heboya8 commited on
Commit
7423371
·
verified ·
1 Parent(s): 56dd1ae

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. checkpoint-1950/README.md +202 -0
  3. checkpoint-1950/adapter_config.json +29 -0
  4. checkpoint-1950/added_tokens.json +3 -0
  5. checkpoint-1950/chat_template.jinja +47 -0
  6. checkpoint-1950/special_tokens_map.json +33 -0
  7. checkpoint-1950/tokenizer_config.json +0 -0
  8. checkpoint-1950/trainer_state.json +347 -0
  9. checkpoint-2450/optimizer.pt +3 -0
  10. checkpoint-2450/rng_state.pth +3 -0
  11. checkpoint-2450/scheduler.pt +3 -0
  12. checkpoint-2450/tokenizer.json +3 -0
  13. checkpoint-2450/tokenizer.model +3 -0
  14. checkpoint-2450/training_args.bin +3 -0
  15. checkpoint-2500/README.md +202 -0
  16. checkpoint-2500/adapter_config.json +29 -0
  17. checkpoint-2500/added_tokens.json +3 -0
  18. checkpoint-2500/chat_template.jinja +47 -0
  19. checkpoint-2500/special_tokens_map.json +33 -0
  20. checkpoint-2500/tokenizer_config.json +0 -0
  21. checkpoint-2500/trainer_state.json +440 -0
  22. checkpoint-3200/README.md +202 -0
  23. checkpoint-3200/adapter_config.json +29 -0
  24. checkpoint-3200/added_tokens.json +3 -0
  25. checkpoint-3200/chat_template.jinja +47 -0
  26. checkpoint-3200/special_tokens_map.json +33 -0
  27. checkpoint-3200/tokenizer_config.json +0 -0
  28. checkpoint-3200/trainer_state.json +554 -0
  29. checkpoint-3250/README.md +202 -0
  30. checkpoint-3250/adapter_config.json +29 -0
  31. checkpoint-3250/added_tokens.json +3 -0
  32. checkpoint-3250/chat_template.jinja +47 -0
  33. checkpoint-3250/special_tokens_map.json +33 -0
  34. checkpoint-3250/tokenizer_config.json +0 -0
  35. checkpoint-3250/trainer_state.json +561 -0
  36. checkpoint-3350/README.md +202 -0
  37. checkpoint-3350/adapter_config.json +29 -0
  38. checkpoint-3350/added_tokens.json +3 -0
  39. checkpoint-3350/chat_template.jinja +47 -0
  40. checkpoint-3350/special_tokens_map.json +33 -0
  41. checkpoint-3350/tokenizer_config.json +0 -0
  42. checkpoint-3350/trainer_state.json +575 -0
  43. checkpoint-3650/adapter_model.safetensors +3 -0
  44. checkpoint-3650/optimizer.pt +3 -0
  45. checkpoint-3650/rng_state.pth +3 -0
  46. checkpoint-3650/scheduler.pt +3 -0
  47. checkpoint-3650/tokenizer.json +3 -0
  48. checkpoint-3900/README.md +202 -0
  49. checkpoint-3900/adapter_config.json +29 -0
  50. checkpoint-3900/added_tokens.json +3 -0
.gitattributes CHANGED
@@ -80,3 +80,5 @@ checkpoint-5100/tokenizer.json filter=lfs diff=lfs merge=lfs -text
80
  checkpoint-5200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
81
  checkpoint-2300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
82
  checkpoint-4400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
80
  checkpoint-5200/tokenizer.json filter=lfs diff=lfs merge=lfs -text
81
  checkpoint-2300/tokenizer.json filter=lfs diff=lfs merge=lfs -text
82
  checkpoint-4400/tokenizer.json filter=lfs diff=lfs merge=lfs -text
83
+ checkpoint-3650/tokenizer.json filter=lfs diff=lfs merge=lfs -text
84
+ checkpoint-2450/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-1950/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1950/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1950/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1950/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1950/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1950/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1950/trainer_state.json ADDED
@@ -0,0 +1,347 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.208439535542339,
6
+ "eval_steps": 354,
7
+ "global_step": 1950,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ },
261
+ {
262
+ "epoch": 1.812234494477485,
263
+ "grad_norm": 0.9896508455276489,
264
+ "learning_rate": 1.923963133640553e-05,
265
+ "loss": 0.4895,
266
+ "step": 1600
267
+ },
268
+ {
269
+ "epoch": 1.8688756726139903,
270
+ "grad_norm": 1.150964617729187,
271
+ "learning_rate": 1.3479262672811061e-05,
272
+ "loss": 0.5164,
273
+ "step": 1650
274
+ },
275
+ {
276
+ "epoch": 1.9255168507504956,
277
+ "grad_norm": 0.8384917378425598,
278
+ "learning_rate": 7.71889400921659e-06,
279
+ "loss": 0.4914,
280
+ "step": 1700
281
+ },
282
+ {
283
+ "epoch": 1.9821580288870009,
284
+ "grad_norm": 0.9231545329093933,
285
+ "learning_rate": 1.9585253456221198e-06,
286
+ "loss": 0.4939,
287
+ "step": 1750
288
+ },
289
+ {
290
+ "epoch": 2.0045312942509206,
291
+ "eval_loss": 0.5844214558601379,
292
+ "eval_runtime": 166.1298,
293
+ "eval_samples_per_second": 9.444,
294
+ "eval_steps_per_second": 2.366,
295
+ "step": 1770
296
+ },
297
+ {
298
+ "epoch": 2.0385160011328236,
299
+ "grad_norm": 0.9673134088516235,
300
+ "learning_rate": 0.00014248089741505446,
301
+ "loss": 0.4303,
302
+ "step": 1800
303
+ },
304
+ {
305
+ "epoch": 2.0951571792693287,
306
+ "grad_norm": 1.33237624168396,
307
+ "learning_rate": 0.00014085514550479596,
308
+ "loss": 0.4594,
309
+ "step": 1850
310
+ },
311
+ {
312
+ "epoch": 2.151798357405834,
313
+ "grad_norm": 1.068943738937378,
314
+ "learning_rate": 0.0001392293935945375,
315
+ "loss": 0.4939,
316
+ "step": 1900
317
+ },
318
+ {
319
+ "epoch": 2.208439535542339,
320
+ "grad_norm": 1.1625093221664429,
321
+ "learning_rate": 0.00013760364168427899,
322
+ "loss": 0.4757,
323
+ "step": 1950
324
+ }
325
+ ],
326
+ "logging_steps": 50,
327
+ "max_steps": 6181,
328
+ "num_input_tokens_seen": 0,
329
+ "num_train_epochs": 7,
330
+ "save_steps": 50,
331
+ "stateful_callbacks": {
332
+ "TrainerControl": {
333
+ "args": {
334
+ "should_epoch_stop": false,
335
+ "should_evaluate": false,
336
+ "should_log": false,
337
+ "should_save": true,
338
+ "should_training_stop": false
339
+ },
340
+ "attributes": {}
341
+ }
342
+ },
343
+ "total_flos": 6.583373188993152e+16,
344
+ "train_batch_size": 4,
345
+ "trial_name": null,
346
+ "trial_params": null
347
+ }
checkpoint-2450/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d329c6543d070f436b4db9595e3e26fddc916c2bdc4e97353ae4e2ceec908985
3
+ size 27860634
checkpoint-2450/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48ee9b73399c28d7e668360bf1d5a4d11095c4738bf96c13f7bb6fbff59f8ccb
3
+ size 14244
checkpoint-2450/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:720bde55b96365094b279106416c23ec723560c1a6b593c52301d1761406ec6b
3
+ size 1064
checkpoint-2450/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
checkpoint-2450/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1299c11d7cf632ef3b4e11937501358ada021bbdf7c47638d13c0ee982f2e79c
3
+ size 4689074
checkpoint-2450/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5a005f970f4cec3bcd1f966ef18d4a684fb77d0ec7f69f10a53aafcf21569519
3
+ size 5752
checkpoint-2500/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-2500/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-2500/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-2500/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-2500/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-2500/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-2500/trainer_state.json ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.831492495043897,
6
+ "eval_steps": 354,
7
+ "global_step": 2500,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ },
261
+ {
262
+ "epoch": 1.812234494477485,
263
+ "grad_norm": 0.9896508455276489,
264
+ "learning_rate": 1.923963133640553e-05,
265
+ "loss": 0.4895,
266
+ "step": 1600
267
+ },
268
+ {
269
+ "epoch": 1.8688756726139903,
270
+ "grad_norm": 1.150964617729187,
271
+ "learning_rate": 1.3479262672811061e-05,
272
+ "loss": 0.5164,
273
+ "step": 1650
274
+ },
275
+ {
276
+ "epoch": 1.9255168507504956,
277
+ "grad_norm": 0.8384917378425598,
278
+ "learning_rate": 7.71889400921659e-06,
279
+ "loss": 0.4914,
280
+ "step": 1700
281
+ },
282
+ {
283
+ "epoch": 1.9821580288870009,
284
+ "grad_norm": 0.9231545329093933,
285
+ "learning_rate": 1.9585253456221198e-06,
286
+ "loss": 0.4939,
287
+ "step": 1750
288
+ },
289
+ {
290
+ "epoch": 2.0045312942509206,
291
+ "eval_loss": 0.5844214558601379,
292
+ "eval_runtime": 166.1298,
293
+ "eval_samples_per_second": 9.444,
294
+ "eval_steps_per_second": 2.366,
295
+ "step": 1770
296
+ },
297
+ {
298
+ "epoch": 2.0385160011328236,
299
+ "grad_norm": 0.9673134088516235,
300
+ "learning_rate": 0.00014248089741505446,
301
+ "loss": 0.4303,
302
+ "step": 1800
303
+ },
304
+ {
305
+ "epoch": 2.0951571792693287,
306
+ "grad_norm": 1.33237624168396,
307
+ "learning_rate": 0.00014085514550479596,
308
+ "loss": 0.4594,
309
+ "step": 1850
310
+ },
311
+ {
312
+ "epoch": 2.151798357405834,
313
+ "grad_norm": 1.068943738937378,
314
+ "learning_rate": 0.0001392293935945375,
315
+ "loss": 0.4939,
316
+ "step": 1900
317
+ },
318
+ {
319
+ "epoch": 2.208439535542339,
320
+ "grad_norm": 1.1625093221664429,
321
+ "learning_rate": 0.00013760364168427899,
322
+ "loss": 0.4757,
323
+ "step": 1950
324
+ },
325
+ {
326
+ "epoch": 2.2650807136788447,
327
+ "grad_norm": 1.080735683441162,
328
+ "learning_rate": 0.00013597788977402048,
329
+ "loss": 0.4724,
330
+ "step": 2000
331
+ },
332
+ {
333
+ "epoch": 2.3217218918153497,
334
+ "grad_norm": 0.8823259472846985,
335
+ "learning_rate": 0.00013435213786376198,
336
+ "loss": 0.4821,
337
+ "step": 2050
338
+ },
339
+ {
340
+ "epoch": 2.378363069951855,
341
+ "grad_norm": 1.0513312816619873,
342
+ "learning_rate": 0.0001327263859535035,
343
+ "loss": 0.479,
344
+ "step": 2100
345
+ },
346
+ {
347
+ "epoch": 2.4055508354573774,
348
+ "eval_loss": 0.6049736738204956,
349
+ "eval_runtime": 156.3245,
350
+ "eval_samples_per_second": 10.037,
351
+ "eval_steps_per_second": 2.514,
352
+ "step": 2124
353
+ },
354
+ {
355
+ "epoch": 2.4350042480883602,
356
+ "grad_norm": 1.0902981758117676,
357
+ "learning_rate": 0.000131100634043245,
358
+ "loss": 0.4749,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 2.4916454262248653,
363
+ "grad_norm": 0.9050194025039673,
364
+ "learning_rate": 0.0001294748821329865,
365
+ "loss": 0.4346,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 2.5482866043613708,
370
+ "grad_norm": 1.0356699228286743,
371
+ "learning_rate": 0.00012784913022272803,
372
+ "loss": 0.4685,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 2.604927782497876,
377
+ "grad_norm": 1.0071344375610352,
378
+ "learning_rate": 0.00012622337831246953,
379
+ "loss": 0.5,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 2.6615689606343813,
384
+ "grad_norm": 1.0409235954284668,
385
+ "learning_rate": 0.00012459762640221103,
386
+ "loss": 0.4908,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 2.7182101387708864,
391
+ "grad_norm": 0.8756324052810669,
392
+ "learning_rate": 0.00012297187449195252,
393
+ "loss": 0.4765,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 2.774851316907392,
398
+ "grad_norm": 0.6662527918815613,
399
+ "learning_rate": 0.00012134612258169405,
400
+ "loss": 0.4524,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 2.8065703766638346,
405
+ "eval_loss": 0.5904644727706909,
406
+ "eval_runtime": 157.1505,
407
+ "eval_samples_per_second": 9.984,
408
+ "eval_steps_per_second": 2.501,
409
+ "step": 2478
410
+ },
411
+ {
412
+ "epoch": 2.831492495043897,
413
+ "grad_norm": 1.0368993282318115,
414
+ "learning_rate": 0.00011972037067143556,
415
+ "loss": 0.4661,
416
+ "step": 2500
417
+ }
418
+ ],
419
+ "logging_steps": 50,
420
+ "max_steps": 6181,
421
+ "num_input_tokens_seen": 0,
422
+ "num_train_epochs": 7,
423
+ "save_steps": 50,
424
+ "stateful_callbacks": {
425
+ "TrainerControl": {
426
+ "args": {
427
+ "should_epoch_stop": false,
428
+ "should_evaluate": false,
429
+ "should_log": false,
430
+ "should_save": true,
431
+ "should_training_stop": false
432
+ },
433
+ "attributes": {}
434
+ }
435
+ },
436
+ "total_flos": 8.428217740722202e+16,
437
+ "train_batch_size": 4,
438
+ "trial_name": null,
439
+ "trial_params": null
440
+ }
checkpoint-3200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-3200/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3200/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-3200/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-3200/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-3200/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3200/trainer_state.json ADDED
@@ -0,0 +1,554 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.624185783064288,
6
+ "eval_steps": 354,
7
+ "global_step": 3200,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ },
261
+ {
262
+ "epoch": 1.812234494477485,
263
+ "grad_norm": 0.9896508455276489,
264
+ "learning_rate": 1.923963133640553e-05,
265
+ "loss": 0.4895,
266
+ "step": 1600
267
+ },
268
+ {
269
+ "epoch": 1.8688756726139903,
270
+ "grad_norm": 1.150964617729187,
271
+ "learning_rate": 1.3479262672811061e-05,
272
+ "loss": 0.5164,
273
+ "step": 1650
274
+ },
275
+ {
276
+ "epoch": 1.9255168507504956,
277
+ "grad_norm": 0.8384917378425598,
278
+ "learning_rate": 7.71889400921659e-06,
279
+ "loss": 0.4914,
280
+ "step": 1700
281
+ },
282
+ {
283
+ "epoch": 1.9821580288870009,
284
+ "grad_norm": 0.9231545329093933,
285
+ "learning_rate": 1.9585253456221198e-06,
286
+ "loss": 0.4939,
287
+ "step": 1750
288
+ },
289
+ {
290
+ "epoch": 2.0045312942509206,
291
+ "eval_loss": 0.5844214558601379,
292
+ "eval_runtime": 166.1298,
293
+ "eval_samples_per_second": 9.444,
294
+ "eval_steps_per_second": 2.366,
295
+ "step": 1770
296
+ },
297
+ {
298
+ "epoch": 2.0385160011328236,
299
+ "grad_norm": 0.9673134088516235,
300
+ "learning_rate": 0.00014248089741505446,
301
+ "loss": 0.4303,
302
+ "step": 1800
303
+ },
304
+ {
305
+ "epoch": 2.0951571792693287,
306
+ "grad_norm": 1.33237624168396,
307
+ "learning_rate": 0.00014085514550479596,
308
+ "loss": 0.4594,
309
+ "step": 1850
310
+ },
311
+ {
312
+ "epoch": 2.151798357405834,
313
+ "grad_norm": 1.068943738937378,
314
+ "learning_rate": 0.0001392293935945375,
315
+ "loss": 0.4939,
316
+ "step": 1900
317
+ },
318
+ {
319
+ "epoch": 2.208439535542339,
320
+ "grad_norm": 1.1625093221664429,
321
+ "learning_rate": 0.00013760364168427899,
322
+ "loss": 0.4757,
323
+ "step": 1950
324
+ },
325
+ {
326
+ "epoch": 2.2650807136788447,
327
+ "grad_norm": 1.080735683441162,
328
+ "learning_rate": 0.00013597788977402048,
329
+ "loss": 0.4724,
330
+ "step": 2000
331
+ },
332
+ {
333
+ "epoch": 2.3217218918153497,
334
+ "grad_norm": 0.8823259472846985,
335
+ "learning_rate": 0.00013435213786376198,
336
+ "loss": 0.4821,
337
+ "step": 2050
338
+ },
339
+ {
340
+ "epoch": 2.378363069951855,
341
+ "grad_norm": 1.0513312816619873,
342
+ "learning_rate": 0.0001327263859535035,
343
+ "loss": 0.479,
344
+ "step": 2100
345
+ },
346
+ {
347
+ "epoch": 2.4055508354573774,
348
+ "eval_loss": 0.6049736738204956,
349
+ "eval_runtime": 156.3245,
350
+ "eval_samples_per_second": 10.037,
351
+ "eval_steps_per_second": 2.514,
352
+ "step": 2124
353
+ },
354
+ {
355
+ "epoch": 2.4350042480883602,
356
+ "grad_norm": 1.0902981758117676,
357
+ "learning_rate": 0.000131100634043245,
358
+ "loss": 0.4749,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 2.4916454262248653,
363
+ "grad_norm": 0.9050194025039673,
364
+ "learning_rate": 0.0001294748821329865,
365
+ "loss": 0.4346,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 2.5482866043613708,
370
+ "grad_norm": 1.0356699228286743,
371
+ "learning_rate": 0.00012784913022272803,
372
+ "loss": 0.4685,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 2.604927782497876,
377
+ "grad_norm": 1.0071344375610352,
378
+ "learning_rate": 0.00012622337831246953,
379
+ "loss": 0.5,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 2.6615689606343813,
384
+ "grad_norm": 1.0409235954284668,
385
+ "learning_rate": 0.00012459762640221103,
386
+ "loss": 0.4908,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 2.7182101387708864,
391
+ "grad_norm": 0.8756324052810669,
392
+ "learning_rate": 0.00012297187449195252,
393
+ "loss": 0.4765,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 2.774851316907392,
398
+ "grad_norm": 0.6662527918815613,
399
+ "learning_rate": 0.00012134612258169405,
400
+ "loss": 0.4524,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 2.8065703766638346,
405
+ "eval_loss": 0.5904644727706909,
406
+ "eval_runtime": 157.1505,
407
+ "eval_samples_per_second": 9.984,
408
+ "eval_steps_per_second": 2.501,
409
+ "step": 2478
410
+ },
411
+ {
412
+ "epoch": 2.831492495043897,
413
+ "grad_norm": 1.0368993282318115,
414
+ "learning_rate": 0.00011972037067143556,
415
+ "loss": 0.4661,
416
+ "step": 2500
417
+ },
418
+ {
419
+ "epoch": 2.888133673180402,
420
+ "grad_norm": 1.0678080320358276,
421
+ "learning_rate": 0.00011809461876117705,
422
+ "loss": 0.4812,
423
+ "step": 2550
424
+ },
425
+ {
426
+ "epoch": 2.9447748513169074,
427
+ "grad_norm": 1.2212059497833252,
428
+ "learning_rate": 0.00011646886685091856,
429
+ "loss": 0.482,
430
+ "step": 2600
431
+ },
432
+ {
433
+ "epoch": 3.00113282356273,
434
+ "grad_norm": 0.757663369178772,
435
+ "learning_rate": 0.00011484311494066007,
436
+ "loss": 0.5062,
437
+ "step": 2650
438
+ },
439
+ {
440
+ "epoch": 3.057774001699235,
441
+ "grad_norm": 0.8512151837348938,
442
+ "learning_rate": 0.00011321736303040155,
443
+ "loss": 0.3651,
444
+ "step": 2700
445
+ },
446
+ {
447
+ "epoch": 3.1144151798357407,
448
+ "grad_norm": 0.9610685706138611,
449
+ "learning_rate": 0.00011159161112014307,
450
+ "loss": 0.3626,
451
+ "step": 2750
452
+ },
453
+ {
454
+ "epoch": 3.1710563579722457,
455
+ "grad_norm": 1.0879671573638916,
456
+ "learning_rate": 0.00010996585920988458,
457
+ "loss": 0.3637,
458
+ "step": 2800
459
+ },
460
+ {
461
+ "epoch": 3.207306711979609,
462
+ "eval_loss": 0.6150493025779724,
463
+ "eval_runtime": 157.6799,
464
+ "eval_samples_per_second": 9.951,
465
+ "eval_steps_per_second": 2.492,
466
+ "step": 2832
467
+ },
468
+ {
469
+ "epoch": 3.227697536108751,
470
+ "grad_norm": 1.1237863302230835,
471
+ "learning_rate": 0.00010834010729962609,
472
+ "loss": 0.4015,
473
+ "step": 2850
474
+ },
475
+ {
476
+ "epoch": 3.2843387142452563,
477
+ "grad_norm": 0.7940804958343506,
478
+ "learning_rate": 0.00010671435538936759,
479
+ "loss": 0.3572,
480
+ "step": 2900
481
+ },
482
+ {
483
+ "epoch": 3.3409798923817613,
484
+ "grad_norm": 1.7029999494552612,
485
+ "learning_rate": 0.0001050886034791091,
486
+ "loss": 0.3902,
487
+ "step": 2950
488
+ },
489
+ {
490
+ "epoch": 3.397621070518267,
491
+ "grad_norm": 0.8232925534248352,
492
+ "learning_rate": 0.00010346285156885061,
493
+ "loss": 0.3814,
494
+ "step": 3000
495
+ },
496
+ {
497
+ "epoch": 3.454262248654772,
498
+ "grad_norm": 0.9208984375,
499
+ "learning_rate": 0.0001018370996585921,
500
+ "loss": 0.377,
501
+ "step": 3050
502
+ },
503
+ {
504
+ "epoch": 3.5109034267912773,
505
+ "grad_norm": 1.1689094305038452,
506
+ "learning_rate": 0.00010021134774833361,
507
+ "loss": 0.3887,
508
+ "step": 3100
509
+ },
510
+ {
511
+ "epoch": 3.5675446049277824,
512
+ "grad_norm": 1.014140009880066,
513
+ "learning_rate": 9.858559583807512e-05,
514
+ "loss": 0.3842,
515
+ "step": 3150
516
+ },
517
+ {
518
+ "epoch": 3.6083262531860663,
519
+ "eval_loss": 0.6243398785591125,
520
+ "eval_runtime": 156.6849,
521
+ "eval_samples_per_second": 10.014,
522
+ "eval_steps_per_second": 2.508,
523
+ "step": 3186
524
+ },
525
+ {
526
+ "epoch": 3.624185783064288,
527
+ "grad_norm": 1.0292681455612183,
528
+ "learning_rate": 9.695984392781662e-05,
529
+ "loss": 0.3943,
530
+ "step": 3200
531
+ }
532
+ ],
533
+ "logging_steps": 50,
534
+ "max_steps": 6181,
535
+ "num_input_tokens_seen": 0,
536
+ "num_train_epochs": 7,
537
+ "save_steps": 50,
538
+ "stateful_callbacks": {
539
+ "TrainerControl": {
540
+ "args": {
541
+ "should_epoch_stop": false,
542
+ "should_evaluate": false,
543
+ "should_log": false,
544
+ "should_save": true,
545
+ "should_training_stop": false
546
+ },
547
+ "attributes": {}
548
+ }
549
+ },
550
+ "total_flos": 1.0802570767647898e+17,
551
+ "train_batch_size": 4,
552
+ "trial_name": null,
553
+ "trial_params": null
554
+ }
checkpoint-3250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-3250/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3250/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-3250/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-3250/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-3250/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3250/trainer_state.json ADDED
@@ -0,0 +1,561 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.680826961200793,
6
+ "eval_steps": 354,
7
+ "global_step": 3250,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ },
261
+ {
262
+ "epoch": 1.812234494477485,
263
+ "grad_norm": 0.9896508455276489,
264
+ "learning_rate": 1.923963133640553e-05,
265
+ "loss": 0.4895,
266
+ "step": 1600
267
+ },
268
+ {
269
+ "epoch": 1.8688756726139903,
270
+ "grad_norm": 1.150964617729187,
271
+ "learning_rate": 1.3479262672811061e-05,
272
+ "loss": 0.5164,
273
+ "step": 1650
274
+ },
275
+ {
276
+ "epoch": 1.9255168507504956,
277
+ "grad_norm": 0.8384917378425598,
278
+ "learning_rate": 7.71889400921659e-06,
279
+ "loss": 0.4914,
280
+ "step": 1700
281
+ },
282
+ {
283
+ "epoch": 1.9821580288870009,
284
+ "grad_norm": 0.9231545329093933,
285
+ "learning_rate": 1.9585253456221198e-06,
286
+ "loss": 0.4939,
287
+ "step": 1750
288
+ },
289
+ {
290
+ "epoch": 2.0045312942509206,
291
+ "eval_loss": 0.5844214558601379,
292
+ "eval_runtime": 166.1298,
293
+ "eval_samples_per_second": 9.444,
294
+ "eval_steps_per_second": 2.366,
295
+ "step": 1770
296
+ },
297
+ {
298
+ "epoch": 2.0385160011328236,
299
+ "grad_norm": 0.9673134088516235,
300
+ "learning_rate": 0.00014248089741505446,
301
+ "loss": 0.4303,
302
+ "step": 1800
303
+ },
304
+ {
305
+ "epoch": 2.0951571792693287,
306
+ "grad_norm": 1.33237624168396,
307
+ "learning_rate": 0.00014085514550479596,
308
+ "loss": 0.4594,
309
+ "step": 1850
310
+ },
311
+ {
312
+ "epoch": 2.151798357405834,
313
+ "grad_norm": 1.068943738937378,
314
+ "learning_rate": 0.0001392293935945375,
315
+ "loss": 0.4939,
316
+ "step": 1900
317
+ },
318
+ {
319
+ "epoch": 2.208439535542339,
320
+ "grad_norm": 1.1625093221664429,
321
+ "learning_rate": 0.00013760364168427899,
322
+ "loss": 0.4757,
323
+ "step": 1950
324
+ },
325
+ {
326
+ "epoch": 2.2650807136788447,
327
+ "grad_norm": 1.080735683441162,
328
+ "learning_rate": 0.00013597788977402048,
329
+ "loss": 0.4724,
330
+ "step": 2000
331
+ },
332
+ {
333
+ "epoch": 2.3217218918153497,
334
+ "grad_norm": 0.8823259472846985,
335
+ "learning_rate": 0.00013435213786376198,
336
+ "loss": 0.4821,
337
+ "step": 2050
338
+ },
339
+ {
340
+ "epoch": 2.378363069951855,
341
+ "grad_norm": 1.0513312816619873,
342
+ "learning_rate": 0.0001327263859535035,
343
+ "loss": 0.479,
344
+ "step": 2100
345
+ },
346
+ {
347
+ "epoch": 2.4055508354573774,
348
+ "eval_loss": 0.6049736738204956,
349
+ "eval_runtime": 156.3245,
350
+ "eval_samples_per_second": 10.037,
351
+ "eval_steps_per_second": 2.514,
352
+ "step": 2124
353
+ },
354
+ {
355
+ "epoch": 2.4350042480883602,
356
+ "grad_norm": 1.0902981758117676,
357
+ "learning_rate": 0.000131100634043245,
358
+ "loss": 0.4749,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 2.4916454262248653,
363
+ "grad_norm": 0.9050194025039673,
364
+ "learning_rate": 0.0001294748821329865,
365
+ "loss": 0.4346,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 2.5482866043613708,
370
+ "grad_norm": 1.0356699228286743,
371
+ "learning_rate": 0.00012784913022272803,
372
+ "loss": 0.4685,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 2.604927782497876,
377
+ "grad_norm": 1.0071344375610352,
378
+ "learning_rate": 0.00012622337831246953,
379
+ "loss": 0.5,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 2.6615689606343813,
384
+ "grad_norm": 1.0409235954284668,
385
+ "learning_rate": 0.00012459762640221103,
386
+ "loss": 0.4908,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 2.7182101387708864,
391
+ "grad_norm": 0.8756324052810669,
392
+ "learning_rate": 0.00012297187449195252,
393
+ "loss": 0.4765,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 2.774851316907392,
398
+ "grad_norm": 0.6662527918815613,
399
+ "learning_rate": 0.00012134612258169405,
400
+ "loss": 0.4524,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 2.8065703766638346,
405
+ "eval_loss": 0.5904644727706909,
406
+ "eval_runtime": 157.1505,
407
+ "eval_samples_per_second": 9.984,
408
+ "eval_steps_per_second": 2.501,
409
+ "step": 2478
410
+ },
411
+ {
412
+ "epoch": 2.831492495043897,
413
+ "grad_norm": 1.0368993282318115,
414
+ "learning_rate": 0.00011972037067143556,
415
+ "loss": 0.4661,
416
+ "step": 2500
417
+ },
418
+ {
419
+ "epoch": 2.888133673180402,
420
+ "grad_norm": 1.0678080320358276,
421
+ "learning_rate": 0.00011809461876117705,
422
+ "loss": 0.4812,
423
+ "step": 2550
424
+ },
425
+ {
426
+ "epoch": 2.9447748513169074,
427
+ "grad_norm": 1.2212059497833252,
428
+ "learning_rate": 0.00011646886685091856,
429
+ "loss": 0.482,
430
+ "step": 2600
431
+ },
432
+ {
433
+ "epoch": 3.00113282356273,
434
+ "grad_norm": 0.757663369178772,
435
+ "learning_rate": 0.00011484311494066007,
436
+ "loss": 0.5062,
437
+ "step": 2650
438
+ },
439
+ {
440
+ "epoch": 3.057774001699235,
441
+ "grad_norm": 0.8512151837348938,
442
+ "learning_rate": 0.00011321736303040155,
443
+ "loss": 0.3651,
444
+ "step": 2700
445
+ },
446
+ {
447
+ "epoch": 3.1144151798357407,
448
+ "grad_norm": 0.9610685706138611,
449
+ "learning_rate": 0.00011159161112014307,
450
+ "loss": 0.3626,
451
+ "step": 2750
452
+ },
453
+ {
454
+ "epoch": 3.1710563579722457,
455
+ "grad_norm": 1.0879671573638916,
456
+ "learning_rate": 0.00010996585920988458,
457
+ "loss": 0.3637,
458
+ "step": 2800
459
+ },
460
+ {
461
+ "epoch": 3.207306711979609,
462
+ "eval_loss": 0.6150493025779724,
463
+ "eval_runtime": 157.6799,
464
+ "eval_samples_per_second": 9.951,
465
+ "eval_steps_per_second": 2.492,
466
+ "step": 2832
467
+ },
468
+ {
469
+ "epoch": 3.227697536108751,
470
+ "grad_norm": 1.1237863302230835,
471
+ "learning_rate": 0.00010834010729962609,
472
+ "loss": 0.4015,
473
+ "step": 2850
474
+ },
475
+ {
476
+ "epoch": 3.2843387142452563,
477
+ "grad_norm": 0.7940804958343506,
478
+ "learning_rate": 0.00010671435538936759,
479
+ "loss": 0.3572,
480
+ "step": 2900
481
+ },
482
+ {
483
+ "epoch": 3.3409798923817613,
484
+ "grad_norm": 1.7029999494552612,
485
+ "learning_rate": 0.0001050886034791091,
486
+ "loss": 0.3902,
487
+ "step": 2950
488
+ },
489
+ {
490
+ "epoch": 3.397621070518267,
491
+ "grad_norm": 0.8232925534248352,
492
+ "learning_rate": 0.00010346285156885061,
493
+ "loss": 0.3814,
494
+ "step": 3000
495
+ },
496
+ {
497
+ "epoch": 3.454262248654772,
498
+ "grad_norm": 0.9208984375,
499
+ "learning_rate": 0.0001018370996585921,
500
+ "loss": 0.377,
501
+ "step": 3050
502
+ },
503
+ {
504
+ "epoch": 3.5109034267912773,
505
+ "grad_norm": 1.1689094305038452,
506
+ "learning_rate": 0.00010021134774833361,
507
+ "loss": 0.3887,
508
+ "step": 3100
509
+ },
510
+ {
511
+ "epoch": 3.5675446049277824,
512
+ "grad_norm": 1.014140009880066,
513
+ "learning_rate": 9.858559583807512e-05,
514
+ "loss": 0.3842,
515
+ "step": 3150
516
+ },
517
+ {
518
+ "epoch": 3.6083262531860663,
519
+ "eval_loss": 0.6243398785591125,
520
+ "eval_runtime": 156.6849,
521
+ "eval_samples_per_second": 10.014,
522
+ "eval_steps_per_second": 2.508,
523
+ "step": 3186
524
+ },
525
+ {
526
+ "epoch": 3.624185783064288,
527
+ "grad_norm": 1.0292681455612183,
528
+ "learning_rate": 9.695984392781662e-05,
529
+ "loss": 0.3943,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 3.680826961200793,
534
+ "grad_norm": 1.2736083269119263,
535
+ "learning_rate": 9.533409201755813e-05,
536
+ "loss": 0.3999,
537
+ "step": 3250
538
+ }
539
+ ],
540
+ "logging_steps": 50,
541
+ "max_steps": 6181,
542
+ "num_input_tokens_seen": 0,
543
+ "num_train_epochs": 7,
544
+ "save_steps": 50,
545
+ "stateful_callbacks": {
546
+ "TrainerControl": {
547
+ "args": {
548
+ "should_epoch_stop": false,
549
+ "should_evaluate": false,
550
+ "should_log": false,
551
+ "should_save": true,
552
+ "should_training_stop": false
553
+ },
554
+ "attributes": {}
555
+ }
556
+ },
557
+ "total_flos": 1.0967366513697638e+17,
558
+ "train_batch_size": 4,
559
+ "trial_name": null,
560
+ "trial_params": null
561
+ }
checkpoint-3350/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-3350/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3350/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-3350/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-3350/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-3350/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-3350/trainer_state.json ADDED
@@ -0,0 +1,575 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 3.7941093174738034,
6
+ "eval_steps": 354,
7
+ "global_step": 3350,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ },
261
+ {
262
+ "epoch": 1.812234494477485,
263
+ "grad_norm": 0.9896508455276489,
264
+ "learning_rate": 1.923963133640553e-05,
265
+ "loss": 0.4895,
266
+ "step": 1600
267
+ },
268
+ {
269
+ "epoch": 1.8688756726139903,
270
+ "grad_norm": 1.150964617729187,
271
+ "learning_rate": 1.3479262672811061e-05,
272
+ "loss": 0.5164,
273
+ "step": 1650
274
+ },
275
+ {
276
+ "epoch": 1.9255168507504956,
277
+ "grad_norm": 0.8384917378425598,
278
+ "learning_rate": 7.71889400921659e-06,
279
+ "loss": 0.4914,
280
+ "step": 1700
281
+ },
282
+ {
283
+ "epoch": 1.9821580288870009,
284
+ "grad_norm": 0.9231545329093933,
285
+ "learning_rate": 1.9585253456221198e-06,
286
+ "loss": 0.4939,
287
+ "step": 1750
288
+ },
289
+ {
290
+ "epoch": 2.0045312942509206,
291
+ "eval_loss": 0.5844214558601379,
292
+ "eval_runtime": 166.1298,
293
+ "eval_samples_per_second": 9.444,
294
+ "eval_steps_per_second": 2.366,
295
+ "step": 1770
296
+ },
297
+ {
298
+ "epoch": 2.0385160011328236,
299
+ "grad_norm": 0.9673134088516235,
300
+ "learning_rate": 0.00014248089741505446,
301
+ "loss": 0.4303,
302
+ "step": 1800
303
+ },
304
+ {
305
+ "epoch": 2.0951571792693287,
306
+ "grad_norm": 1.33237624168396,
307
+ "learning_rate": 0.00014085514550479596,
308
+ "loss": 0.4594,
309
+ "step": 1850
310
+ },
311
+ {
312
+ "epoch": 2.151798357405834,
313
+ "grad_norm": 1.068943738937378,
314
+ "learning_rate": 0.0001392293935945375,
315
+ "loss": 0.4939,
316
+ "step": 1900
317
+ },
318
+ {
319
+ "epoch": 2.208439535542339,
320
+ "grad_norm": 1.1625093221664429,
321
+ "learning_rate": 0.00013760364168427899,
322
+ "loss": 0.4757,
323
+ "step": 1950
324
+ },
325
+ {
326
+ "epoch": 2.2650807136788447,
327
+ "grad_norm": 1.080735683441162,
328
+ "learning_rate": 0.00013597788977402048,
329
+ "loss": 0.4724,
330
+ "step": 2000
331
+ },
332
+ {
333
+ "epoch": 2.3217218918153497,
334
+ "grad_norm": 0.8823259472846985,
335
+ "learning_rate": 0.00013435213786376198,
336
+ "loss": 0.4821,
337
+ "step": 2050
338
+ },
339
+ {
340
+ "epoch": 2.378363069951855,
341
+ "grad_norm": 1.0513312816619873,
342
+ "learning_rate": 0.0001327263859535035,
343
+ "loss": 0.479,
344
+ "step": 2100
345
+ },
346
+ {
347
+ "epoch": 2.4055508354573774,
348
+ "eval_loss": 0.6049736738204956,
349
+ "eval_runtime": 156.3245,
350
+ "eval_samples_per_second": 10.037,
351
+ "eval_steps_per_second": 2.514,
352
+ "step": 2124
353
+ },
354
+ {
355
+ "epoch": 2.4350042480883602,
356
+ "grad_norm": 1.0902981758117676,
357
+ "learning_rate": 0.000131100634043245,
358
+ "loss": 0.4749,
359
+ "step": 2150
360
+ },
361
+ {
362
+ "epoch": 2.4916454262248653,
363
+ "grad_norm": 0.9050194025039673,
364
+ "learning_rate": 0.0001294748821329865,
365
+ "loss": 0.4346,
366
+ "step": 2200
367
+ },
368
+ {
369
+ "epoch": 2.5482866043613708,
370
+ "grad_norm": 1.0356699228286743,
371
+ "learning_rate": 0.00012784913022272803,
372
+ "loss": 0.4685,
373
+ "step": 2250
374
+ },
375
+ {
376
+ "epoch": 2.604927782497876,
377
+ "grad_norm": 1.0071344375610352,
378
+ "learning_rate": 0.00012622337831246953,
379
+ "loss": 0.5,
380
+ "step": 2300
381
+ },
382
+ {
383
+ "epoch": 2.6615689606343813,
384
+ "grad_norm": 1.0409235954284668,
385
+ "learning_rate": 0.00012459762640221103,
386
+ "loss": 0.4908,
387
+ "step": 2350
388
+ },
389
+ {
390
+ "epoch": 2.7182101387708864,
391
+ "grad_norm": 0.8756324052810669,
392
+ "learning_rate": 0.00012297187449195252,
393
+ "loss": 0.4765,
394
+ "step": 2400
395
+ },
396
+ {
397
+ "epoch": 2.774851316907392,
398
+ "grad_norm": 0.6662527918815613,
399
+ "learning_rate": 0.00012134612258169405,
400
+ "loss": 0.4524,
401
+ "step": 2450
402
+ },
403
+ {
404
+ "epoch": 2.8065703766638346,
405
+ "eval_loss": 0.5904644727706909,
406
+ "eval_runtime": 157.1505,
407
+ "eval_samples_per_second": 9.984,
408
+ "eval_steps_per_second": 2.501,
409
+ "step": 2478
410
+ },
411
+ {
412
+ "epoch": 2.831492495043897,
413
+ "grad_norm": 1.0368993282318115,
414
+ "learning_rate": 0.00011972037067143556,
415
+ "loss": 0.4661,
416
+ "step": 2500
417
+ },
418
+ {
419
+ "epoch": 2.888133673180402,
420
+ "grad_norm": 1.0678080320358276,
421
+ "learning_rate": 0.00011809461876117705,
422
+ "loss": 0.4812,
423
+ "step": 2550
424
+ },
425
+ {
426
+ "epoch": 2.9447748513169074,
427
+ "grad_norm": 1.2212059497833252,
428
+ "learning_rate": 0.00011646886685091856,
429
+ "loss": 0.482,
430
+ "step": 2600
431
+ },
432
+ {
433
+ "epoch": 3.00113282356273,
434
+ "grad_norm": 0.757663369178772,
435
+ "learning_rate": 0.00011484311494066007,
436
+ "loss": 0.5062,
437
+ "step": 2650
438
+ },
439
+ {
440
+ "epoch": 3.057774001699235,
441
+ "grad_norm": 0.8512151837348938,
442
+ "learning_rate": 0.00011321736303040155,
443
+ "loss": 0.3651,
444
+ "step": 2700
445
+ },
446
+ {
447
+ "epoch": 3.1144151798357407,
448
+ "grad_norm": 0.9610685706138611,
449
+ "learning_rate": 0.00011159161112014307,
450
+ "loss": 0.3626,
451
+ "step": 2750
452
+ },
453
+ {
454
+ "epoch": 3.1710563579722457,
455
+ "grad_norm": 1.0879671573638916,
456
+ "learning_rate": 0.00010996585920988458,
457
+ "loss": 0.3637,
458
+ "step": 2800
459
+ },
460
+ {
461
+ "epoch": 3.207306711979609,
462
+ "eval_loss": 0.6150493025779724,
463
+ "eval_runtime": 157.6799,
464
+ "eval_samples_per_second": 9.951,
465
+ "eval_steps_per_second": 2.492,
466
+ "step": 2832
467
+ },
468
+ {
469
+ "epoch": 3.227697536108751,
470
+ "grad_norm": 1.1237863302230835,
471
+ "learning_rate": 0.00010834010729962609,
472
+ "loss": 0.4015,
473
+ "step": 2850
474
+ },
475
+ {
476
+ "epoch": 3.2843387142452563,
477
+ "grad_norm": 0.7940804958343506,
478
+ "learning_rate": 0.00010671435538936759,
479
+ "loss": 0.3572,
480
+ "step": 2900
481
+ },
482
+ {
483
+ "epoch": 3.3409798923817613,
484
+ "grad_norm": 1.7029999494552612,
485
+ "learning_rate": 0.0001050886034791091,
486
+ "loss": 0.3902,
487
+ "step": 2950
488
+ },
489
+ {
490
+ "epoch": 3.397621070518267,
491
+ "grad_norm": 0.8232925534248352,
492
+ "learning_rate": 0.00010346285156885061,
493
+ "loss": 0.3814,
494
+ "step": 3000
495
+ },
496
+ {
497
+ "epoch": 3.454262248654772,
498
+ "grad_norm": 0.9208984375,
499
+ "learning_rate": 0.0001018370996585921,
500
+ "loss": 0.377,
501
+ "step": 3050
502
+ },
503
+ {
504
+ "epoch": 3.5109034267912773,
505
+ "grad_norm": 1.1689094305038452,
506
+ "learning_rate": 0.00010021134774833361,
507
+ "loss": 0.3887,
508
+ "step": 3100
509
+ },
510
+ {
511
+ "epoch": 3.5675446049277824,
512
+ "grad_norm": 1.014140009880066,
513
+ "learning_rate": 9.858559583807512e-05,
514
+ "loss": 0.3842,
515
+ "step": 3150
516
+ },
517
+ {
518
+ "epoch": 3.6083262531860663,
519
+ "eval_loss": 0.6243398785591125,
520
+ "eval_runtime": 156.6849,
521
+ "eval_samples_per_second": 10.014,
522
+ "eval_steps_per_second": 2.508,
523
+ "step": 3186
524
+ },
525
+ {
526
+ "epoch": 3.624185783064288,
527
+ "grad_norm": 1.0292681455612183,
528
+ "learning_rate": 9.695984392781662e-05,
529
+ "loss": 0.3943,
530
+ "step": 3200
531
+ },
532
+ {
533
+ "epoch": 3.680826961200793,
534
+ "grad_norm": 1.2736083269119263,
535
+ "learning_rate": 9.533409201755813e-05,
536
+ "loss": 0.3999,
537
+ "step": 3250
538
+ },
539
+ {
540
+ "epoch": 3.7374681393372984,
541
+ "grad_norm": 1.344642162322998,
542
+ "learning_rate": 9.370834010729963e-05,
543
+ "loss": 0.4082,
544
+ "step": 3300
545
+ },
546
+ {
547
+ "epoch": 3.7941093174738034,
548
+ "grad_norm": 1.2667014598846436,
549
+ "learning_rate": 9.208258819704113e-05,
550
+ "loss": 0.4103,
551
+ "step": 3350
552
+ }
553
+ ],
554
+ "logging_steps": 50,
555
+ "max_steps": 6181,
556
+ "num_input_tokens_seen": 0,
557
+ "num_train_epochs": 7,
558
+ "save_steps": 50,
559
+ "stateful_callbacks": {
560
+ "TrainerControl": {
561
+ "args": {
562
+ "should_epoch_stop": false,
563
+ "should_evaluate": false,
564
+ "should_log": false,
565
+ "should_save": true,
566
+ "should_training_stop": false
567
+ },
568
+ "attributes": {}
569
+ }
570
+ },
571
+ "total_flos": 1.1298918498970982e+17,
572
+ "train_batch_size": 4,
573
+ "trial_name": null,
574
+ "trial_params": null
575
+ }
checkpoint-3650/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0256d9cf1fbf9a1e7c4bf12af6f314fcc56a1cce329290492b645f6cfd53c32e
3
+ size 52231312
checkpoint-3650/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c6f986a87f89c4318ae5389cba661d80e23f0b4528d33acfda084674d24e93b4
3
+ size 27860634
checkpoint-3650/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5328f04f222a66b45931d6bc246721e0747decf9d78d167903d0547a248f78f0
3
+ size 14244
checkpoint-3650/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1814f3153277ec597171be596da7308ccaca91fca06cd820460a0b229c0c0da9
3
+ size 1064
checkpoint-3650/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4667f2089529e8e7657cfb6d1c19910ae71ff5f28aa7ab2ff2763330affad795
3
+ size 33384568
checkpoint-3900/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-3900/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-3900/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }