English
File size: 7,510 Bytes
26225c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93b496
26225c5
 
 
c93b496
26225c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93b496
26225c5
 
 
 
 
 
 
 
 
c93b496
 
 
 
 
 
 
26225c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93b496
 
26225c5
 
 
 
 
 
 
 
 
 
c93b496
26225c5
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import glob
import argparse
import numpy as np
import laspy
import torch
import h5py
import hydra
import torch.nn.functional as F

from src.utils import init_config
from src.transforms import (
    instantiate_datamodule_transforms,
    SampleRecursiveMainXYAxisTiling,
    NAGRemoveKeys
)
from src.datasets.gridnet import read_gridnet_tile


def run_inference(model, cfg, transforms_dict, root_dir, split, scale, pc_tiling):
    split_dir = os.path.join(root_dir, split)
    las_files = glob.glob(os.path.join(split_dir, "*", "lidar", "*.las"))
    for filepath in las_files:
        print(f"\n[Inference] Processing: {filepath}")
        data_las = laspy.read(filepath)
        offset_initial_las = np.array(data_las.header.offset, dtype=np.float64)
        data_las = read_gridnet_tile(
            filepath, xyz=True, intensity=True, rgb=True, semantic=False, instance=False, remap=True
        )
        data_las.initial_index = torch.arange(data_las.pos.shape[0]) # to keep initial order of points

        pos_list = []
        pred_list = []
        indices_list = []
        pos_offset_init = None
        for x in range(2**pc_tiling): 
            data = SampleRecursiveMainXYAxisTiling(x=x, steps=pc_tiling)(data_las)
            nag = transforms_dict['pre_transform'](data)
            nag = NAGRemoveKeys(level=0, keys=[k for k in nag[0].keys if k not in cfg.datamodule.point_load_keys])(nag)
            nag = NAGRemoveKeys(level='1+', keys=[k for k in nag[1].keys if k not in cfg.datamodule.segment_load_keys])(nag)
            nag = nag.cuda()
            nag = transforms_dict['on_device_test_transform'](nag)
            with torch.no_grad():
                output = model(nag)
            
            # For voxel level
            #semantic_pred = output.voxel_semantic_pred(super_index=nag[0].super_index)
            #pos_list.append(nag[0].pos.cpu())
            
            # For full resolution level
            semantic_pred = output.full_res_semantic_pred(super_index_level0_to_level1=nag[0].super_index, sub_level0_to_raw=nag[0].sub)
            pos_list.append(data.pos.cpu())
            indices_list.append(data.initial_index.cpu())
            
            pred_list.append(semantic_pred.cpu())
            
            if pos_offset_init is None:
                pos_offset_init = nag[0].pos_offset.cpu()

        merged_pos = torch.cat(pos_list, dim=0)
        merged_pred = torch.cat(pred_list, dim=0)
        merged_pos_offset = pos_offset_init + offset_initial_las
        
        # only for full res point cloud and keep initial order of points
        merged_indices = torch.cat(indices_list, dim=0) 
        sorted_indices = torch.argsort(merged_indices)
        merged_pos = merged_pos[sorted_indices]
        merged_pred = merged_pred[sorted_indices]
        

        pos_data = (merged_pos.numpy() / scale).astype(int)
        x, y, z = pos_data[:, 0], pos_data[:, 1], pos_data[:, 2]

        header = laspy.LasHeader(point_format=3, version="1.2")
        header.scales = scale
        header.offsets = merged_pos_offset
        las = laspy.LasData(header)
        las.X, las.Y, las.Z = x, y, z

        las.add_extra_dim(
            laspy.ExtraBytesParams(name="classif", type=np.uint8, description="Predicted class")
        )
        las.classif = merged_pred.numpy().astype(np.uint8)

        output_las = filepath.replace('.las', '_classified.las')
        las.write(output_las)
        print(f"[Inference] Saved classified LAS to: {output_las}")

def export_logits(model, cfg, transforms_dict, root_dir, scale, pc_tiling):
    las_files = glob.glob(os.path.join(root_dir, "*", "*", "*", "*.las"))
    for filepath in las_files:
        print(f"\n[Export Logits] Processing: {filepath}")
        data_las = laspy.read(filepath)
        offset_initial_las = np.array(data_las.header.offset, dtype=np.float64)

        data_las = read_gridnet_tile(
            filepath, xyz=True, intensity=True, rgb=True,
            semantic=False, instance=False, remap=True
        )

        pos_list = []
        logits_list = []
        pos_offset_init = None

        for x in range(2**pc_tiling):
            data = SampleRecursiveMainXYAxisTiling(x=x, steps=pc_tiling)(data_las)
            nag = transforms_dict['pre_transform'](data)
            nag = NAGRemoveKeys(level=0, keys=[
                k for k in nag[0].keys if k not in cfg.datamodule.point_load_keys
            ])(nag)
            nag = NAGRemoveKeys(level='1+', keys=[
                k for k in nag[1].keys if k not in cfg.datamodule.segment_load_keys
            ])(nag)
            nag = nag.cuda()
            nag = transforms_dict['on_device_test_transform'](nag)

            with torch.no_grad():
                output = model(nag)

            logits = output.voxel_logits_pred(super_index=nag[0].super_index)

            pos_list.append(nag[0].pos.cpu())
            logits_list.append(logits.cpu())

            if pos_offset_init is None:
                pos_offset_init = nag[0].pos_offset.cpu()

        merged_pos = torch.cat(pos_list, dim=0)
        merged_logits = torch.cat(logits_list, dim=0)
        merged_pos_offset = pos_offset_init + offset_initial_las

        pos_data = (merged_pos.numpy() / scale).astype(int)
        x, y, z = pos_data[:, 0], pos_data[:, 1], pos_data[:, 2]
        logits = merged_logits.numpy()

        header = laspy.LasHeader(point_format=3, version="1.2")
        header.scales = scale
        header.offsets = merged_pos_offset
        las = laspy.LasData(header)
        las.X, las.Y, las.Z = x, y, z

        soft_logits = F.softmax(torch.tensor(logits), dim=1).numpy()
        for i in range(soft_logits.shape[1]):
            scaled_logits = (255 * soft_logits[:, i]).clip(0, 255).astype(np.uint8)
            las.add_extra_dim(
                laspy.ExtraBytesParams(name=f"sof_log{i}", type=np.uint8, description=f"Logit {i}")
            )
            setattr(las, f"sof_log{i}", scaled_logits[:])

        output_las = filepath.replace('.las', '_with_softmax.las')
        las.write(output_las)
        print(f"[Export Logits] Saved softmax LAS to: {output_las}")


def main():
    parser = argparse.ArgumentParser(description="SPT Inference and Logits Export")
    parser.add_argument('--mode', choices=['inference', 'export_log'], required=True, help="Choose between full-resolution inference or export logits")
    parser.add_argument('--split', type=str, default='test', help="Data split to process (only used in inference mode) test or val split")
    parser.add_argument('--weights', type=str, required=True, help="Path to model checkpoint")
    parser.add_argument('--root_dir', type=str, required=True, help="Root directory of the dataset")
    parser.add_argument('--pc_tiling', type=str, default='3', help="PC tiling for point cloud sampling")
    

    args = parser.parse_args()
    cfg = init_config(overrides=["experiment=semantic/gridnet"])
    transforms_dict = instantiate_datamodule_transforms(cfg.datamodule)

    model = hydra.utils.instantiate(cfg.model)
    model = model._load_from_checkpoint(args.weights)
    model = model.eval().cuda()

    SCALE = [0.001, 0.001, 0.001]
    pc_tiling = int(args.pc_tiling)

    if args.mode == 'inference':
        run_inference(model, cfg, transforms_dict, args.root_dir, args.split, SCALE, pc_tiling)
    elif args.mode == 'export_log':
        export_logits(model, cfg, transforms_dict, args.root_dir, SCALE, pc_tiling)


if __name__ == '__main__':
    main()