heboya8 commited on
Commit
feea826
·
verified ·
1 Parent(s): c80c954

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +59 -0
  2. checkpoint-1050/README.md +202 -0
  3. checkpoint-1050/adapter_config.json +29 -0
  4. checkpoint-1050/added_tokens.json +3 -0
  5. checkpoint-1050/chat_template.jinja +47 -0
  6. checkpoint-1050/optimizer.pt +3 -0
  7. checkpoint-1050/special_tokens_map.json +33 -0
  8. checkpoint-1050/tokenizer_config.json +0 -0
  9. checkpoint-1050/trainer_state.json +197 -0
  10. checkpoint-1150/README.md +202 -0
  11. checkpoint-1150/adapter_config.json +29 -0
  12. checkpoint-1150/added_tokens.json +3 -0
  13. checkpoint-1150/chat_template.jinja +47 -0
  14. checkpoint-1150/special_tokens_map.json +33 -0
  15. checkpoint-1150/tokenizer_config.json +0 -0
  16. checkpoint-1150/trainer_state.json +219 -0
  17. checkpoint-1300/README.md +202 -0
  18. checkpoint-1300/adapter_config.json +29 -0
  19. checkpoint-1300/added_tokens.json +3 -0
  20. checkpoint-1300/chat_template.jinja +47 -0
  21. checkpoint-1300/special_tokens_map.json +33 -0
  22. checkpoint-1300/tokenizer_config.json +0 -0
  23. checkpoint-1300/trainer_state.json +240 -0
  24. checkpoint-1350/README.md +202 -0
  25. checkpoint-1350/adapter_config.json +29 -0
  26. checkpoint-1350/added_tokens.json +3 -0
  27. checkpoint-1350/chat_template.jinja +47 -0
  28. checkpoint-1350/special_tokens_map.json +33 -0
  29. checkpoint-1350/tokenizer_config.json +0 -0
  30. checkpoint-1350/trainer_state.json +247 -0
  31. checkpoint-1400/README.md +202 -0
  32. checkpoint-1400/adapter_config.json +29 -0
  33. checkpoint-1400/added_tokens.json +3 -0
  34. checkpoint-1400/chat_template.jinja +47 -0
  35. checkpoint-1400/special_tokens_map.json +33 -0
  36. checkpoint-1400/tokenizer_config.json +0 -0
  37. checkpoint-1400/trainer_state.json +254 -0
  38. checkpoint-1550/README.md +202 -0
  39. checkpoint-1550/adapter_config.json +29 -0
  40. checkpoint-1550/added_tokens.json +3 -0
  41. checkpoint-1550/chat_template.jinja +47 -0
  42. checkpoint-1550/special_tokens_map.json +33 -0
  43. checkpoint-1550/tokenizer_config.json +0 -0
  44. checkpoint-1550/trainer_state.json +283 -0
  45. checkpoint-1750/README.md +202 -0
  46. checkpoint-1750/adapter_config.json +29 -0
  47. checkpoint-1750/added_tokens.json +3 -0
  48. checkpoint-1750/chat_template.jinja +47 -0
  49. checkpoint-1750/special_tokens_map.json +33 -0
  50. checkpoint-1750/tokenizer_config.json +0 -0
README.md ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: transformers
4
+ model_name: Gemma-3-1B-it-Medical-finetuning
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - unsloth
9
+ - sft
10
+ licence: license
11
+ ---
12
+
13
+ # Model Card for Gemma-3-1B-it-Medical-finetuning
14
+
15
+ This model is a fine-tuned version of [unsloth/gemma-3-1b-it-unsloth-bnb-4bit](https://huggingface.co/unsloth/gemma-3-1b-it-unsloth-bnb-4bit).
16
+ It has been trained using [TRL](https://github.com/huggingface/trl).
17
+
18
+ ## Quick start
19
+
20
+ ```python
21
+ from transformers import pipeline
22
+
23
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
+ generator = pipeline("text-generation", model="None", device="cuda")
25
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
+ print(output["generated_text"])
27
+ ```
28
+
29
+ ## Training procedure
30
+
31
+
32
+
33
+
34
+ This model was trained with SFT.
35
+
36
+ ### Framework versions
37
+
38
+ - TRL: 0.19.0
39
+ - Transformers: 4.52.4
40
+ - Pytorch: 2.6.0+cu124
41
+ - Datasets: 3.6.0
42
+ - Tokenizers: 0.21.1
43
+
44
+ ## Citations
45
+
46
+
47
+
48
+ Cite TRL as:
49
+
50
+ ```bibtex
51
+ @misc{vonwerra2022trl,
52
+ title = {{TRL: Transformer Reinforcement Learning}},
53
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
54
+ year = 2020,
55
+ journal = {GitHub repository},
56
+ publisher = {GitHub},
57
+ howpublished = {\url{https://github.com/huggingface/trl}}
58
+ }
59
+ ```
checkpoint-1050/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1050/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1050/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1050/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1050/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ea43ba48f87ef5af98ef31908f1f9c1f429fde6235e7dc435a0e0dfdd297a3c
3
+ size 26913924
checkpoint-1050/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1050/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1050/trainer_state.json ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.1891815349759276,
6
+ "eval_steps": 354,
7
+ "global_step": 1050,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ }
175
+ ],
176
+ "logging_steps": 50,
177
+ "max_steps": 1766,
178
+ "num_input_tokens_seen": 0,
179
+ "num_train_epochs": 2,
180
+ "save_steps": 50,
181
+ "stateful_callbacks": {
182
+ "TrainerControl": {
183
+ "args": {
184
+ "should_epoch_stop": false,
185
+ "should_evaluate": false,
186
+ "should_log": false,
187
+ "should_save": true,
188
+ "should_training_stop": false
189
+ },
190
+ "attributes": {}
191
+ }
192
+ },
193
+ "total_flos": 3.542910187300531e+16,
194
+ "train_batch_size": 4,
195
+ "trial_name": null,
196
+ "trial_params": null
197
+ }
checkpoint-1150/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1150/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1150/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1150/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1150/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1150/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1150/trainer_state.json ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.302463891248938,
6
+ "eval_steps": 354,
7
+ "global_step": 1150,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ }
197
+ ],
198
+ "logging_steps": 50,
199
+ "max_steps": 1766,
200
+ "num_input_tokens_seen": 0,
201
+ "num_train_epochs": 2,
202
+ "save_steps": 50,
203
+ "stateful_callbacks": {
204
+ "TrainerControl": {
205
+ "args": {
206
+ "should_epoch_stop": false,
207
+ "should_evaluate": false,
208
+ "should_log": false,
209
+ "should_save": true,
210
+ "should_training_stop": false
211
+ },
212
+ "attributes": {}
213
+ }
214
+ },
215
+ "total_flos": 3.892113436180147e+16,
216
+ "train_batch_size": 4,
217
+ "trial_name": null,
218
+ "trial_params": null
219
+ }
checkpoint-1300/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1300/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1300/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1300/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1300/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1300/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1300/trainer_state.json ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.4723874256584537,
6
+ "eval_steps": 354,
7
+ "global_step": 1300,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ }
218
+ ],
219
+ "logging_steps": 50,
220
+ "max_steps": 1766,
221
+ "num_input_tokens_seen": 0,
222
+ "num_train_epochs": 2,
223
+ "save_steps": 50,
224
+ "stateful_callbacks": {
225
+ "TrainerControl": {
226
+ "args": {
227
+ "should_epoch_stop": false,
228
+ "should_evaluate": false,
229
+ "should_log": false,
230
+ "should_save": true,
231
+ "should_training_stop": false
232
+ },
233
+ "attributes": {}
234
+ }
235
+ },
236
+ "total_flos": 4.38804995875223e+16,
237
+ "train_batch_size": 4,
238
+ "trial_name": null,
239
+ "trial_params": null
240
+ }
checkpoint-1350/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1350/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1350/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1350/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1350/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1350/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1350/trainer_state.json ADDED
@@ -0,0 +1,247 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.529028603794959,
6
+ "eval_steps": 354,
7
+ "global_step": 1350,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ }
225
+ ],
226
+ "logging_steps": 50,
227
+ "max_steps": 1766,
228
+ "num_input_tokens_seen": 0,
229
+ "num_train_epochs": 2,
230
+ "save_steps": 50,
231
+ "stateful_callbacks": {
232
+ "TrainerControl": {
233
+ "args": {
234
+ "should_epoch_stop": false,
235
+ "should_evaluate": false,
236
+ "should_log": false,
237
+ "should_save": true,
238
+ "should_training_stop": false
239
+ },
240
+ "attributes": {}
241
+ }
242
+ },
243
+ "total_flos": 4.561452082146586e+16,
244
+ "train_batch_size": 4,
245
+ "trial_name": null,
246
+ "trial_params": null
247
+ }
checkpoint-1400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1400/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1400/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1400/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1400/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1400/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1400/trainer_state.json ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.5856697819314642,
6
+ "eval_steps": 354,
7
+ "global_step": 1400,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ }
232
+ ],
233
+ "logging_steps": 50,
234
+ "max_steps": 1766,
235
+ "num_input_tokens_seen": 0,
236
+ "num_train_epochs": 2,
237
+ "save_steps": 50,
238
+ "stateful_callbacks": {
239
+ "TrainerControl": {
240
+ "args": {
241
+ "should_epoch_stop": false,
242
+ "should_evaluate": false,
243
+ "should_log": false,
244
+ "should_save": true,
245
+ "should_training_stop": false
246
+ },
247
+ "attributes": {}
248
+ }
249
+ },
250
+ "total_flos": 4.733001206770867e+16,
251
+ "train_batch_size": 4,
252
+ "trial_name": null,
253
+ "trial_params": null
254
+ }
checkpoint-1550/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1550/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1550/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1550/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1550/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1550/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-1550/trainer_state.json ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.7555933163409798,
6
+ "eval_steps": 354,
7
+ "global_step": 1550,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.05664117813650524,
14
+ "grad_norm": 0.7603653073310852,
15
+ "learning_rate": 0.0001978110599078341,
16
+ "loss": 0.9425,
17
+ "step": 50
18
+ },
19
+ {
20
+ "epoch": 0.11328235627301048,
21
+ "grad_norm": 0.6873273849487305,
22
+ "learning_rate": 0.00019205069124423964,
23
+ "loss": 0.6078,
24
+ "step": 100
25
+ },
26
+ {
27
+ "epoch": 0.16992353440951571,
28
+ "grad_norm": 0.6323167085647583,
29
+ "learning_rate": 0.00018629032258064517,
30
+ "loss": 0.6748,
31
+ "step": 150
32
+ },
33
+ {
34
+ "epoch": 0.22656471254602095,
35
+ "grad_norm": 1.0095610618591309,
36
+ "learning_rate": 0.0001805299539170507,
37
+ "loss": 0.6594,
38
+ "step": 200
39
+ },
40
+ {
41
+ "epoch": 0.2832058906825262,
42
+ "grad_norm": 0.5822212100028992,
43
+ "learning_rate": 0.00017476958525345623,
44
+ "loss": 0.6317,
45
+ "step": 250
46
+ },
47
+ {
48
+ "epoch": 0.33984706881903143,
49
+ "grad_norm": 0.8490907549858093,
50
+ "learning_rate": 0.00016900921658986176,
51
+ "loss": 0.5742,
52
+ "step": 300
53
+ },
54
+ {
55
+ "epoch": 0.3964882469555367,
56
+ "grad_norm": 0.6252707242965698,
57
+ "learning_rate": 0.0001632488479262673,
58
+ "loss": 0.5502,
59
+ "step": 350
60
+ },
61
+ {
62
+ "epoch": 0.4010195412064571,
63
+ "eval_loss": 0.6019027233123779,
64
+ "eval_runtime": 159.9351,
65
+ "eval_samples_per_second": 9.81,
66
+ "eval_steps_per_second": 2.457,
67
+ "step": 354
68
+ },
69
+ {
70
+ "epoch": 0.4531294250920419,
71
+ "grad_norm": 0.656812310218811,
72
+ "learning_rate": 0.00015748847926267282,
73
+ "loss": 0.5686,
74
+ "step": 400
75
+ },
76
+ {
77
+ "epoch": 0.5097706032285472,
78
+ "grad_norm": 0.7391073703765869,
79
+ "learning_rate": 0.00015172811059907835,
80
+ "loss": 0.5701,
81
+ "step": 450
82
+ },
83
+ {
84
+ "epoch": 0.5664117813650524,
85
+ "grad_norm": 0.9210707545280457,
86
+ "learning_rate": 0.00014596774193548388,
87
+ "loss": 0.6397,
88
+ "step": 500
89
+ },
90
+ {
91
+ "epoch": 0.6230529595015576,
92
+ "grad_norm": 0.8228403329849243,
93
+ "learning_rate": 0.00014020737327188939,
94
+ "loss": 0.5822,
95
+ "step": 550
96
+ },
97
+ {
98
+ "epoch": 0.6796941376380629,
99
+ "grad_norm": 0.716748833656311,
100
+ "learning_rate": 0.00013444700460829494,
101
+ "loss": 0.5881,
102
+ "step": 600
103
+ },
104
+ {
105
+ "epoch": 0.7363353157745681,
106
+ "grad_norm": 0.7144941091537476,
107
+ "learning_rate": 0.00012868663594470047,
108
+ "loss": 0.6032,
109
+ "step": 650
110
+ },
111
+ {
112
+ "epoch": 0.7929764939110734,
113
+ "grad_norm": 1.016291618347168,
114
+ "learning_rate": 0.000122926267281106,
115
+ "loss": 0.6377,
116
+ "step": 700
117
+ },
118
+ {
119
+ "epoch": 0.8020390824129142,
120
+ "eval_loss": 0.5828524827957153,
121
+ "eval_runtime": 150.8754,
122
+ "eval_samples_per_second": 10.399,
123
+ "eval_steps_per_second": 2.605,
124
+ "step": 708
125
+ },
126
+ {
127
+ "epoch": 0.8496176720475785,
128
+ "grad_norm": 1.0243154764175415,
129
+ "learning_rate": 0.00011716589861751153,
130
+ "loss": 0.6005,
131
+ "step": 750
132
+ },
133
+ {
134
+ "epoch": 0.9062588501840838,
135
+ "grad_norm": 0.6541144251823425,
136
+ "learning_rate": 0.00011140552995391706,
137
+ "loss": 0.5723,
138
+ "step": 800
139
+ },
140
+ {
141
+ "epoch": 0.9629000283205891,
142
+ "grad_norm": 1.0017038583755493,
143
+ "learning_rate": 0.00010564516129032258,
144
+ "loss": 0.5801,
145
+ "step": 850
146
+ },
147
+ {
148
+ "epoch": 1.0192580005664118,
149
+ "grad_norm": 0.7527189254760742,
150
+ "learning_rate": 9.988479262672812e-05,
151
+ "loss": 0.5511,
152
+ "step": 900
153
+ },
154
+ {
155
+ "epoch": 1.075899178702917,
156
+ "grad_norm": 0.7966899871826172,
157
+ "learning_rate": 9.412442396313365e-05,
158
+ "loss": 0.49,
159
+ "step": 950
160
+ },
161
+ {
162
+ "epoch": 1.1325403568394223,
163
+ "grad_norm": 0.7110822796821594,
164
+ "learning_rate": 8.836405529953917e-05,
165
+ "loss": 0.4725,
166
+ "step": 1000
167
+ },
168
+ {
169
+ "epoch": 1.1891815349759276,
170
+ "grad_norm": 0.7837777733802795,
171
+ "learning_rate": 8.26036866359447e-05,
172
+ "loss": 0.527,
173
+ "step": 1050
174
+ },
175
+ {
176
+ "epoch": 1.2027754177286887,
177
+ "eval_loss": 0.5833637714385986,
178
+ "eval_runtime": 150.6223,
179
+ "eval_samples_per_second": 10.417,
180
+ "eval_steps_per_second": 2.609,
181
+ "step": 1062
182
+ },
183
+ {
184
+ "epoch": 1.2458227131124326,
185
+ "grad_norm": 0.8119267821311951,
186
+ "learning_rate": 7.684331797235024e-05,
187
+ "loss": 0.4892,
188
+ "step": 1100
189
+ },
190
+ {
191
+ "epoch": 1.302463891248938,
192
+ "grad_norm": 0.8631129860877991,
193
+ "learning_rate": 7.108294930875576e-05,
194
+ "loss": 0.5124,
195
+ "step": 1150
196
+ },
197
+ {
198
+ "epoch": 1.3591050693854432,
199
+ "grad_norm": 0.8685782551765442,
200
+ "learning_rate": 6.532258064516129e-05,
201
+ "loss": 0.4927,
202
+ "step": 1200
203
+ },
204
+ {
205
+ "epoch": 1.4157462475219484,
206
+ "grad_norm": 0.8397710919380188,
207
+ "learning_rate": 5.956221198156682e-05,
208
+ "loss": 0.5125,
209
+ "step": 1250
210
+ },
211
+ {
212
+ "epoch": 1.4723874256584537,
213
+ "grad_norm": 0.7606781721115112,
214
+ "learning_rate": 5.3801843317972355e-05,
215
+ "loss": 0.4826,
216
+ "step": 1300
217
+ },
218
+ {
219
+ "epoch": 1.529028603794959,
220
+ "grad_norm": 1.1354798078536987,
221
+ "learning_rate": 4.8041474654377885e-05,
222
+ "loss": 0.5101,
223
+ "step": 1350
224
+ },
225
+ {
226
+ "epoch": 1.5856697819314642,
227
+ "grad_norm": 1.28499174118042,
228
+ "learning_rate": 4.228110599078341e-05,
229
+ "loss": 0.4687,
230
+ "step": 1400
231
+ },
232
+ {
233
+ "epoch": 1.603794958935146,
234
+ "eval_loss": 0.5791710615158081,
235
+ "eval_runtime": 150.7437,
236
+ "eval_samples_per_second": 10.408,
237
+ "eval_steps_per_second": 2.607,
238
+ "step": 1416
239
+ },
240
+ {
241
+ "epoch": 1.6423109600679693,
242
+ "grad_norm": 0.7527874708175659,
243
+ "learning_rate": 3.6520737327188945e-05,
244
+ "loss": 0.4992,
245
+ "step": 1450
246
+ },
247
+ {
248
+ "epoch": 1.6989521382044748,
249
+ "grad_norm": 0.9351261854171753,
250
+ "learning_rate": 3.076036866359447e-05,
251
+ "loss": 0.4873,
252
+ "step": 1500
253
+ },
254
+ {
255
+ "epoch": 1.7555933163409798,
256
+ "grad_norm": 1.0196998119354248,
257
+ "learning_rate": 2.5e-05,
258
+ "loss": 0.4946,
259
+ "step": 1550
260
+ }
261
+ ],
262
+ "logging_steps": 50,
263
+ "max_steps": 1766,
264
+ "num_input_tokens_seen": 0,
265
+ "num_train_epochs": 2,
266
+ "save_steps": 50,
267
+ "stateful_callbacks": {
268
+ "TrainerControl": {
269
+ "args": {
270
+ "should_epoch_stop": false,
271
+ "should_evaluate": false,
272
+ "should_log": false,
273
+ "should_save": true,
274
+ "should_training_stop": false
275
+ },
276
+ "attributes": {}
277
+ }
278
+ },
279
+ "total_flos": 5.23606136641943e+16,
280
+ "train_batch_size": 4,
281
+ "trial_name": null,
282
+ "trial_params": null
283
+ }
checkpoint-1750/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/gemma-3-1b-it-unsloth-bnb-4bit
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-1750/adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/gemma-3-1b-it-unsloth-bnb-4bit",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 8,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 16,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "(?:.*?(?:language|text).*?(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense).*?(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj).*?)|(?:\\bmodel\\.layers\\.[\\d]{1,}\\.(?:self_attn|attention|attn|mlp|feed_forward|ffn|dense)\\.(?:(?:q_proj|k_proj|v_proj|o_proj|gate_proj|up_proj|down_proj)))",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
checkpoint-1750/added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<image_soft_token>": 262144
3
+ }
checkpoint-1750/chat_template.jinja ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{ bos_token }}
2
+ {%- if messages[0]['role'] == 'system' -%}
3
+ {%- if messages[0]['content'] is string -%}
4
+ {%- set first_user_prefix = messages[0]['content'] + '
5
+
6
+ ' -%}
7
+ {%- else -%}
8
+ {%- set first_user_prefix = messages[0]['content'][0]['text'] + '
9
+
10
+ ' -%}
11
+ {%- endif -%}
12
+ {%- set loop_messages = messages[1:] -%}
13
+ {%- else -%}
14
+ {%- set first_user_prefix = "" -%}
15
+ {%- set loop_messages = messages -%}
16
+ {%- endif -%}
17
+ {%- for message in loop_messages -%}
18
+ {%- if (message['role'] == 'user') != (loop.index0 % 2 == 0) -%}
19
+ {{ raise_exception("Conversation roles must alternate user/assistant/user/assistant/...") }}
20
+ {%- endif -%}
21
+ {%- if (message['role'] == 'assistant') -%}
22
+ {%- set role = "model" -%}
23
+ {%- else -%}
24
+ {%- set role = message['role'] -%}
25
+ {%- endif -%}
26
+ {{ '<start_of_turn>' + role + '
27
+ ' + (first_user_prefix if loop.first else "") }}
28
+ {%- if message['content'] is string -%}
29
+ {{ message['content'] | trim }}
30
+ {%- elif message['content'] is iterable -%}
31
+ {%- for item in message['content'] -%}
32
+ {%- if item['type'] == 'image' -%}
33
+ {{ '<start_of_image>' }}
34
+ {%- elif item['type'] == 'text' -%}
35
+ {{ item['text'] | trim }}
36
+ {%- endif -%}
37
+ {%- endfor -%}
38
+ {%- else -%}
39
+ {{ raise_exception("Invalid content type") }}
40
+ {%- endif -%}
41
+ {{ '<end_of_turn>
42
+ ' }}
43
+ {%- endfor -%}
44
+ {%- if add_generation_prompt -%}
45
+ {{ '<start_of_turn>model
46
+ ' }}
47
+ {%- endif -%}
checkpoint-1750/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "boi_token": "<start_of_image>",
3
+ "bos_token": {
4
+ "content": "<bos>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false
9
+ },
10
+ "eoi_token": "<end_of_image>",
11
+ "eos_token": {
12
+ "content": "<end_of_turn>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false
17
+ },
18
+ "image_token": "<image_soft_token>",
19
+ "pad_token": {
20
+ "content": "<pad>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "unk_token": {
27
+ "content": "<unk>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
checkpoint-1750/tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff