--- license: apache-2.0 base_model: facebook/deit-tiny-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: hushem_conflu_deneme_fold4 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.7380952380952381 --- # hushem_conflu_deneme_fold4 This model is a fine-tuned version of [facebook/deit-tiny-patch16-224](https://huggingface.co/facebook/deit-tiny-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8165 - Accuracy: 0.7381 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 6 | 1.7088 | 0.2381 | | 1.9076 | 2.0 | 12 | 1.4617 | 0.2381 | | 1.9076 | 3.0 | 18 | 1.4512 | 0.2619 | | 1.4689 | 4.0 | 24 | 1.3283 | 0.2381 | | 1.3599 | 5.0 | 30 | 1.0112 | 0.6667 | | 1.3599 | 6.0 | 36 | 1.1598 | 0.3810 | | 1.2233 | 7.0 | 42 | 1.4323 | 0.4524 | | 1.2233 | 8.0 | 48 | 0.9658 | 0.6667 | | 1.0502 | 9.0 | 54 | 0.9166 | 0.6429 | | 0.8636 | 10.0 | 60 | 0.8181 | 0.6190 | | 0.8636 | 11.0 | 66 | 1.2729 | 0.5238 | | 0.8856 | 12.0 | 72 | 0.7434 | 0.7381 | | 0.8856 | 13.0 | 78 | 0.6840 | 0.7143 | | 0.6672 | 14.0 | 84 | 0.9596 | 0.5238 | | 0.5861 | 15.0 | 90 | 0.7243 | 0.7381 | | 0.5861 | 16.0 | 96 | 0.8378 | 0.7143 | | 0.4357 | 17.0 | 102 | 0.8165 | 0.7381 | | 0.4357 | 18.0 | 108 | 0.8165 | 0.7381 | | 0.4614 | 19.0 | 114 | 0.8165 | 0.7381 | | 0.431 | 20.0 | 120 | 0.8165 | 0.7381 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1