File size: 2,583 Bytes
cb497dc
38f3267
 
 
 
 
 
 
 
 
cb497dc
 
38f3267
 
cb497dc
38f3267
cb497dc
38f3267
 
 
 
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
cb497dc
38f3267
 
 
 
 
 
 
 
 
 
cb497dc
38f3267
cb497dc
38f3267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb497dc
 
38f3267
cb497dc
38f3267
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
license: apache-2.0
base_model: boumehdi/wav2vec2-large-xlsr-moroccan-darija
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: wav2vec2-large-xlsr-moroccan-darija-v2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xlsr-moroccan-darija-v2

This model is a fine-tuned version of [boumehdi/wav2vec2-large-xlsr-moroccan-darija](https://huggingface.co/boumehdi/wav2vec2-large-xlsr-moroccan-darija) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2106
- Wer: 0.1908

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.8709        | 0.5359 | 500  | 0.4977          | 0.4531 |
| 0.4841        | 1.0718 | 1000 | 0.2715          | 0.2724 |
| 0.3611        | 1.6077 | 1500 | 0.2311          | 0.2441 |
| 0.3088        | 2.1436 | 2000 | 0.2042          | 0.2366 |
| 0.2666        | 2.6795 | 2500 | 0.1999          | 0.2352 |
| 0.2303        | 3.2154 | 3000 | 0.1900          | 0.2231 |
| 0.1921        | 3.7513 | 3500 | 0.1839          | 0.2195 |
| 0.1629        | 4.2872 | 4000 | 0.1783          | 0.2153 |
| 0.1403        | 4.8232 | 4500 | 0.1904          | 0.2041 |
| 0.1178        | 5.3591 | 5000 | 0.1739          | 0.2118 |
| 0.1124        | 5.8950 | 5500 | 0.1996          | 0.1970 |
| 0.0981        | 6.4309 | 6000 | 0.1890          | 0.2016 |
| 0.091         | 6.9668 | 6500 | 0.2020          | 0.1949 |
| 0.077         | 7.5027 | 7000 | 0.2057          | 0.1929 |
| 0.0769        | 8.0386 | 7500 | 0.2093          | 0.1935 |
| 0.0726        | 8.5745 | 8000 | 0.2097          | 0.1924 |
| 0.0685        | 9.1104 | 8500 | 0.2088          | 0.1913 |
| 0.0625        | 9.6463 | 9000 | 0.2106          | 0.1908 |


### Framework versions

- Transformers 4.43.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1