--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_1x_deit_tiny_adamax_00001_fold5 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5121951219512195 --- # hushem_1x_deit_tiny_adamax_00001_fold5 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.9982 - Accuracy: 0.5122 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.3816 | 0.2927 | | 1.4331 | 2.0 | 12 | 1.3595 | 0.2195 | | 1.4331 | 3.0 | 18 | 1.3006 | 0.2927 | | 1.2071 | 4.0 | 24 | 1.2477 | 0.3415 | | 1.0931 | 5.0 | 30 | 1.2218 | 0.3659 | | 1.0931 | 6.0 | 36 | 1.1904 | 0.3415 | | 0.9583 | 7.0 | 42 | 1.2070 | 0.3659 | | 0.9583 | 8.0 | 48 | 1.1804 | 0.3415 | | 0.875 | 9.0 | 54 | 1.1663 | 0.3415 | | 0.7821 | 10.0 | 60 | 1.1729 | 0.3659 | | 0.7821 | 11.0 | 66 | 1.1600 | 0.3659 | | 0.7082 | 12.0 | 72 | 1.1535 | 0.3659 | | 0.7082 | 13.0 | 78 | 1.1283 | 0.3902 | | 0.5865 | 14.0 | 84 | 1.1050 | 0.4146 | | 0.5549 | 15.0 | 90 | 1.0989 | 0.4146 | | 0.5549 | 16.0 | 96 | 1.0902 | 0.4146 | | 0.4748 | 17.0 | 102 | 1.0889 | 0.4146 | | 0.4748 | 18.0 | 108 | 1.0670 | 0.4146 | | 0.4005 | 19.0 | 114 | 1.0529 | 0.4146 | | 0.3717 | 20.0 | 120 | 1.0514 | 0.4146 | | 0.3717 | 21.0 | 126 | 1.0589 | 0.4146 | | 0.3189 | 22.0 | 132 | 1.0546 | 0.4146 | | 0.3189 | 23.0 | 138 | 1.0253 | 0.4390 | | 0.2768 | 24.0 | 144 | 1.0205 | 0.4390 | | 0.2632 | 25.0 | 150 | 1.0386 | 0.4146 | | 0.2632 | 26.0 | 156 | 1.0297 | 0.4390 | | 0.2284 | 27.0 | 162 | 1.0322 | 0.4634 | | 0.2284 | 28.0 | 168 | 1.0102 | 0.4634 | | 0.196 | 29.0 | 174 | 1.0015 | 0.4878 | | 0.1861 | 30.0 | 180 | 1.0070 | 0.4634 | | 0.1861 | 31.0 | 186 | 1.0149 | 0.4878 | | 0.1711 | 32.0 | 192 | 1.0173 | 0.4878 | | 0.1711 | 33.0 | 198 | 1.0083 | 0.4878 | | 0.1508 | 34.0 | 204 | 1.0068 | 0.5122 | | 0.1433 | 35.0 | 210 | 0.9998 | 0.5122 | | 0.1433 | 36.0 | 216 | 0.9984 | 0.5122 | | 0.1371 | 37.0 | 222 | 0.9985 | 0.5122 | | 0.1371 | 38.0 | 228 | 0.9983 | 0.5122 | | 0.1311 | 39.0 | 234 | 0.9983 | 0.5122 | | 0.1245 | 40.0 | 240 | 0.9977 | 0.5122 | | 0.1245 | 41.0 | 246 | 0.9980 | 0.5122 | | 0.1273 | 42.0 | 252 | 0.9982 | 0.5122 | | 0.1273 | 43.0 | 258 | 0.9982 | 0.5122 | | 0.1185 | 44.0 | 264 | 0.9982 | 0.5122 | | 0.1259 | 45.0 | 270 | 0.9982 | 0.5122 | | 0.1259 | 46.0 | 276 | 0.9982 | 0.5122 | | 0.1239 | 47.0 | 282 | 0.9982 | 0.5122 | | 0.1239 | 48.0 | 288 | 0.9982 | 0.5122 | | 0.1264 | 49.0 | 294 | 0.9982 | 0.5122 | | 0.1234 | 50.0 | 300 | 0.9982 | 0.5122 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1