{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x785cbf9ec7c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739844092753836520, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGaYaD115AY+xACBvo0ABb4r7sC9ev00PQAAAAAAAAAALjGzvqyRgD9VTU+9EgoRv4HwBL+McBA+AAAAAAAAAACaBCy99ph/ujbqljw07D08pGvEu1DgKD0AAIA/AACAPzN8Fz4pvXk9Mmekvu9z071UvRs9QYSLvQAAAAAAAAAAyuJrvs3uEb3jB7m7yqlRujMCgD6OEBs7AACAPwAAgD+AxQ49UvjfOGL3szxwPDMzwsQQu2OFTTMAAIA/AACAP0CCx70iB3U/Q+d7vuIVB79XPn++zxizPQAAAAAAAAAA5kifPVw3R7qDtkK5ElmMtJXgoTv1WmQ4AACAPwAAAAAzg6o7kkCCPmLeQz6BZYS+fNmxPVh85zsAAAAAAAAAAE2FnD3hgfc9IduZve4wKL4/Jqc9+o2RvQAAAAAAAAAAaJOfvtCNcj9ZJhK+ZYIdv0JC4L5aapQ9AAAAAAAAAAAzYrS8uHGku+bQwbyKh3U9SHETPer3wjsAAIA/AACAPyZxmr08a3M+TgH5PWldy7457oE9FEIUPQAAAAAAAAAAAPPUvSmARboWm5u6z5yUtVdzQzr5Brg5AACAPwAAAAAAKqC8hIW6P3fZwL5wjrc+cr7GOxRrHr0AAAAAAAAAAG1/Rb5bCry8ICiPvWfyFbz2mic+fUvpPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVBgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFMEbkwN9aMAWyUTQMBjAF0lEdAlGR5/LDAJ3V9lChoBkdAcU0JzDGcWmgHS/BoCEdAlGSDo+wC83V9lChoBkdAbT6xGlQ/HGgHTSQDaAhHQJRlh66asp51fZQoaAZHQG9fLeZXuE5oB00JAWgIR0CUZcw0O3DvdX2UKGgGR0Bwvn6oESuhaAdNJQFoCEdAlGafWYnfEXV9lChoBkdAcVqgW8AaN2gHS+JoCEdAlGbuJgsshHV9lChoBkdAcnjnxaxHG2gHTQoBaAhHQJRnKEPDpC91fZQoaAZHQHFXhAOavzRoB00DAWgIR0CUZ0GI9C/odX2UKGgGR0BxNjGS6lLwaAdNBAFoCEdAlGdZRCQcP3V9lChoBkdAbnK7wKBuoGgHS/loCEdAlGeA66reZXV9lChoBkdAc0ug5imVJWgHS+9oCEdAlGks2rGR3nV9lChoBkdAcaXGjbi6x2gHS+poCEdAlGkrjYI0InV9lChoBkdAVAns2NvOyGgHS5JoCEdAlGmr3fyf+XV9lChoBkdAcTvhIe5nUWgHS+9oCEdAlGpNK/VRUHV9lChoBkdAcFUcQiA2AGgHS8toCEdAlGpa+WWyDHV9lChoBkdAb+DDcdo372gHS+toCEdAlGsF5nlGPXV9lChoBkdAc9+F3Y+SsGgHS+1oCEdAlGtIvnKW9nV9lChoBkdAcAoPwd8zAWgHS9poCEdAlGyPJeVs13V9lChoBkdAcN4ZMcp9Z2gHS+ZoCEdAlG1w1Nxlx3V9lChoBkdAcsOdnkDIR2gHS+5oCEdAlG3Ire67NHV9lChoBkdAcX6uFYdQwmgHTRUBaAhHQJRuqhZha1V1fZQoaAZHQGHzJhfBvaVoB03oA2gIR0CUbvKArhBJdX2UKGgGR0By7XMPjGT+aAdNEgFoCEdAlG8s76pHZ3V9lChoBkdAc3nXKKYRd2gHTRoBaAhHQJRvO5J9RaZ1fZQoaAZHQHE13CGetjloB01SAWgIR0CUb2R1HOKPdX2UKGgGR0BvsvRXwLE2aAdL5mgIR0CUb6c7yQPqdX2UKGgGR0BxsT349HMEaAdNPgNoCEdAlG/DlPrOaHV9lChoBkdAcA0JkXk5qGgHS+poCEdAlHAmJBPbf3V9lChoBkdAcJhr1dxAB2gHS8xoCEdAlHCPpUxVQ3V9lChoBkdAchaR8MNMG2gHS81oCEdAlHDOdkJ8fHV9lChoBkdAcIrIhyKekGgHS/VoCEdAlHDofwI+n3V9lChoBkdAcep8/lhgE2gHS81oCEdAlHHEtVaOgnV9lChoBkdAcuNd+G47R2gHTUkBaAhHQJRxwwYcebN1fZQoaAZHQHHQCK3uuzRoB00zAWgIR0CUcieFcpsodX2UKGgGR0B0KEi1RceKaAdL72gIR0CUczXOnl4kdX2UKGgGR0BysPUpd8iOaAdLxGgIR0CUhlDyOJcgdX2UKGgGR0BwkIoNNJvpaAdNCgFoCEdAlIbzxLCemXV9lChoBkdAcWTg6EJ0GWgHS8ZoCEdAlIcGKQ7tA3V9lChoBkdAcAQthd+ocmgHS+VoCEdAlIdQJC0F83V9lChoBkdAb6isVclgMWgHTQsBaAhHQJSIG/+Kjzt1fZQoaAZHQG9dQ7kn1FpoB00QAWgIR0CUiKG0u14PdX2UKGgGR0Bug5XQtz0ZaAdL9mgIR0CUiKR15jYqdX2UKGgGR0Bxu3rC3w1BaAdNHAFoCEdAlIkd1uBMBnV9lChoBkdAcBJiTMaCMGgHTQkBaAhHQJSKJs3yZrp1fZQoaAZHQHH0MGX5WR1oB00cAWgIR0CUiiVvddmhdX2UKGgGR0BwNRsP8Q7LaAdNBgFoCEdAlIpYDxLCenV9lChoBkdAcYE/pMYdhmgHTRIBaAhHQJSKu0jTrmh1fZQoaAZHQHLQM8PnSv1oB0vfaAhHQJSK7cO9WZJ1fZQoaAZHQHA0cclw97poB0v3aAhHQJSLFXDFZPl1fZQoaAZHQHDwEYKpkwxoB0vQaAhHQJSLmNEPUa11fZQoaAZHQHH1HTy8SPFoB0vJaAhHQJSMTUUfxMF1fZQoaAZHQHJ+aHoHLRtoB003AWgIR0CUjH0CRwIddX2UKGgGR0BwghaLXL/0aAdL0WgIR0CUjZJKraM8dX2UKGgGR0BzORGPPszEaAdNAwFoCEdAlI3BUWEbpHV9lChoBkdAcFEvnbItDmgHTRYBaAhHQJSNy5VfeDZ1fZQoaAZHQHC/WqPwNLFoB00NAWgIR0CUji9uP3i8dX2UKGgGR0BzWCs6q815aAdLv2gIR0CUjuqFRHf/dX2UKGgGR0Bw5rYqXnhbaAdNFwFoCEdAlI8E65oXbnV9lChoBkdAbadwd8zAOGgHTR0BaAhHQJSPlxrBTGZ1fZQoaAZHQG6TFpoK2KFoB0vxaAhHQJSQCnsLORl1fZQoaAZHQHImwS8J2MdoB00hAWgIR0CUkD557gKndX2UKGgGR0ByqpZJTVDsaAdNBwFoCEdAlJCXP7el9HV9lChoBkdAcRqMt9QXRGgHS+VoCEdAlJC3/T9bYHV9lChoBkdAcXIyt3fQ8mgHS/VoCEdAlJDDGPxQSHV9lChoBkdAcXvWTX8O1GgHS/FoCEdAlJDdt65Xl3V9lChoBkdAcVoT6i0v5GgHTQYBaAhHQJSR6melKsd1fZQoaAZHQHGn4siB5HFoB0vtaAhHQJSSEsFt8/l1fZQoaAZHQHDFSn1nM+xoB0vRaAhHQJSSwpON5t51fZQoaAZHQHCkubqhUR5oB0vZaAhHQJSSyw7kn1F1fZQoaAZHQHEfvatcOb1oB00sAWgIR0CUk71k1/DtdX2UKGgGR0Bu6p31SOzZaAdL/2gIR0CUk+433pOfdX2UKGgGR0BythPfsNUgaAdL12gIR0CUlBSxqwhXdX2UKGgGR0BwXvzGxUvPaAdL+GgIR0CUlCF0PpY+dX2UKGgGR0BxOFn5BTn8aAdL42gIR0CUlETBZZB+dX2UKGgGR0By8BTo+wC9aAdL3WgIR0CUlT5E+gUUdX2UKGgGR0Bvi/zcynDSaAdL52gIR0CUlU5dGAkLdX2UKGgGR0BuEustCiRGaAdL/2gIR0CUlXI6r/83dX2UKGgGR0Bx451Ng0CSaAdLy2gIR0CUlW79hqj8dX2UKGgGR0Bx6dliBoVVaAdL2GgIR0CUlXRHf/FSdX2UKGgGR0BwrhlVcUudaAdL/WgIR0CUlldJaq0ddX2UKGgGR0BwTLRF7UobaAdL8mgIR0CUl28eCCjDdX2UKGgGR0ByVan+AEt/aAdNMwFoCEdAlJebyH2ys3V9lChoBkdAcVL1AZ88cWgHS/ZoCEdAlJevtlZownV9lChoBkdAceIPomoitGgHS95oCEdAlJfee4Cp33V9lChoBkdAciuYTj/+9GgHS8toCEdAlJh5Bw++unV9lChoBkdActRFuvUz9GgHTRMBaAhHQJSZFGlQ/HJ1fZQoaAZHQE1HCaZx7zFoB0vwaAhHQJSZkmXw9aF1fZQoaAZHQG9pBg/keZJoB0v+aAhHQJSaACgbp/x1fZQoaAZHQHJgzSG8EmpoB0veaAhHQJSau7/XGwR1fZQoaAZHQHAbBgeA/cFoB00rAWgIR0CUmstzS1E3dX2UKGgGR0BxmRHH3lCDaAdL5WgIR0CUmu8GcFyJdX2UKGgGR0BvYoJRfnfVaAdNHQFoCEdAlJsEVWS2Y3V9lChoBkdAcOViNsFdLWgHS/BoCEdAlJsLlA/s3XV9lChoBkdAcsHISDh99mgHS/JoCEdAlJsy2UjcEnV9lChoBkdAbueTpPhybWgHS+xoCEdAlJwNETg2qHV9lChoBkdAcnihOP/7zmgHTSUBaAhHQJScIj1PFeh1fZQoaAZHQHHPGXb/Ot5oB0vwaAhHQJSddky1uzh1fZQoaAZHQHFlcHSnccloB0vuaAhHQJSdn5O8Cgd1fZQoaAZHQHMsJpaiblRoB0vsaAhHQJSeQXj2i+N1fZQoaAZHQHAOgqRU3n9oB0viaAhHQJSfIuf29L91ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}