File size: 4,886 Bytes
f2a4365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2c7625
f2a4365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
license: mit
tags:
- machine-learning
- xgboost
- quantum-enhanced
- bleu-js
- classification
- gradient-boosting
datasets:
- custom
metrics:
- accuracy
- f1-score
- roc-auc
model-index:
- name: bleu-xgboost-classifier
  results:
  - task:
      type: classification
    dataset:
      name: Custom Dataset
      type: custom
    metrics:
    - type: accuracy
      value: TBD
    - type: f1-score
      value: TBD
    - type: roc-auc
      value: TBD
---

# Bleu.js XGBoost Classifier

## Model Description

This is an XGBoost classification model from the Bleu.js quantum-enhanced AI platform. The model combines classical gradient boosting with quantum computing capabilities for improved performance and feature extraction.

## Model Details

### Model Type
- **Architecture**: XGBoost Classifier
- **Framework**: XGBoost with quantum-enhanced features
- **Task**: Binary Classification
- **Version**: 1.2.1

### Training Details

#### Training Data
- **Dataset**: Custom training dataset
- **Training Script**: `backend/train_xgboost.py`
- **Data Split**: 80% training, 20% validation

#### Hyperparameters
- `max_depth`: 6
- `learning_rate`: 0.1
- `n_estimators`: 100
- `objective`: binary:logistic
- `random_state`: 42
- `early_stopping_rounds`: 10

#### Preprocessing
- Feature scaling with StandardScaler
- Quantum-enhanced feature extraction (optional)
- Data normalization

### Model Files

- `xgboost_model_latest.pkl`: The trained XGBoost model (latest version)
- `scaler_latest.pkl`: Feature scaler for preprocessing (latest version)

## How to Use

### Installation

```bash
pip install xgboost numpy scikit-learn
```

### Basic Usage

```python
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler

# Load the model and scaler
with open('xgboost_model_latest.pkl', 'rb') as f:
    model = pickle.load(f)

with open('scaler_latest.pkl', 'rb') as f:
    scaler = pickle.load(f)

# Prepare your data (numpy array with shape: n_samples, n_features)
X = np.array([[feature1, feature2, ...]])

# Scale the features
X_scaled = scaler.transform(X)

# Make predictions
predictions = model.predict(X_scaled)
probabilities = model.predict_proba(X_scaled)

print(f"Predictions: {predictions}")
print(f"Probabilities: {probabilities}")
```

### Using with Bleu.js

```python
from bleujs import BleuJS

# Initialize BleuJS with quantum enhancements
bleu = BleuJS(
    quantum_mode=True,
    model_path="xgboost_model_latest.pkl",
    device="cuda"  # or "cpu"
)

# Process data with quantum features
results = bleu.process(
    input_data=your_data,
    quantum_features=True
)
```

### Download from Hugging Face

```python
from huggingface_hub import hf_hub_download
import pickle

# Download model
model_path = hf_hub_download(
    repo_id="helloblueai/bleu-xgboost-classifier",
    filename="xgboost_model_latest.pkl"
)

scaler_path = hf_hub_download(
    repo_id="helloblueai/bleu-xgboost-classifier",
    filename="scaler_latest.pkl"
)

# Load model
with open(model_path, 'rb') as f:
    model = pickle.load(f)

with open(scaler_path, 'rb') as f:
    scaler = pickle.load(f)
```

## Model Performance

Performance metrics will be updated after evaluation. The model uses:
- Early stopping to prevent overfitting
- Cross-validation for robust evaluation
- Quantum-enhanced features for improved accuracy

## Limitations and Bias

- This model was trained on a specific dataset and may not generalize to other domains
- Performance may vary depending on input data distribution
- Quantum enhancements require compatible hardware for optimal performance
- Model performance depends on data quality and feature engineering

## Training Information

### Training Script
The model is trained using `backend/train_xgboost.py`:

```python
params = {
    "max_depth": 6,
    "learning_rate": 0.1,
    "n_estimators": 100,
    "objective": "binary:logistic",
    "random_state": 42,
}
```

### Evaluation
- Validation set: 20% of training data
- Early stopping: 10 rounds
- Evaluation metric: Log loss (default)

## Citation

If you use this model in your research, please cite:

```bibtex
@software{bleu_js_2025,
  title={Bleu.js: Quantum-Enhanced AI Platform},
  author={HelloblueAI},
  year={2024},
  url={https://github.com/HelloblueAI/Bleu.js},
  version={1.2.1}
}
```

## License

This model is released under the MIT License. See the LICENSE file for more details.

## Contact

For questions or issues, please contact:
- **Email**: [email protected]
- **GitHub**: https://github.com/HelloblueAI/Bleu.js
- **Organization**: https://huggingface.co/helloblueai

## Acknowledgments

This model is part of the Bleu.js project, which combines classical machine learning with quantum computing capabilities for enhanced performance.

## Related Models

- Bleu.js Quantum Vision Model
- Bleu.js Hybrid Neural Network
- Bleu.js Quantum Feature Extractor