--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_conflu_deneme_fold2 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.5333333333333333 --- # hushem_conflu_deneme_fold2 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.9900 - Accuracy: 0.5333 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.5124 | 0.2444 | | 2.1014 | 2.0 | 12 | 1.4172 | 0.2667 | | 2.1014 | 3.0 | 18 | 1.3682 | 0.2667 | | 1.3494 | 4.0 | 24 | 1.5568 | 0.3333 | | 1.1794 | 5.0 | 30 | 1.1703 | 0.3778 | | 1.1794 | 6.0 | 36 | 1.1853 | 0.5333 | | 0.9962 | 7.0 | 42 | 0.9960 | 0.5778 | | 0.9962 | 8.0 | 48 | 0.9911 | 0.5778 | | 0.7941 | 9.0 | 54 | 1.7710 | 0.4444 | | 0.6504 | 10.0 | 60 | 1.0188 | 0.5111 | | 0.6504 | 11.0 | 66 | 1.3899 | 0.4889 | | 0.3424 | 12.0 | 72 | 1.3633 | 0.5333 | | 0.3424 | 13.0 | 78 | 1.6911 | 0.4667 | | 0.1576 | 14.0 | 84 | 1.8405 | 0.5556 | | 0.0563 | 15.0 | 90 | 1.8925 | 0.5333 | | 0.0563 | 16.0 | 96 | 2.0167 | 0.5333 | | 0.0162 | 17.0 | 102 | 1.9900 | 0.5333 | | 0.0162 | 18.0 | 108 | 1.9900 | 0.5333 | | 0.009 | 19.0 | 114 | 1.9900 | 0.5333 | | 0.0088 | 20.0 | 120 | 1.9900 | 0.5333 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1