|
182 |
+
min_bbox_size=0),
|
183 |
+
rcnn=[
|
184 |
+
dict(
|
185 |
+
assigner=dict(
|
186 |
+
type='MaxIoUAssigner',
|
187 |
+
pos_iou_thr=0.4,
|
188 |
+
neg_iou_thr=0.4,
|
189 |
+
min_pos_iou=0.4,
|
190 |
+
match_low_quality=False,
|
191 |
+
ignore_iof_thr=-1),
|
192 |
+
sampler=dict(
|
193 |
+
type='RandomSampler',
|
194 |
+
num=512,
|
195 |
+
pos_fraction=0.25,
|
196 |
+
neg_pos_ub=-1,
|
197 |
+
add_gt_as_proposals=True),
|
198 |
+
pos_weight=-1,
|
199 |
+
debug=False),
|
200 |
+
dict(
|
201 |
+
assigner=dict(
|
202 |
+
type='MaxIoUAssigner',
|
203 |
+
pos_iou_thr=0.6,
|
204 |
+
neg_iou_thr=0.6,
|
205 |
+
min_pos_iou=0.6,
|
206 |
+
match_low_quality=False,
|
207 |
+
ignore_iof_thr=-1),
|
208 |
+
sampler=dict(
|
209 |
+
type='RandomSampler',
|
210 |
+
num=512,
|
211 |
+
pos_fraction=0.25,
|
212 |
+
neg_pos_ub=-1,
|
213 |
+
add_gt_as_proposals=True),
|
214 |
+
pos_weight=-1,
|
215 |
+
debug=False),
|
216 |
+
dict(
|
217 |
+
assigner=dict(
|
218 |
+
type='MaxIoUAssigner',
|
219 |
+
pos_iou_thr=0.7,
|
220 |
+
neg_iou_thr=0.7,
|
221 |
+
min_pos_iou=0.7,
|
222 |
+
match_low_quality=False,
|
223 |
+
ignore_iof_thr=-1),
|
224 |
+
sampler=dict(
|
225 |
+
type='RandomSampler',
|
226 |
+
num=512,
|
227 |
+
pos_fraction=0.25,
|
228 |
+
neg_pos_ub=-1,
|
229 |
+
add_gt_as_proposals=True),
|
230 |
+
pos_weight=-1,
|
231 |
+
debug=False)
|
232 |
+
]),
|
233 |
+
# Enhanced test configuration with soft-NMS and multi-scale support
|
234 |
+
test_cfg=dict(
|
235 |
+
rpn=dict(
|
236 |
+
nms_pre=1000,
|
237 |
+
max_per_img=1000,
|
238 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
239 |
+
min_bbox_size=0),
|
240 |
+
rcnn=dict(
|
241 |
+
score_thr=0.005, # Even lower threshold to catch more classes
|
242 |
+
nms=dict(
|
243 |
+
type='soft_nms', # Soft-NMS for better small object detection
|
244 |
+
iou_threshold=0.5,
|
245 |
+
min_score=0.005,
|
246 |
+
method='gaussian',
|
247 |
+
sigma=0.5),
|
248 |
+
max_per_img=500))) # Allow more detections
|
249 |
+
|
250 |
+
# Dataset settings - using cleaned annotations
|
251 |
+
dataset_type = 'ChartDataset'
|
252 |
+
data_root = '' # Remove data_root duplication
|
253 |
+
|
254 |
+
# Define the 21 chart element classes that match the annotations
|
255 |
+
CLASSES = (
|
256 |
+
'title', 'subtitle', 'x-axis', 'y-axis', 'x-axis-label', 'y-axis-label',
|
257 |
+
'x-tick-label', 'y-tick-label', 'legend', 'legend-title', 'legend-item',
|
258 |
+
'data-point', 'data-line', 'data-bar', 'data-area', 'grid-line',
|
259 |
+
'axis-title', 'tick-label', 'data-label', 'legend-text', 'plot-area'
|
260 |
+
)
|
261 |
+
|
262 |
+
# Updated to use cleaned annotation files
|
263 |
+
train_dataloader = dict(
|
264 |
+
batch_size=2, # Increased back to 2
|
265 |
+
num_workers=2,
|
266 |
+
persistent_workers=True,
|
267 |
+
sampler=dict(type='DefaultSampler', shuffle=True),
|
268 |
+
dataset=dict(
|
269 |
+
type=dataset_type,
|
270 |
+
data_root=data_root,
|
271 |
+
ann_file='legend_data/annotations_JSON_cleaned/train_enriched.json', # Full path
|
272 |
+
data_prefix=dict(img='legend_data/train/images/'), # Full path
|
273 |
+
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
|
274 |
+
filter_cfg=dict(filter_empty_gt=True, min_size=0, class_specific_min_sizes={
|
275 |
+
'data-point': 16, # Back to 16x16 from 32x32
|
276 |
+
'data-bar': 16, # Back to 16x16 from 32x32
|
277 |
+
'tick-label': 16, # Back to 16x16 from 32x32
|
278 |
+
'x-tick-label': 16, # Back to 16x16 from 32x32
|
279 |
+
'y-tick-label': 16 # Back to 16x16 from 32x32
|
280 |
+
}),
|
281 |
+
pipeline=[
|
282 |
+
dict(type='LoadImageFromFile'),
|
283 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
284 |
+
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Higher resolution for tiny objects
|
285 |
+
dict(type='RandomFlip', prob=0.5),
|
286 |
+
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
|
287 |
+
dict(type='PackDetInputs')
|
288 |
+
]
|
289 |
+
)
|
290 |
+
)
|
291 |
+
|
292 |
+
val_dataloader = dict(
|
293 |
+
batch_size=1,
|
294 |
+
num_workers=2,
|
295 |
+
persistent_workers=True,
|
296 |
+
drop_last=False,
|
297 |
+
sampler=dict(type='DefaultSampler', shuffle=False),
|
298 |
+
dataset=dict(
|
299 |
+
type=dataset_type,
|
300 |
+
data_root=data_root,
|
301 |
+
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Full path
|
302 |
+
data_prefix=dict(img='legend_data/train/images/'), # All images are in train/images
|
303 |
+
metainfo=dict(classes=CLASSES), # Tell dataset what classes to expect
|
304 |
+
test_mode=True,
|
305 |
+
pipeline=[
|
306 |
+
dict(type='LoadImageFromFile'),
|
307 |
+
dict(type='Resize', scale=(1600, 1000), keep_ratio=True), # Base resolution for validation
|
308 |
+
dict(type='LoadAnnotations', with_bbox=True),
|
309 |
+
dict(type='ClampBBoxes'), # Ensure bboxes stay within image bounds
|
310 |
+
dict(type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor'))
|
311 |
+
]
|
312 |
+
)
|
313 |
+
)
|
314 |
+
|
315 |
+
test_dataloader = val_dataloader
|
316 |
+
|
317 |
+
# Enhanced evaluators with debugging
|
318 |
+
val_evaluator = dict(
|
319 |
+
type='CocoMetric',
|
320 |
+
ann_file='legend_data/annotations_JSON_cleaned/val_enriched_with_info.json', # Using cleaned annotations
|
321 |
+
metric='bbox',
|
322 |
+
format_only=False,
|
323 |
+
classwise=True, # Enable detailed per-class metrics table
|
324 |
+
proposal_nums=(100, 300, 1000)) # More detailed AR metrics
|
325 |
+
|
326 |
+
test_evaluator = val_evaluator
|
327 |
+
|
328 |
+
# Add custom hooks for debugging empty results
|
329 |
+
default_hooks = dict(
|
330 |
+
timer=dict(type='IterTimerHook'),
|
331 |
+
logger=dict(type='LoggerHook', interval=50),
|
332 |
+
param_scheduler=dict(type='ParamSchedulerHook'),
|
333 |
+
checkpoint=dict(type='CompatibleCheckpointHook', interval=1, save_best='auto', max_keep_ckpts=3),
|
334 |
+
sampler_seed=dict(type='DistSamplerSeedHook'),
|
335 |
+
visualization=dict(type='DetVisualizationHook'))
|
336 |
+
|
337 |
+
# Add NaN recovery hook for graceful handling like Faster R-CNN
|
338 |
+
custom_hooks = [
|
339 |
+
dict(type='SkipBadSamplesHook', interval=1), # Skip samples with bad GT data
|
340 |
+
dict(type='ChartTypeDistributionHook', interval=500), # Monitor class distribution
|
341 |
+
dict(type='MissingImageReportHook', interval=1000), # Track missing images
|
342 |
+
dict(type='NanRecoveryHook', # For logging & monitoring
|
343 |
+
fallback_loss=1.0,
|
344 |
+
max_consecutive_nans=100,
|
345 |
+
log_interval=50),
|
346 |
+
dict(type='ProgressiveLossHook', # Progressive loss switching
|
347 |
+
switch_epoch=5, # Switch stage 3 to GIoU at epoch 5
|
348 |
+
target_loss_type='GIoULoss', # Use GIoU for stage 3 (final stage)
|
349 |
+
loss_weight=1.0, # Keep same loss weight
|
350 |
+
warmup_epochs=2, # Monitor for 2 epochs after switch
|
351 |
+
monitor_stage_weights=True), # Log stage loss details
|
352 |
+
]
|
353 |
+
|
354 |
+
# Training configuration - extended to 40 epochs for Swin Base on small objects
|
355 |
+
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=40, val_interval=1)
|
356 |
+
val_cfg = dict(type='ValLoop')
|
357 |
+
test_cfg = dict(type='TestLoop')
|
358 |
+
|
359 |
+
# Optimizer with standard stable settings
|
360 |
+
optim_wrapper = dict(
|
361 |
+
type='OptimWrapper',
|
362 |
+
optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001),
|
363 |
+
clip_grad=dict(max_norm=35.0, norm_type=2)
|
364 |
+
)
|
365 |
+
|
366 |
+
# Extended learning rate schedule with cosine annealing for Swin Base
|
367 |
+
param_scheduler = [
|
368 |
+
dict(
|
369 |
+
type='LinearLR',
|
370 |
+
start_factor=0.05, # 1e-4 / 2e-2 = 0.05 (warmup from 1e-4 to 2e-2)
|
371 |
+
by_epoch=False,
|
372 |
+
begin=0,
|
373 |
+
end=1000), # 1k iteration warmup
|
374 |
+
dict(
|
375 |
+
type='CosineAnnealingLR',
|
376 |
+
begin=0,
|
377 |
+
end=40, # Match max_epochs
|
378 |
+
by_epoch=True,
|
379 |
+
T_max=40,
|
380 |
+
eta_min=1e-6, # Minimum learning rate
|
381 |
+
convert_to_iter_based=True)
|
382 |
+
]
|
383 |
+
|
384 |
+
# Work directory
|
385 |
+
work_dir = './work_dirs/cascade_rcnn_swin_base_40ep_cosine_fpn_meta'
|
386 |
+
|
387 |
+
# Multi-scale test configuration (uncomment to enable)
|
388 |
+
# img_scales = [(800, 500), (1600, 1000), (2400, 1500)] # 0.5x, 1.0x, 1.5x scales
|
389 |
+
# tta_model = dict(
|
390 |
+
# type='DetTTAModel',
|
391 |
+
# tta_cfg=dict(
|
392 |
+
# nms=dict(type='nms', iou_threshold=0.5),
|
393 |
+
# max_per_img=100)
|
394 |
+
# )
|
395 |
+
|
396 |
+
# Fresh start
|
397 |
+
resume = False
|
398 |
+
load_from = None
|
399 |
+
|