Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: openrail
|
3 |
+
datasets:
|
4 |
+
- lucasmccabe-lmi/CodeAlpaca-20k
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: adapter-transformers
|
8 |
+
---
|
9 |
+
|
10 |
+
# Model Card for `opt350m-codealpaca20k`
|
11 |
+
|
12 |
+
## Model Description
|
13 |
+
|
14 |
+
A simple opt350m model trained on the CodeAlpaca dataset using quantization and Progressive Embedding Fine-Tuning (PEFT). It's designed to understand and generate code-related responses based on the prompts provided.
|
15 |
+
|
16 |
+
### Model Architecture
|
17 |
+
|
18 |
+
- **Base Model**: `facebook/opt-350m`
|
19 |
+
- **Fine-tuning**: Progressive Embedding Fine-Tuning (PEFT)
|
20 |
+
|
21 |
+
## Training Data
|
22 |
+
|
23 |
+
The model was trained on the `lucasmccabe-lmi/CodeAlpaca-20k` dataset. This dataset contains code-related prompts and their corresponding outputs.
|
24 |
+
|
25 |
+
## Training Procedure
|
26 |
+
|
27 |
+
### Quantization Configuration:
|
28 |
+
|
29 |
+
- **Quantization Type**: 4-bit
|
30 |
+
- **Compute Dtype**: float16
|
31 |
+
- **Double Quant**: Enabled
|
32 |
+
|
33 |
+
### PEFT Configuration:
|
34 |
+
|
35 |
+
- **Lora Alpha**: 16
|
36 |
+
- **Lora Dropout**: 0.5
|
37 |
+
- **Bias**: None
|
38 |
+
- **Task Type**: CAUSAL_LM
|
39 |
+
- **Target Modules**: q_proj, v_proj, k_proj
|
40 |
+
|
41 |
+
### Training Arguments:
|
42 |
+
|
43 |
+
- **Output Directory**: `./results`
|
44 |
+
- **Batch Size**: 4 (per device)
|
45 |
+
- **Gradient Accumulation Steps**: 2
|
46 |
+
- **Number of Epochs**: 10
|
47 |
+
- **Optimizer**: `adamw_bnb_8bit`
|
48 |
+
- **Learning Rate**: 2e-5
|
49 |
+
- **Max Gradient Norm**: 0.3
|
50 |
+
- **Warmup Ratio**: 0.03
|
51 |
+
- **Learning Rate Scheduler**: Cosine
|
52 |
+
- **Logging Steps**: 10
|
53 |
+
- **Save Steps**: 250
|
54 |
+
- **FP16 Precision**: Enabled
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
```python
|
59 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
60 |
+
|
61 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/opt350m")
|
62 |
+
model = AutoModelForCausalLM.from_pretrained("harpomaxx/opt350m-codealpaca20k)
|
63 |
+
|
64 |
+
prompt = "### Question: [Your code-related question here]"
|
65 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
66 |
+
outputs = model.generate(inputs)
|
67 |
+
decoded_output = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
68 |
+
|
69 |
+
print(decoded_output)
|
70 |
+
```
|
71 |
+
|
72 |
+
## Limitations and Bias
|
73 |
+
|
74 |
+
- The model is specifically fine-tuned for code-related tasks, and its performance on other tasks might not be optimal.
|
75 |
+
- The biases in the CodeAlpaca dataset might be reflected in the model's outputs.
|
76 |
+
|
77 |
+
## License
|
78 |
+
|
79 |
+
[Specify the license under which the model is released.]
|
80 |
+
|
81 |
+
---
|
82 |
+
|
83 |
+
Remember to replace placeholders like `your_model_name_here` with the actual name or path of your model. Adjust any other details as necessary to fit the specifics of your model and its training.
|