--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_conflu_deneme_fold1 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5111111111111111 --- # hushem_conflu_deneme_fold1 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 2.8961 - Accuracy: 0.5111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.4190 | 0.2444 | | 1.9213 | 2.0 | 12 | 1.3227 | 0.3111 | | 1.9213 | 3.0 | 18 | 2.3526 | 0.2444 | | 1.2734 | 4.0 | 24 | 1.7104 | 0.3778 | | 1.0407 | 5.0 | 30 | 1.6039 | 0.3556 | | 1.0407 | 6.0 | 36 | 1.2459 | 0.4667 | | 0.733 | 7.0 | 42 | 1.3344 | 0.4667 | | 0.733 | 8.0 | 48 | 1.5744 | 0.5556 | | 0.448 | 9.0 | 54 | 1.2479 | 0.5556 | | 0.3254 | 10.0 | 60 | 2.2545 | 0.5333 | | 0.3254 | 11.0 | 66 | 1.7472 | 0.5333 | | 0.2088 | 12.0 | 72 | 2.0350 | 0.5778 | | 0.2088 | 13.0 | 78 | 3.0002 | 0.4889 | | 0.1216 | 14.0 | 84 | 2.1774 | 0.5556 | | 0.0746 | 15.0 | 90 | 2.5953 | 0.5333 | | 0.0746 | 16.0 | 96 | 2.8934 | 0.5111 | | 0.0176 | 17.0 | 102 | 2.8961 | 0.5111 | | 0.0176 | 18.0 | 108 | 2.8961 | 0.5111 | | 0.0201 | 19.0 | 114 | 2.8961 | 0.5111 | | 0.0136 | 20.0 | 120 | 2.8961 | 0.5111 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1