File size: 4,886 Bytes
f2a4365 f2c7625 f2a4365 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
---
license: mit
tags:
- machine-learning
- xgboost
- quantum-enhanced
- bleu-js
- classification
- gradient-boosting
datasets:
- custom
metrics:
- accuracy
- f1-score
- roc-auc
model-index:
- name: bleu-xgboost-classifier
results:
- task:
type: classification
dataset:
name: Custom Dataset
type: custom
metrics:
- type: accuracy
value: TBD
- type: f1-score
value: TBD
- type: roc-auc
value: TBD
---
# Bleu.js XGBoost Classifier
## Model Description
This is an XGBoost classification model from the Bleu.js quantum-enhanced AI platform. The model combines classical gradient boosting with quantum computing capabilities for improved performance and feature extraction.
## Model Details
### Model Type
- **Architecture**: XGBoost Classifier
- **Framework**: XGBoost with quantum-enhanced features
- **Task**: Binary Classification
- **Version**: 1.2.1
### Training Details
#### Training Data
- **Dataset**: Custom training dataset
- **Training Script**: `backend/train_xgboost.py`
- **Data Split**: 80% training, 20% validation
#### Hyperparameters
- `max_depth`: 6
- `learning_rate`: 0.1
- `n_estimators`: 100
- `objective`: binary:logistic
- `random_state`: 42
- `early_stopping_rounds`: 10
#### Preprocessing
- Feature scaling with StandardScaler
- Quantum-enhanced feature extraction (optional)
- Data normalization
### Model Files
- `xgboost_model_latest.pkl`: The trained XGBoost model (latest version)
- `scaler_latest.pkl`: Feature scaler for preprocessing (latest version)
## How to Use
### Installation
```bash
pip install xgboost numpy scikit-learn
```
### Basic Usage
```python
import pickle
import numpy as np
from sklearn.preprocessing import StandardScaler
# Load the model and scaler
with open('xgboost_model_latest.pkl', 'rb') as f:
model = pickle.load(f)
with open('scaler_latest.pkl', 'rb') as f:
scaler = pickle.load(f)
# Prepare your data (numpy array with shape: n_samples, n_features)
X = np.array([[feature1, feature2, ...]])
# Scale the features
X_scaled = scaler.transform(X)
# Make predictions
predictions = model.predict(X_scaled)
probabilities = model.predict_proba(X_scaled)
print(f"Predictions: {predictions}")
print(f"Probabilities: {probabilities}")
```
### Using with Bleu.js
```python
from bleujs import BleuJS
# Initialize BleuJS with quantum enhancements
bleu = BleuJS(
quantum_mode=True,
model_path="xgboost_model_latest.pkl",
device="cuda" # or "cpu"
)
# Process data with quantum features
results = bleu.process(
input_data=your_data,
quantum_features=True
)
```
### Download from Hugging Face
```python
from huggingface_hub import hf_hub_download
import pickle
# Download model
model_path = hf_hub_download(
repo_id="helloblueai/bleu-xgboost-classifier",
filename="xgboost_model_latest.pkl"
)
scaler_path = hf_hub_download(
repo_id="helloblueai/bleu-xgboost-classifier",
filename="scaler_latest.pkl"
)
# Load model
with open(model_path, 'rb') as f:
model = pickle.load(f)
with open(scaler_path, 'rb') as f:
scaler = pickle.load(f)
```
## Model Performance
Performance metrics will be updated after evaluation. The model uses:
- Early stopping to prevent overfitting
- Cross-validation for robust evaluation
- Quantum-enhanced features for improved accuracy
## Limitations and Bias
- This model was trained on a specific dataset and may not generalize to other domains
- Performance may vary depending on input data distribution
- Quantum enhancements require compatible hardware for optimal performance
- Model performance depends on data quality and feature engineering
## Training Information
### Training Script
The model is trained using `backend/train_xgboost.py`:
```python
params = {
"max_depth": 6,
"learning_rate": 0.1,
"n_estimators": 100,
"objective": "binary:logistic",
"random_state": 42,
}
```
### Evaluation
- Validation set: 20% of training data
- Early stopping: 10 rounds
- Evaluation metric: Log loss (default)
## Citation
If you use this model in your research, please cite:
```bibtex
@software{bleu_js_2025,
title={Bleu.js: Quantum-Enhanced AI Platform},
author={HelloblueAI},
year={2024},
url={https://github.com/HelloblueAI/Bleu.js},
version={1.2.1}
}
```
## License
This model is released under the MIT License. See the LICENSE file for more details.
## Contact
For questions or issues, please contact:
- **Email**: [email protected]
- **GitHub**: https://github.com/HelloblueAI/Bleu.js
- **Organization**: https://huggingface.co/helloblueai
## Acknowledgments
This model is part of the Bleu.js project, which combines classical machine learning with quantum computing capabilities for enhanced performance.
## Related Models
- Bleu.js Quantum Vision Model
- Bleu.js Hybrid Neural Network
- Bleu.js Quantum Feature Extractor
|