--- datasets: - flytech/python-codes-25k language: - en - tr base_model: - Qwen/Qwen3-0.6B pipeline_tag: text-generation library_name: transformers tags: - code - text-generation-inference --- # haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned Qwen 0.6B LoRA fine-tuned for Python expert tasks ## Training Notebook (Google Colab) You can reproduce the fine-tuning process or adapt it for your own dataset using the Colab notebook: 👉 [Open in Google Colab](https://colab.research.google.com/drive/17mU5LFWT6JQ5uDI8FGGugyEkKnykw4Xj?usp=sharing) ## Model Details - **Model type:** Qwen 0.6B LoRA - **Base model:** Qwen/Qwen-0.6B - **Fine-tuned by:** @haydarkadioglu - **Language(s):** English, Python ## Intended Use - **Primary use case:** Code generation, Python expert help - **Not suitable for:** General conversation, non-Python coding tasks ## Training Details - **Dataset:** flytech/python-codes-25k - **Steps / Epochs:** 3 epochs, batch size 8 - **Hardware:** A100 GPU / Colab T4 - **Fine-tuning method:** LoRA / PEFT ## Evaluation | Step | Training Loss | | ------------ | ------------- | | 100 | 1.8288 | | 500 | 1.7133 | | 1000 | 1.5976 | | 1500 | 1.6438 | | 2000 | 1.5797 | | 2500 | 1.5619 | | 3000 | 1.6235 | | Final (3102) | **1.6443** | Final Results: Training loss (avg): 1.64 Steps/sec: 0.645 Samples/sec: 10.3 FLOPs: 5.31e15 ## Limitations - The model might produce incorrect or insecure code. - Not guaranteed to follow PEP8. - May hallucinate libraries or functions. ## Example Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "haydarkadioglu/Qwen3-0.6B-lora-python-expert-fine-tuned" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) prompt = "Write a Python function, this function should return prime numbers between 0-100" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=200) print(tokenizer.decode(outputs[0], skip_special_tokens=True))