Morgan Funtowicz
misc(config): add proper way to detect if cpu may support bfloat16
a8540ed
raw
history blame
4.27 kB
import os
import platform
from typing import Union, Sequence, Sized
import torch
from hfendpoints.openai import Context, run
from hfendpoints.openai.embeddings import Embedding, EmbeddingEndpoint, EmbeddingRequest, EmbeddingResponse, Usage
from hfendpoints import EndpointConfig, Handler, __version__
from loguru import logger
from torch.backends.mkldnn import VERBOSE_ON_CREATION, VERBOSE_OFF
from sentence_transformers import SentenceTransformer
# Not used for now
SUPPORTED_AMP_DTYPES = {torch.float32, torch.bfloat16}
def has_bf16_support() -> bool:
"""
Helper to detect if the hardware supports bfloat16
Note:
Intel libraries, such as oneDNN, provide emulation for bfloat16 even if the underlying hardware does not support it.
This means CPU ISA with AVX512 will work, even if not with the same performances as one could expect from CPU ISA with AVX512_BF16.
Also, AMX_BF16 is implicitly assumed true when AVX512_BF16 is true (that's the case on Intel Sapphire Rapids).
:return: True if the hardware supports (or can emulate) bfloat16, False otherwise
"""
return torch.cpu._is_avx512_bf16_supported() or torch.cpu._is_avx512_supported()
def get_usage(tokens: Union[Sized, Sequence[Sized]], is_batched: bool) -> Usage:
"""
Compute the number of processed tokens and return as Usage object matching OpenAI
:param tokens: List or nested List of tokens
:param is_batched: Flag indicating if the original request contained batched inputs
:return: Usage object matching OpenAI specifications
"""
if is_batched:
num_tokens = sum(len(document) for document in tokens)
else:
num_tokens = len(tokens)
return Usage(prompt_tokens=num_tokens, total_tokens=num_tokens)
class SentenceTransformerHandler(Handler):
__slots__ = ("_config", "_dtype", "_model", "_model_name", "_use_amp")
def __init__(self, config: EndpointConfig):
self._config = config
self._dtype = torch.float32
self._model_name = config.model_id
self._allocate_model()
def _allocate_model(self):
dtype = torch.bfloat16 if has_bf16_support() else torch.float32
model = SentenceTransformer(self._config.model_id, device="cpu", model_kwargs={"torch_dtype": dtype})
if platform.machine() == "x86_64":
import intel_extension_for_pytorch as ipex
logger.info(f"x64 platform detected: {platform.processor()}")
with torch.inference_mode():
model = model.eval()
model = model.to(memory_format=torch.channels_last)
model = ipex.optimize(model, dtype=dtype, weights_prepack=False, graph_mode=True, concat_linear=True)
model = torch.compile(model, dynamic=True, backend="ipex")
else:
model = torch.compile(model)
self._model = model
self._dtype = dtype
self._use_amp = dtype in SUPPORTED_AMP_DTYPES
async def __call__(self, request: EmbeddingRequest, ctx: Context) -> EmbeddingResponse:
with torch.backends.mkldnn.verbose(VERBOSE_ON_CREATION if self._config.is_debug else VERBOSE_OFF):
with torch.inference_mode(), torch.amp.autocast("cpu", dtype=self._dtype, enabled=self._use_amp):
tokens = self._model.tokenize(request.input)
vectors = self._model.encode(request.input)
embeddings = [None] * len(request)
if not request.is_batched:
embeddings[0] = Embedding(index=0, embedding=vectors.tolist())
else:
for (index, embedding) in enumerate(vectors.tolist()):
embedding = Embedding(index=index, embedding=embedding)
embeddings[index] = embedding
usage = get_usage(tokens, request.is_batched)
return EmbeddingResponse(model=self._model_name, embeddings=embeddings, usage=usage)
def entrypoint():
config = EndpointConfig.from_env()
logger.info(f"[Hugging Face Endpoint v{__version__}] Serving: {config.model_id}")
endpoint = EmbeddingEndpoint(SentenceTransformerHandler(config))
run(endpoint, config.interface, config.port)
if __name__ == "__main__":
entrypoint()