--- base_model: airesearch/wangchanberta-base-att-spm-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f2 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/herobye13579/huggingface/runs/i28c752o) # wcBERTaAttSpmm-ggTranslate-senticPolarEmotion-bully-f2 This model is a fine-tuned version of [airesearch/wangchanberta-base-att-spm-uncased](https://huggingface.co/airesearch/wangchanberta-base-att-spm-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5206 - Accuracy: 0.7354 - Precision: 0.7320 - Recall: 0.7354 - F1 Score: 0.7335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:--------:| | 0.6386 | 1.0 | 120 | 0.6121 | 0.7008 | 0.4912 | 0.7008 | 0.5776 | | 0.603 | 2.0 | 240 | 0.5663 | 0.7144 | 0.6835 | 0.7144 | 0.6762 | | 0.5758 | 3.0 | 360 | 0.5828 | 0.7029 | 0.6989 | 0.7029 | 0.7007 | | 0.5724 | 4.0 | 480 | 0.5518 | 0.7238 | 0.6978 | 0.7238 | 0.6894 | | 0.5412 | 5.0 | 600 | 0.5336 | 0.7082 | 0.6926 | 0.7082 | 0.6975 | | 0.5295 | 6.0 | 720 | 0.5222 | 0.7280 | 0.7111 | 0.7280 | 0.7145 | | 0.4851 | 7.0 | 840 | 0.5090 | 0.7312 | 0.7136 | 0.7312 | 0.7162 | | 0.4639 | 8.0 | 960 | 0.5153 | 0.7259 | 0.7164 | 0.7259 | 0.7200 | | 0.4606 | 9.0 | 1080 | 0.5233 | 0.7029 | 0.7241 | 0.7029 | 0.7104 | | 0.4412 | 10.0 | 1200 | 0.5501 | 0.6998 | 0.7496 | 0.6998 | 0.7116 | | 0.4106 | 11.0 | 1320 | 0.5262 | 0.7155 | 0.7398 | 0.7155 | 0.7235 | | 0.3976 | 12.0 | 1440 | 0.5148 | 0.7374 | 0.7300 | 0.7374 | 0.7329 | | 0.3917 | 13.0 | 1560 | 0.5194 | 0.7364 | 0.7338 | 0.7364 | 0.7350 | | 0.3858 | 14.0 | 1680 | 0.5225 | 0.7259 | 0.7293 | 0.7259 | 0.7275 | | 0.3853 | 15.0 | 1800 | 0.5206 | 0.7354 | 0.7320 | 0.7354 | 0.7335 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1