Initial commit
Browse files- .gitattributes +1 -0
- assets/mstar-logo.png +3 -0
- config.json +53 -0
- configuration_minicpm.py +113 -0
- generation_config.json +6 -0
- latest +1 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +748 -0
- modeling_minicpmv.py +702 -0
- resampler.py +812 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +2080 -0
- trainer_state.json +0 -0
- training_args.bin +3 -0
- zero_to_fp32.py +587 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
assets/mstar-logo.png filter=lfs diff=lfs merge=lfs -text
|
assets/mstar-logo.png
ADDED
Git LFS Details
|
config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openbmb/MiniCPM-Llama3-V-2_5",
|
3 |
+
"architectures": [
|
4 |
+
"MiniCPMV"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_minicpm.MiniCPMVConfig",
|
10 |
+
"AutoModel": "modeling_minicpmv.MiniCPMV",
|
11 |
+
"AutoModelForCausalLM": "modeling_minicpmv.MiniCPMV"
|
12 |
+
},
|
13 |
+
"batch_vision_input": true,
|
14 |
+
"bos_token_id": 128000,
|
15 |
+
"drop_vision_last_layer": false,
|
16 |
+
"eos_token_id": 128001,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 4096,
|
19 |
+
"image_size": 448,
|
20 |
+
"initializer_range": 0.02,
|
21 |
+
"intermediate_size": 14336,
|
22 |
+
"max_position_embeddings": 8192,
|
23 |
+
"mm_use_im_start_end": true,
|
24 |
+
"model_type": "minicpmv",
|
25 |
+
"num_attention_heads": 32,
|
26 |
+
"num_hidden_layers": 32,
|
27 |
+
"num_key_value_heads": 8,
|
28 |
+
"patch_size": 14,
|
29 |
+
"pretraining_tp": 1,
|
30 |
+
"query_num": 96,
|
31 |
+
"rms_norm_eps": 1e-05,
|
32 |
+
"rope_scaling": null,
|
33 |
+
"rope_theta": 500000.0,
|
34 |
+
"slice_config": {
|
35 |
+
"max_slice_nums": 9,
|
36 |
+
"model_type": "minicpmv"
|
37 |
+
},
|
38 |
+
"slice_mode": true,
|
39 |
+
"tie_word_embeddings": false,
|
40 |
+
"torch_dtype": "float16",
|
41 |
+
"transformers_version": "4.40.0",
|
42 |
+
"use_cache": true,
|
43 |
+
"vision_config": {
|
44 |
+
"hidden_size": 1152,
|
45 |
+
"image_size": 980,
|
46 |
+
"intermediate_size": 4304,
|
47 |
+
"model_type": "idefics2",
|
48 |
+
"num_attention_heads": 16,
|
49 |
+
"num_hidden_layers": 27,
|
50 |
+
"patch_size": 14
|
51 |
+
},
|
52 |
+
"vocab_size": 128256
|
53 |
+
}
|
configuration_minicpm.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
5 |
+
# and OPT implementations in this library. It has been modified from its
|
6 |
+
# original forms to accommodate minor architectural differences compared
|
7 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
8 |
+
#
|
9 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
10 |
+
# you may not use this file except in compliance with the License.
|
11 |
+
# You may obtain a copy of the License at
|
12 |
+
#
|
13 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
14 |
+
#
|
15 |
+
# Unless required by applicable law or agreed to in writing, software
|
16 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
17 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
18 |
+
# See the License for the specific language governing permissions and
|
19 |
+
# limitations under the License.
|
20 |
+
""" MiniCPM model configuration"""
|
21 |
+
import os
|
22 |
+
from typing import Union
|
23 |
+
|
24 |
+
from transformers.utils import logging
|
25 |
+
from transformers import LlamaConfig, PretrainedConfig
|
26 |
+
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionConfig
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
|
31 |
+
class MiniCPMVSliceConfig(PretrainedConfig):
|
32 |
+
model_type = "minicpmv"
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
patch_size=14,
|
37 |
+
max_slice_nums=9,
|
38 |
+
scale_resolution=448,
|
39 |
+
**kwargs,
|
40 |
+
):
|
41 |
+
super().__init__(**kwargs)
|
42 |
+
self.patch_size = patch_size
|
43 |
+
self.max_slice_nums = max_slice_nums
|
44 |
+
self.scale_resolution = scale_resolution
|
45 |
+
|
46 |
+
@classmethod
|
47 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
48 |
+
cls._set_token_in_kwargs(kwargs)
|
49 |
+
|
50 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
51 |
+
|
52 |
+
if config_dict.get("model_type") == "minicpmv":
|
53 |
+
config_dict = config_dict["slice_config"]
|
54 |
+
|
55 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
56 |
+
logger.warning(
|
57 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
58 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
59 |
+
)
|
60 |
+
|
61 |
+
return cls.from_dict(config_dict, **kwargs)
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
class MiniCPMVConfig(LlamaConfig):
|
66 |
+
model_type = "minicpmv"
|
67 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
68 |
+
|
69 |
+
default_vision_config = {
|
70 |
+
"hidden_size": 1152,
|
71 |
+
"image_size": 980,
|
72 |
+
"intermediate_size": 4304,
|
73 |
+
"model_type": "idefics2",
|
74 |
+
"num_attention_heads": 16,
|
75 |
+
"num_hidden_layers": 27,
|
76 |
+
"patch_size": 14,
|
77 |
+
}
|
78 |
+
|
79 |
+
def __init__(
|
80 |
+
self,
|
81 |
+
use_cache=True,
|
82 |
+
query_num=64,
|
83 |
+
image_size=448,
|
84 |
+
drop_vision_last_layer=True,
|
85 |
+
batch_vision_input=True,
|
86 |
+
slice_config=None,
|
87 |
+
vision_config=None,
|
88 |
+
**kwargs,
|
89 |
+
):
|
90 |
+
self.use_cache = use_cache
|
91 |
+
self.query_num = query_num
|
92 |
+
self.image_size = image_size
|
93 |
+
self.drop_vision_last_layer = drop_vision_last_layer
|
94 |
+
self.batch_vision_input = batch_vision_input
|
95 |
+
|
96 |
+
if slice_config is None:
|
97 |
+
self.slice_config = MiniCPMVSliceConfig(max_slice_nums=1)
|
98 |
+
else:
|
99 |
+
self.slice_config = MiniCPMVSliceConfig(**slice_config)
|
100 |
+
self.slice_mode = True
|
101 |
+
|
102 |
+
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
|
103 |
+
if vision_config is None:
|
104 |
+
self.vision_config = Idefics2VisionConfig(**self.default_vision_config)
|
105 |
+
logger.info("vision_config is None, using default vision config")
|
106 |
+
elif isinstance(vision_config, dict):
|
107 |
+
self.vision_config = Idefics2VisionConfig(**vision_config)
|
108 |
+
elif isinstance(vision_config, Idefics2VisionConfig):
|
109 |
+
self.vision_config = vision_config
|
110 |
+
|
111 |
+
self.patch_size = self.vision_config.patch_size
|
112 |
+
|
113 |
+
super().__init__(**kwargs)
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 128000,
|
4 |
+
"eos_token_id": 128001,
|
5 |
+
"transformers_version": "4.42.4"
|
6 |
+
}
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step8435
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ccf45f7c689ed51ab2e7aee9f4937a2bbd557f6908fffb9714c7b810bb1c94a
|
3 |
+
size 4976698920
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a605061cb58e3afdd0893f89c16ae594236e3f77687d2bf23cd0a6dd16b76f71
|
3 |
+
size 4999803032
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a51c38176f5e4eff73f806df1a581eb6bf1c74e16156477580f8ccb9f6334aaa
|
3 |
+
size 4915916480
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8e8f8e6e94fabef155749e140ef352749a3af18e566151a2e977d40b43653cf
|
3 |
+
size 2181852600
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 17074184672
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"llm.lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"llm.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"llm.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"llm.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"llm.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"llm.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"llm.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"llm.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"llm.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
15 |
+
"llm.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"llm.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"llm.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
18 |
+
"llm.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"llm.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
20 |
+
"llm.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"llm.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"llm.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"llm.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"llm.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"llm.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"llm.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
27 |
+
"llm.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"llm.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"llm.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
30 |
+
"llm.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"llm.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"llm.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
33 |
+
"llm.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"llm.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"llm.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"llm.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"llm.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"llm.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
39 |
+
"llm.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"llm.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"llm.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"llm.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"llm.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"llm.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"llm.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"llm.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"llm.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"llm.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"llm.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"llm.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"llm.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"llm.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"llm.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"llm.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"llm.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
56 |
+
"llm.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"llm.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"llm.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"llm.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"llm.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"llm.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"llm.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
63 |
+
"llm.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"llm.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"llm.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
66 |
+
"llm.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"llm.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
68 |
+
"llm.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"llm.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"llm.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"llm.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"llm.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"llm.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"llm.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
75 |
+
"llm.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"llm.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"llm.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
78 |
+
"llm.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"llm.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
80 |
+
"llm.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"llm.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"llm.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"llm.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"llm.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"llm.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"llm.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
87 |
+
"llm.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"llm.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"llm.model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
90 |
+
"llm.model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"llm.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
92 |
+
"llm.model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"llm.model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"llm.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"llm.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"llm.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"llm.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"llm.model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
99 |
+
"llm.model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"llm.model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"llm.model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
102 |
+
"llm.model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"llm.model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
104 |
+
"llm.model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"llm.model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"llm.model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"llm.model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"llm.model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"llm.model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"llm.model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
111 |
+
"llm.model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"llm.model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"llm.model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
114 |
+
"llm.model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"llm.model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
116 |
+
"llm.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
117 |
+
"llm.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
118 |
+
"llm.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
119 |
+
"llm.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
120 |
+
"llm.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
121 |
+
"llm.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
122 |
+
"llm.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
123 |
+
"llm.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
124 |
+
"llm.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
125 |
+
"llm.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
126 |
+
"llm.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
127 |
+
"llm.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
128 |
+
"llm.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
129 |
+
"llm.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"llm.model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
131 |
+
"llm.model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"llm.model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"llm.model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
134 |
+
"llm.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
135 |
+
"llm.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
136 |
+
"llm.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
137 |
+
"llm.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
138 |
+
"llm.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
139 |
+
"llm.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
140 |
+
"llm.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
141 |
+
"llm.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"llm.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"llm.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"llm.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"llm.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"llm.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
147 |
+
"llm.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"llm.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"llm.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
150 |
+
"llm.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"llm.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
152 |
+
"llm.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"llm.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
154 |
+
"llm.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
155 |
+
"llm.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
156 |
+
"llm.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
157 |
+
"llm.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
158 |
+
"llm.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
159 |
+
"llm.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
160 |
+
"llm.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
161 |
+
"llm.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
162 |
+
"llm.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
163 |
+
"llm.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
164 |
+
"llm.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
165 |
+
"llm.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"llm.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"llm.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"llm.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"llm.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"llm.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
171 |
+
"llm.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"llm.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"llm.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
174 |
+
"llm.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"llm.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
176 |
+
"llm.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"llm.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"llm.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"llm.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"llm.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"llm.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"llm.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
183 |
+
"llm.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"llm.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"llm.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
186 |
+
"llm.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"llm.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
188 |
+
"llm.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"llm.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"llm.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"llm.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"llm.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"llm.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"llm.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
195 |
+
"llm.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"llm.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"llm.model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
198 |
+
"llm.model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"llm.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
200 |
+
"llm.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"llm.model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"llm.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"llm.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"llm.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"llm.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"llm.model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
207 |
+
"llm.model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"llm.model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"llm.model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
210 |
+
"llm.model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"llm.model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
212 |
+
"llm.model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"llm.model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"llm.model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"llm.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
216 |
+
"llm.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
217 |
+
"llm.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
218 |
+
"llm.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
219 |
+
"llm.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
220 |
+
"llm.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
221 |
+
"llm.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
222 |
+
"llm.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
223 |
+
"llm.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
224 |
+
"llm.model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"llm.model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"llm.model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"llm.model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"llm.model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"llm.model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"llm.model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
231 |
+
"llm.model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"llm.model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"llm.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
234 |
+
"llm.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
235 |
+
"llm.model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
236 |
+
"llm.model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"llm.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
238 |
+
"llm.model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"llm.model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"llm.model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"llm.model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"llm.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
243 |
+
"llm.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
244 |
+
"llm.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
245 |
+
"llm.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
246 |
+
"llm.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
247 |
+
"llm.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
248 |
+
"llm.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
249 |
+
"llm.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
250 |
+
"llm.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
251 |
+
"llm.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
252 |
+
"llm.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
253 |
+
"llm.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
254 |
+
"llm.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
255 |
+
"llm.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
256 |
+
"llm.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
257 |
+
"llm.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
258 |
+
"llm.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
259 |
+
"llm.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
260 |
+
"llm.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
261 |
+
"llm.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"llm.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"llm.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"llm.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"llm.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"llm.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
267 |
+
"llm.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"llm.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"llm.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
270 |
+
"llm.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"llm.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
272 |
+
"llm.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"llm.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"llm.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"llm.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"llm.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"llm.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"llm.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
279 |
+
"llm.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"llm.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"llm.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
282 |
+
"llm.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"llm.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
284 |
+
"llm.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"llm.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"llm.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"llm.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
288 |
+
"llm.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
289 |
+
"llm.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
290 |
+
"llm.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
291 |
+
"llm.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
292 |
+
"llm.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
293 |
+
"llm.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
294 |
+
"llm.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
295 |
+
"llm.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
296 |
+
"llm.model.norm.weight": "model-00004-of-00004.safetensors",
|
297 |
+
"resampler.attn.in_proj_bias": "model-00004-of-00004.safetensors",
|
298 |
+
"resampler.attn.in_proj_weight": "model-00004-of-00004.safetensors",
|
299 |
+
"resampler.attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
300 |
+
"resampler.attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
301 |
+
"resampler.kv_proj.weight": "model-00004-of-00004.safetensors",
|
302 |
+
"resampler.ln_kv.bias": "model-00004-of-00004.safetensors",
|
303 |
+
"resampler.ln_kv.weight": "model-00004-of-00004.safetensors",
|
304 |
+
"resampler.ln_post.bias": "model-00004-of-00004.safetensors",
|
305 |
+
"resampler.ln_post.weight": "model-00004-of-00004.safetensors",
|
306 |
+
"resampler.ln_q.bias": "model-00004-of-00004.safetensors",
|
307 |
+
"resampler.ln_q.weight": "model-00004-of-00004.safetensors",
|
308 |
+
"resampler.proj": "model-00004-of-00004.safetensors",
|
309 |
+
"resampler.query": "model-00004-of-00004.safetensors",
|
310 |
+
"vpm.embeddings.patch_embedding.bias": "model-00004-of-00004.safetensors",
|
311 |
+
"vpm.embeddings.patch_embedding.weight": "model-00004-of-00004.safetensors",
|
312 |
+
"vpm.embeddings.position_embedding.weight": "model-00004-of-00004.safetensors",
|
313 |
+
"vpm.encoder.layers.0.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
314 |
+
"vpm.encoder.layers.0.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
315 |
+
"vpm.encoder.layers.0.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
316 |
+
"vpm.encoder.layers.0.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
317 |
+
"vpm.encoder.layers.0.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
318 |
+
"vpm.encoder.layers.0.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
319 |
+
"vpm.encoder.layers.0.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
320 |
+
"vpm.encoder.layers.0.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
321 |
+
"vpm.encoder.layers.0.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
322 |
+
"vpm.encoder.layers.0.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
323 |
+
"vpm.encoder.layers.0.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
324 |
+
"vpm.encoder.layers.0.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
325 |
+
"vpm.encoder.layers.0.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
326 |
+
"vpm.encoder.layers.0.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
327 |
+
"vpm.encoder.layers.0.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
328 |
+
"vpm.encoder.layers.0.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
329 |
+
"vpm.encoder.layers.1.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
330 |
+
"vpm.encoder.layers.1.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
331 |
+
"vpm.encoder.layers.1.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
332 |
+
"vpm.encoder.layers.1.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
333 |
+
"vpm.encoder.layers.1.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
334 |
+
"vpm.encoder.layers.1.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
335 |
+
"vpm.encoder.layers.1.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
336 |
+
"vpm.encoder.layers.1.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
337 |
+
"vpm.encoder.layers.1.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
338 |
+
"vpm.encoder.layers.1.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
339 |
+
"vpm.encoder.layers.1.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
340 |
+
"vpm.encoder.layers.1.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
341 |
+
"vpm.encoder.layers.1.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
342 |
+
"vpm.encoder.layers.1.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
343 |
+
"vpm.encoder.layers.1.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
344 |
+
"vpm.encoder.layers.1.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
345 |
+
"vpm.encoder.layers.10.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
346 |
+
"vpm.encoder.layers.10.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
347 |
+
"vpm.encoder.layers.10.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
348 |
+
"vpm.encoder.layers.10.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
349 |
+
"vpm.encoder.layers.10.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
350 |
+
"vpm.encoder.layers.10.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
351 |
+
"vpm.encoder.layers.10.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
352 |
+
"vpm.encoder.layers.10.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
353 |
+
"vpm.encoder.layers.10.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
354 |
+
"vpm.encoder.layers.10.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
355 |
+
"vpm.encoder.layers.10.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
356 |
+
"vpm.encoder.layers.10.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
357 |
+
"vpm.encoder.layers.10.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
358 |
+
"vpm.encoder.layers.10.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
359 |
+
"vpm.encoder.layers.10.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
360 |
+
"vpm.encoder.layers.10.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
361 |
+
"vpm.encoder.layers.11.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
362 |
+
"vpm.encoder.layers.11.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
363 |
+
"vpm.encoder.layers.11.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
364 |
+
"vpm.encoder.layers.11.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
365 |
+
"vpm.encoder.layers.11.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
366 |
+
"vpm.encoder.layers.11.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
367 |
+
"vpm.encoder.layers.11.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
368 |
+
"vpm.encoder.layers.11.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
369 |
+
"vpm.encoder.layers.11.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
370 |
+
"vpm.encoder.layers.11.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
371 |
+
"vpm.encoder.layers.11.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
372 |
+
"vpm.encoder.layers.11.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
373 |
+
"vpm.encoder.layers.11.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
374 |
+
"vpm.encoder.layers.11.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
375 |
+
"vpm.encoder.layers.11.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
376 |
+
"vpm.encoder.layers.11.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
377 |
+
"vpm.encoder.layers.12.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
378 |
+
"vpm.encoder.layers.12.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
379 |
+
"vpm.encoder.layers.12.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
380 |
+
"vpm.encoder.layers.12.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
381 |
+
"vpm.encoder.layers.12.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
382 |
+
"vpm.encoder.layers.12.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
383 |
+
"vpm.encoder.layers.12.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
384 |
+
"vpm.encoder.layers.12.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
385 |
+
"vpm.encoder.layers.12.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
386 |
+
"vpm.encoder.layers.12.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
387 |
+
"vpm.encoder.layers.12.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
388 |
+
"vpm.encoder.layers.12.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
389 |
+
"vpm.encoder.layers.12.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
390 |
+
"vpm.encoder.layers.12.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
391 |
+
"vpm.encoder.layers.12.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
392 |
+
"vpm.encoder.layers.12.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
393 |
+
"vpm.encoder.layers.13.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
394 |
+
"vpm.encoder.layers.13.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
395 |
+
"vpm.encoder.layers.13.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
396 |
+
"vpm.encoder.layers.13.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
397 |
+
"vpm.encoder.layers.13.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
398 |
+
"vpm.encoder.layers.13.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
399 |
+
"vpm.encoder.layers.13.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
400 |
+
"vpm.encoder.layers.13.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
401 |
+
"vpm.encoder.layers.13.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
402 |
+
"vpm.encoder.layers.13.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
403 |
+
"vpm.encoder.layers.13.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
404 |
+
"vpm.encoder.layers.13.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
405 |
+
"vpm.encoder.layers.13.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
406 |
+
"vpm.encoder.layers.13.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
407 |
+
"vpm.encoder.layers.13.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
408 |
+
"vpm.encoder.layers.13.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
409 |
+
"vpm.encoder.layers.14.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
410 |
+
"vpm.encoder.layers.14.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
411 |
+
"vpm.encoder.layers.14.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
412 |
+
"vpm.encoder.layers.14.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
413 |
+
"vpm.encoder.layers.14.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
414 |
+
"vpm.encoder.layers.14.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
415 |
+
"vpm.encoder.layers.14.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
416 |
+
"vpm.encoder.layers.14.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
417 |
+
"vpm.encoder.layers.14.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
418 |
+
"vpm.encoder.layers.14.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
419 |
+
"vpm.encoder.layers.14.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
420 |
+
"vpm.encoder.layers.14.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
421 |
+
"vpm.encoder.layers.14.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
422 |
+
"vpm.encoder.layers.14.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
423 |
+
"vpm.encoder.layers.14.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
424 |
+
"vpm.encoder.layers.14.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
425 |
+
"vpm.encoder.layers.15.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
426 |
+
"vpm.encoder.layers.15.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
427 |
+
"vpm.encoder.layers.15.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
428 |
+
"vpm.encoder.layers.15.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
429 |
+
"vpm.encoder.layers.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
430 |
+
"vpm.encoder.layers.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
431 |
+
"vpm.encoder.layers.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
432 |
+
"vpm.encoder.layers.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
433 |
+
"vpm.encoder.layers.15.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
434 |
+
"vpm.encoder.layers.15.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
435 |
+
"vpm.encoder.layers.15.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
436 |
+
"vpm.encoder.layers.15.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
437 |
+
"vpm.encoder.layers.15.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
438 |
+
"vpm.encoder.layers.15.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
439 |
+
"vpm.encoder.layers.15.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
440 |
+
"vpm.encoder.layers.15.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
441 |
+
"vpm.encoder.layers.16.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
442 |
+
"vpm.encoder.layers.16.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
443 |
+
"vpm.encoder.layers.16.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
444 |
+
"vpm.encoder.layers.16.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
445 |
+
"vpm.encoder.layers.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
446 |
+
"vpm.encoder.layers.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
447 |
+
"vpm.encoder.layers.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
448 |
+
"vpm.encoder.layers.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
449 |
+
"vpm.encoder.layers.16.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
450 |
+
"vpm.encoder.layers.16.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
451 |
+
"vpm.encoder.layers.16.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
452 |
+
"vpm.encoder.layers.16.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
453 |
+
"vpm.encoder.layers.16.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
454 |
+
"vpm.encoder.layers.16.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
455 |
+
"vpm.encoder.layers.16.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
456 |
+
"vpm.encoder.layers.16.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
457 |
+
"vpm.encoder.layers.17.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
458 |
+
"vpm.encoder.layers.17.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
459 |
+
"vpm.encoder.layers.17.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
460 |
+
"vpm.encoder.layers.17.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
461 |
+
"vpm.encoder.layers.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
462 |
+
"vpm.encoder.layers.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
463 |
+
"vpm.encoder.layers.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
464 |
+
"vpm.encoder.layers.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
465 |
+
"vpm.encoder.layers.17.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
466 |
+
"vpm.encoder.layers.17.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
467 |
+
"vpm.encoder.layers.17.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
468 |
+
"vpm.encoder.layers.17.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
469 |
+
"vpm.encoder.layers.17.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
470 |
+
"vpm.encoder.layers.17.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
471 |
+
"vpm.encoder.layers.17.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
472 |
+
"vpm.encoder.layers.17.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
473 |
+
"vpm.encoder.layers.18.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
474 |
+
"vpm.encoder.layers.18.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
475 |
+
"vpm.encoder.layers.18.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
476 |
+
"vpm.encoder.layers.18.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
477 |
+
"vpm.encoder.layers.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
478 |
+
"vpm.encoder.layers.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
479 |
+
"vpm.encoder.layers.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
480 |
+
"vpm.encoder.layers.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
481 |
+
"vpm.encoder.layers.18.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
482 |
+
"vpm.encoder.layers.18.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
483 |
+
"vpm.encoder.layers.18.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
484 |
+
"vpm.encoder.layers.18.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
485 |
+
"vpm.encoder.layers.18.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
486 |
+
"vpm.encoder.layers.18.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
487 |
+
"vpm.encoder.layers.18.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
488 |
+
"vpm.encoder.layers.18.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
489 |
+
"vpm.encoder.layers.19.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
490 |
+
"vpm.encoder.layers.19.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
491 |
+
"vpm.encoder.layers.19.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
492 |
+
"vpm.encoder.layers.19.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
493 |
+
"vpm.encoder.layers.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
494 |
+
"vpm.encoder.layers.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
495 |
+
"vpm.encoder.layers.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
496 |
+
"vpm.encoder.layers.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
497 |
+
"vpm.encoder.layers.19.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
498 |
+
"vpm.encoder.layers.19.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
499 |
+
"vpm.encoder.layers.19.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
500 |
+
"vpm.encoder.layers.19.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
501 |
+
"vpm.encoder.layers.19.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
502 |
+
"vpm.encoder.layers.19.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
503 |
+
"vpm.encoder.layers.19.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
504 |
+
"vpm.encoder.layers.19.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
505 |
+
"vpm.encoder.layers.2.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
506 |
+
"vpm.encoder.layers.2.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
507 |
+
"vpm.encoder.layers.2.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
508 |
+
"vpm.encoder.layers.2.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
509 |
+
"vpm.encoder.layers.2.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
510 |
+
"vpm.encoder.layers.2.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
511 |
+
"vpm.encoder.layers.2.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
512 |
+
"vpm.encoder.layers.2.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
513 |
+
"vpm.encoder.layers.2.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
514 |
+
"vpm.encoder.layers.2.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
515 |
+
"vpm.encoder.layers.2.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
516 |
+
"vpm.encoder.layers.2.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
517 |
+
"vpm.encoder.layers.2.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
518 |
+
"vpm.encoder.layers.2.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
519 |
+
"vpm.encoder.layers.2.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
520 |
+
"vpm.encoder.layers.2.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
521 |
+
"vpm.encoder.layers.20.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
522 |
+
"vpm.encoder.layers.20.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
523 |
+
"vpm.encoder.layers.20.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
524 |
+
"vpm.encoder.layers.20.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
525 |
+
"vpm.encoder.layers.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
526 |
+
"vpm.encoder.layers.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
527 |
+
"vpm.encoder.layers.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
528 |
+
"vpm.encoder.layers.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
529 |
+
"vpm.encoder.layers.20.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
530 |
+
"vpm.encoder.layers.20.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
531 |
+
"vpm.encoder.layers.20.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
532 |
+
"vpm.encoder.layers.20.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
533 |
+
"vpm.encoder.layers.20.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
534 |
+
"vpm.encoder.layers.20.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
535 |
+
"vpm.encoder.layers.20.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
536 |
+
"vpm.encoder.layers.20.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
537 |
+
"vpm.encoder.layers.21.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
538 |
+
"vpm.encoder.layers.21.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
539 |
+
"vpm.encoder.layers.21.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
540 |
+
"vpm.encoder.layers.21.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
541 |
+
"vpm.encoder.layers.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
542 |
+
"vpm.encoder.layers.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
543 |
+
"vpm.encoder.layers.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
544 |
+
"vpm.encoder.layers.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
545 |
+
"vpm.encoder.layers.21.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
546 |
+
"vpm.encoder.layers.21.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
547 |
+
"vpm.encoder.layers.21.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
548 |
+
"vpm.encoder.layers.21.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
549 |
+
"vpm.encoder.layers.21.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
550 |
+
"vpm.encoder.layers.21.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
551 |
+
"vpm.encoder.layers.21.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
552 |
+
"vpm.encoder.layers.21.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
553 |
+
"vpm.encoder.layers.22.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
554 |
+
"vpm.encoder.layers.22.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
555 |
+
"vpm.encoder.layers.22.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
556 |
+
"vpm.encoder.layers.22.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
557 |
+
"vpm.encoder.layers.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
558 |
+
"vpm.encoder.layers.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
559 |
+
"vpm.encoder.layers.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
560 |
+
"vpm.encoder.layers.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
561 |
+
"vpm.encoder.layers.22.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
562 |
+
"vpm.encoder.layers.22.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
563 |
+
"vpm.encoder.layers.22.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
564 |
+
"vpm.encoder.layers.22.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
565 |
+
"vpm.encoder.layers.22.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
566 |
+
"vpm.encoder.layers.22.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
567 |
+
"vpm.encoder.layers.22.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
568 |
+
"vpm.encoder.layers.22.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
569 |
+
"vpm.encoder.layers.23.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
570 |
+
"vpm.encoder.layers.23.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
571 |
+
"vpm.encoder.layers.23.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
572 |
+
"vpm.encoder.layers.23.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
573 |
+
"vpm.encoder.layers.23.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
574 |
+
"vpm.encoder.layers.23.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
575 |
+
"vpm.encoder.layers.23.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
576 |
+
"vpm.encoder.layers.23.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
577 |
+
"vpm.encoder.layers.23.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
578 |
+
"vpm.encoder.layers.23.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
579 |
+
"vpm.encoder.layers.23.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
580 |
+
"vpm.encoder.layers.23.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
581 |
+
"vpm.encoder.layers.23.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
582 |
+
"vpm.encoder.layers.23.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
583 |
+
"vpm.encoder.layers.23.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
584 |
+
"vpm.encoder.layers.23.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
585 |
+
"vpm.encoder.layers.24.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
586 |
+
"vpm.encoder.layers.24.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
587 |
+
"vpm.encoder.layers.24.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
588 |
+
"vpm.encoder.layers.24.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
589 |
+
"vpm.encoder.layers.24.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
590 |
+
"vpm.encoder.layers.24.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
591 |
+
"vpm.encoder.layers.24.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
592 |
+
"vpm.encoder.layers.24.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
593 |
+
"vpm.encoder.layers.24.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
594 |
+
"vpm.encoder.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
595 |
+
"vpm.encoder.layers.24.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
596 |
+
"vpm.encoder.layers.24.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
597 |
+
"vpm.encoder.layers.24.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
598 |
+
"vpm.encoder.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
599 |
+
"vpm.encoder.layers.24.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
600 |
+
"vpm.encoder.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
601 |
+
"vpm.encoder.layers.25.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
602 |
+
"vpm.encoder.layers.25.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
603 |
+
"vpm.encoder.layers.25.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
604 |
+
"vpm.encoder.layers.25.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
605 |
+
"vpm.encoder.layers.25.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
606 |
+
"vpm.encoder.layers.25.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
607 |
+
"vpm.encoder.layers.25.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
608 |
+
"vpm.encoder.layers.25.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
609 |
+
"vpm.encoder.layers.25.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
610 |
+
"vpm.encoder.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
611 |
+
"vpm.encoder.layers.25.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
612 |
+
"vpm.encoder.layers.25.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
613 |
+
"vpm.encoder.layers.25.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
614 |
+
"vpm.encoder.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
615 |
+
"vpm.encoder.layers.25.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
616 |
+
"vpm.encoder.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
617 |
+
"vpm.encoder.layers.26.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
618 |
+
"vpm.encoder.layers.26.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
619 |
+
"vpm.encoder.layers.26.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
620 |
+
"vpm.encoder.layers.26.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
621 |
+
"vpm.encoder.layers.26.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
622 |
+
"vpm.encoder.layers.26.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
623 |
+
"vpm.encoder.layers.26.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
624 |
+
"vpm.encoder.layers.26.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
625 |
+
"vpm.encoder.layers.26.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
626 |
+
"vpm.encoder.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
627 |
+
"vpm.encoder.layers.26.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
628 |
+
"vpm.encoder.layers.26.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
629 |
+
"vpm.encoder.layers.26.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
630 |
+
"vpm.encoder.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
631 |
+
"vpm.encoder.layers.26.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
632 |
+
"vpm.encoder.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
633 |
+
"vpm.encoder.layers.3.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
634 |
+
"vpm.encoder.layers.3.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
635 |
+
"vpm.encoder.layers.3.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
636 |
+
"vpm.encoder.layers.3.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
637 |
+
"vpm.encoder.layers.3.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
638 |
+
"vpm.encoder.layers.3.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
639 |
+
"vpm.encoder.layers.3.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
640 |
+
"vpm.encoder.layers.3.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
641 |
+
"vpm.encoder.layers.3.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
642 |
+
"vpm.encoder.layers.3.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
643 |
+
"vpm.encoder.layers.3.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
644 |
+
"vpm.encoder.layers.3.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
645 |
+
"vpm.encoder.layers.3.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
646 |
+
"vpm.encoder.layers.3.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
647 |
+
"vpm.encoder.layers.3.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
648 |
+
"vpm.encoder.layers.3.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
649 |
+
"vpm.encoder.layers.4.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
650 |
+
"vpm.encoder.layers.4.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
651 |
+
"vpm.encoder.layers.4.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
652 |
+
"vpm.encoder.layers.4.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
653 |
+
"vpm.encoder.layers.4.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
654 |
+
"vpm.encoder.layers.4.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
655 |
+
"vpm.encoder.layers.4.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
656 |
+
"vpm.encoder.layers.4.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
657 |
+
"vpm.encoder.layers.4.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
658 |
+
"vpm.encoder.layers.4.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
659 |
+
"vpm.encoder.layers.4.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
660 |
+
"vpm.encoder.layers.4.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
661 |
+
"vpm.encoder.layers.4.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
662 |
+
"vpm.encoder.layers.4.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
663 |
+
"vpm.encoder.layers.4.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
664 |
+
"vpm.encoder.layers.4.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
665 |
+
"vpm.encoder.layers.5.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
666 |
+
"vpm.encoder.layers.5.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
667 |
+
"vpm.encoder.layers.5.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
668 |
+
"vpm.encoder.layers.5.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
669 |
+
"vpm.encoder.layers.5.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
670 |
+
"vpm.encoder.layers.5.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
671 |
+
"vpm.encoder.layers.5.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
672 |
+
"vpm.encoder.layers.5.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
673 |
+
"vpm.encoder.layers.5.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
674 |
+
"vpm.encoder.layers.5.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
675 |
+
"vpm.encoder.layers.5.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
676 |
+
"vpm.encoder.layers.5.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
677 |
+
"vpm.encoder.layers.5.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
678 |
+
"vpm.encoder.layers.5.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
679 |
+
"vpm.encoder.layers.5.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
680 |
+
"vpm.encoder.layers.5.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
681 |
+
"vpm.encoder.layers.6.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
682 |
+
"vpm.encoder.layers.6.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
683 |
+
"vpm.encoder.layers.6.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
684 |
+
"vpm.encoder.layers.6.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
685 |
+
"vpm.encoder.layers.6.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
686 |
+
"vpm.encoder.layers.6.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
687 |
+
"vpm.encoder.layers.6.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
688 |
+
"vpm.encoder.layers.6.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
689 |
+
"vpm.encoder.layers.6.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
690 |
+
"vpm.encoder.layers.6.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
691 |
+
"vpm.encoder.layers.6.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
692 |
+
"vpm.encoder.layers.6.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
693 |
+
"vpm.encoder.layers.6.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
694 |
+
"vpm.encoder.layers.6.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
695 |
+
"vpm.encoder.layers.6.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
696 |
+
"vpm.encoder.layers.6.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
697 |
+
"vpm.encoder.layers.7.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
698 |
+
"vpm.encoder.layers.7.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
699 |
+
"vpm.encoder.layers.7.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
700 |
+
"vpm.encoder.layers.7.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
701 |
+
"vpm.encoder.layers.7.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
702 |
+
"vpm.encoder.layers.7.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
703 |
+
"vpm.encoder.layers.7.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
704 |
+
"vpm.encoder.layers.7.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
705 |
+
"vpm.encoder.layers.7.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
706 |
+
"vpm.encoder.layers.7.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
707 |
+
"vpm.encoder.layers.7.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
708 |
+
"vpm.encoder.layers.7.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
709 |
+
"vpm.encoder.layers.7.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
710 |
+
"vpm.encoder.layers.7.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
711 |
+
"vpm.encoder.layers.7.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
712 |
+
"vpm.encoder.layers.7.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
713 |
+
"vpm.encoder.layers.8.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
714 |
+
"vpm.encoder.layers.8.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
715 |
+
"vpm.encoder.layers.8.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
716 |
+
"vpm.encoder.layers.8.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
717 |
+
"vpm.encoder.layers.8.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
718 |
+
"vpm.encoder.layers.8.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
719 |
+
"vpm.encoder.layers.8.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
720 |
+
"vpm.encoder.layers.8.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
721 |
+
"vpm.encoder.layers.8.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
722 |
+
"vpm.encoder.layers.8.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
723 |
+
"vpm.encoder.layers.8.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
724 |
+
"vpm.encoder.layers.8.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
725 |
+
"vpm.encoder.layers.8.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
726 |
+
"vpm.encoder.layers.8.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
727 |
+
"vpm.encoder.layers.8.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
728 |
+
"vpm.encoder.layers.8.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
729 |
+
"vpm.encoder.layers.9.layer_norm1.bias": "model-00004-of-00004.safetensors",
|
730 |
+
"vpm.encoder.layers.9.layer_norm1.weight": "model-00004-of-00004.safetensors",
|
731 |
+
"vpm.encoder.layers.9.layer_norm2.bias": "model-00004-of-00004.safetensors",
|
732 |
+
"vpm.encoder.layers.9.layer_norm2.weight": "model-00004-of-00004.safetensors",
|
733 |
+
"vpm.encoder.layers.9.mlp.fc1.bias": "model-00004-of-00004.safetensors",
|
734 |
+
"vpm.encoder.layers.9.mlp.fc1.weight": "model-00004-of-00004.safetensors",
|
735 |
+
"vpm.encoder.layers.9.mlp.fc2.bias": "model-00004-of-00004.safetensors",
|
736 |
+
"vpm.encoder.layers.9.mlp.fc2.weight": "model-00004-of-00004.safetensors",
|
737 |
+
"vpm.encoder.layers.9.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
738 |
+
"vpm.encoder.layers.9.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
739 |
+
"vpm.encoder.layers.9.self_attn.out_proj.bias": "model-00004-of-00004.safetensors",
|
740 |
+
"vpm.encoder.layers.9.self_attn.out_proj.weight": "model-00004-of-00004.safetensors",
|
741 |
+
"vpm.encoder.layers.9.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
742 |
+
"vpm.encoder.layers.9.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
743 |
+
"vpm.encoder.layers.9.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
744 |
+
"vpm.encoder.layers.9.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
745 |
+
"vpm.post_layernorm.bias": "model-00004-of-00004.safetensors",
|
746 |
+
"vpm.post_layernorm.weight": "model-00004-of-00004.safetensors"
|
747 |
+
}
|
748 |
+
}
|
modeling_minicpmv.py
ADDED
@@ -0,0 +1,702 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import List, Optional
|
3 |
+
import json
|
4 |
+
import torch
|
5 |
+
import torchvision
|
6 |
+
from threading import Thread
|
7 |
+
from copy import deepcopy
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision import transforms
|
10 |
+
from transformers import LlamaTokenizer, LlamaPreTrainedModel, LlamaForCausalLM, AutoModel, PreTrainedTokenizerFast, TextIteratorStreamer
|
11 |
+
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
12 |
+
|
13 |
+
from .configuration_minicpm import MiniCPMVConfig
|
14 |
+
from .resampler import Resampler
|
15 |
+
|
16 |
+
IMAGENET_INCEPTION_MEAN = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_MEAN
|
17 |
+
IMAGENET_INCEPTION_STD = (0.5, 0.5, 0.5) # timm.data.IMAGENET_INCEPTION_STD
|
18 |
+
|
19 |
+
class MiniCPMVPreTrainedModel(LlamaPreTrainedModel):
|
20 |
+
config_class = MiniCPMVConfig
|
21 |
+
|
22 |
+
|
23 |
+
class MiniCPMV(MiniCPMVPreTrainedModel):
|
24 |
+
def __init__(self, config):
|
25 |
+
super().__init__(config)
|
26 |
+
|
27 |
+
self.llm = LlamaForCausalLM(config)
|
28 |
+
self.vpm = self.init_vision_module()
|
29 |
+
self.vision_dim = self.vpm.embed_dim
|
30 |
+
self.embed_dim = self.llm.config.hidden_size
|
31 |
+
self.resampler = self.init_resampler(self.embed_dim, self.vision_dim)
|
32 |
+
self.transform = self.init_transform()
|
33 |
+
|
34 |
+
def init_vision_module(self):
|
35 |
+
# same as HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
|
36 |
+
model = Idefics2VisionTransformer(self.config.vision_config)
|
37 |
+
if self.config.drop_vision_last_layer:
|
38 |
+
model.encoder.layers = model.encoder.layers[:-1]
|
39 |
+
|
40 |
+
setattr(model, 'embed_dim', model.embeddings.embed_dim)
|
41 |
+
setattr(model, 'patch_size', model.embeddings.patch_size)
|
42 |
+
|
43 |
+
return model
|
44 |
+
|
45 |
+
def init_resampler(self, embed_dim, vision_dim,):
|
46 |
+
return Resampler(
|
47 |
+
num_queries=self.config.query_num,
|
48 |
+
embed_dim=embed_dim,
|
49 |
+
num_heads=embed_dim // 128,
|
50 |
+
kv_dim=vision_dim,
|
51 |
+
adaptive=True,
|
52 |
+
)
|
53 |
+
|
54 |
+
def init_transform(self):
|
55 |
+
return transforms.Compose(
|
56 |
+
[
|
57 |
+
transforms.ToTensor(),
|
58 |
+
transforms.Normalize(
|
59 |
+
mean=IMAGENET_INCEPTION_MEAN, std=IMAGENET_INCEPTION_STD
|
60 |
+
),
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
def get_input_embeddings(self):
|
65 |
+
return self.llm.get_input_embeddings()
|
66 |
+
|
67 |
+
def set_input_embeddings(self, value):
|
68 |
+
self.llm.embed_tokens = value
|
69 |
+
|
70 |
+
def get_vllm_embedding(self, data):
|
71 |
+
if 'vision_hidden_states' not in data:
|
72 |
+
dtype = self.llm.model.embed_tokens.weight.dtype
|
73 |
+
device = self.llm.model.embed_tokens.weight.device
|
74 |
+
tgt_sizes = data['tgt_sizes']
|
75 |
+
pixel_values_list = data['pixel_values']
|
76 |
+
vision_hidden_states = []
|
77 |
+
all_pixel_values = []
|
78 |
+
img_cnt = []
|
79 |
+
for pixel_values in pixel_values_list:
|
80 |
+
img_cnt.append(len(pixel_values))
|
81 |
+
all_pixel_values.extend([i.flatten(end_dim=1).permute(1, 0) for i in pixel_values])
|
82 |
+
|
83 |
+
# exist image
|
84 |
+
if all_pixel_values:
|
85 |
+
tgt_sizes = torch.vstack(tgt_sizes).type(torch.int32)
|
86 |
+
|
87 |
+
if self.config.batch_vision_input:
|
88 |
+
max_patches = torch.max(tgt_sizes[:, 0] * tgt_sizes[:, 1])
|
89 |
+
|
90 |
+
all_pixel_values = torch.nn.utils.rnn.pad_sequence(all_pixel_values, batch_first=True,
|
91 |
+
padding_value=0.0)
|
92 |
+
B, L, _ = all_pixel_values.shape
|
93 |
+
all_pixel_values = all_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
94 |
+
|
95 |
+
patch_attn_mask = torch.zeros((B, 1, max_patches), dtype=torch.bool, device=device)
|
96 |
+
for i in range(B):
|
97 |
+
patch_attn_mask[i, :tgt_sizes[i][0] * tgt_sizes[i][1]] = True
|
98 |
+
|
99 |
+
vision_embedding = self.vpm(all_pixel_values.type(dtype), patch_attention_mask=patch_attn_mask).last_hidden_state
|
100 |
+
vision_embedding = self.resampler(vision_embedding, tgt_sizes)
|
101 |
+
else:
|
102 |
+
# get vision_embedding foreach
|
103 |
+
vision_embedding = []
|
104 |
+
for single_tgt_size, single_pixel_values in zip(tgt_sizes, all_pixel_values):
|
105 |
+
single_pixel_values = single_pixel_values.unsqueeze(0)
|
106 |
+
B, L, _ = single_pixel_values.shape
|
107 |
+
single_pixel_values = single_pixel_values.permute(0, 2, 1).reshape(B, 3, -1, L)
|
108 |
+
single_vision_embedding = self.vpm(single_pixel_values.type(dtype)).last_hidden_state
|
109 |
+
single_vision_embedding = self.resampler(single_vision_embedding, single_tgt_size.unsqueeze(0))
|
110 |
+
|
111 |
+
vision_embedding.append(single_vision_embedding)
|
112 |
+
vision_embedding = torch.vstack(vision_embedding)
|
113 |
+
|
114 |
+
start = 0
|
115 |
+
for pixel_values in pixel_values_list:
|
116 |
+
img_cnt = len(pixel_values)
|
117 |
+
if img_cnt > 0:
|
118 |
+
vision_hidden_states.append(vision_embedding[start: start + img_cnt])
|
119 |
+
start += img_cnt
|
120 |
+
else:
|
121 |
+
vision_hidden_states.append([])
|
122 |
+
else: # no image
|
123 |
+
if self.training:
|
124 |
+
dummy_image = torch.zeros(
|
125 |
+
(1, 3, 224, 224),
|
126 |
+
device=device, dtype=dtype
|
127 |
+
)
|
128 |
+
tgt_sizes = torch.Tensor([[(224 // self.config.patch_size), math.ceil(224 / self.config.patch_size)]]).type(torch.int32)
|
129 |
+
dummy_feature = self.resampler(self.vpm(dummy_image).last_hidden_state, tgt_sizes)
|
130 |
+
else:
|
131 |
+
dummy_feature = []
|
132 |
+
for _ in range(len(pixel_values_list)):
|
133 |
+
vision_hidden_states.append(dummy_feature)
|
134 |
+
|
135 |
+
else:
|
136 |
+
vision_hidden_states = data['vision_hidden_states']
|
137 |
+
|
138 |
+
if hasattr(self.llm.config, 'scale_emb'):
|
139 |
+
vllm_embedding = self.llm.model.embed_tokens(data['input_ids']) * self.llm.config.scale_emb
|
140 |
+
else:
|
141 |
+
vllm_embedding = self.llm.model.embed_tokens(data['input_ids'])
|
142 |
+
|
143 |
+
vision_hidden_states = [i.type(vllm_embedding.dtype) if isinstance(
|
144 |
+
i, torch.Tensor) else i for i in vision_hidden_states]
|
145 |
+
|
146 |
+
bs = len(data['input_ids'])
|
147 |
+
for i in range(bs):
|
148 |
+
cur_vs_hs = vision_hidden_states[i]
|
149 |
+
if len(cur_vs_hs) > 0:
|
150 |
+
cur_vllm_emb = vllm_embedding[i]
|
151 |
+
cur_image_bound = data['image_bound'][i]
|
152 |
+
if len(cur_image_bound) > 0:
|
153 |
+
image_indices = torch.stack(
|
154 |
+
[torch.arange(r[0], r[1], dtype=torch.long) for r in cur_image_bound]
|
155 |
+
).to(vllm_embedding.device)
|
156 |
+
cur_vllm_emb.scatter_(0, image_indices.view(-1, 1).repeat(1, cur_vllm_emb.shape[-1]),
|
157 |
+
cur_vs_hs.view(-1, cur_vs_hs.shape[-1]))
|
158 |
+
elif self.training:
|
159 |
+
cur_vllm_emb += cur_vs_hs[0].mean() * 0
|
160 |
+
|
161 |
+
return vllm_embedding, vision_hidden_states
|
162 |
+
|
163 |
+
def forward(self, data, **kwargs):
|
164 |
+
vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
|
165 |
+
position_ids = data["position_ids"]
|
166 |
+
if position_ids.dtype != torch.int64:
|
167 |
+
position_ids = position_ids.long()
|
168 |
+
|
169 |
+
return self.llm(
|
170 |
+
input_ids=None,
|
171 |
+
position_ids=position_ids,
|
172 |
+
inputs_embeds=vllm_embedding,
|
173 |
+
**kwargs
|
174 |
+
)
|
175 |
+
|
176 |
+
def _convert_to_tensors(
|
177 |
+
self, tokenizer, input_ids, max_inp_length: Optional[int] = None
|
178 |
+
):
|
179 |
+
if max_inp_length is not None:
|
180 |
+
input_ids = input_ids[:max_inp_length]
|
181 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
182 |
+
|
183 |
+
image_start_tokens = torch.where(input_ids == tokenizer.im_start_id)[0]
|
184 |
+
# 跳过 im_start
|
185 |
+
image_start_tokens += 1
|
186 |
+
image_end_tokens = torch.where(input_ids == tokenizer.im_end_id)[0]
|
187 |
+
valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))
|
188 |
+
image_bound = torch.hstack(
|
189 |
+
[
|
190 |
+
image_start_tokens[:valid_image_nums].unsqueeze(-1),
|
191 |
+
image_end_tokens[:valid_image_nums].unsqueeze(-1),
|
192 |
+
]
|
193 |
+
)
|
194 |
+
|
195 |
+
model_input = {}
|
196 |
+
model_input["input_ids"] = input_ids.unsqueeze(0).to(self.device)
|
197 |
+
model_input["image_bound"] = image_bound
|
198 |
+
|
199 |
+
return model_input
|
200 |
+
|
201 |
+
def _process_list(
|
202 |
+
self, tokenizer, input_id_list, max_inp_length: Optional[int] = None
|
203 |
+
):
|
204 |
+
pad_keys = ["input_ids"]
|
205 |
+
input_tensors = []
|
206 |
+
for input_ids in input_id_list:
|
207 |
+
input_tensors.append(
|
208 |
+
self._convert_to_tensors(tokenizer, input_ids, max_inp_length)
|
209 |
+
)
|
210 |
+
padded = {}
|
211 |
+
for key in pad_keys:
|
212 |
+
padded[key] = pad(input_tensors, key, padding_side="left").to(self.device)
|
213 |
+
padded["image_bound"] = [i["image_bound"] for i in input_tensors]
|
214 |
+
return padded
|
215 |
+
|
216 |
+
def _decode(self, inputs_embeds, tokenizer, **kwargs):
|
217 |
+
terminators = [
|
218 |
+
tokenizer.eos_token_id,
|
219 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
220 |
+
]
|
221 |
+
output = self.llm.generate(
|
222 |
+
inputs_embeds=inputs_embeds,
|
223 |
+
pad_token_id=0,
|
224 |
+
eos_token_id=terminators,
|
225 |
+
**kwargs
|
226 |
+
)
|
227 |
+
return self._decode_text(output, tokenizer)
|
228 |
+
|
229 |
+
def _decode_stream(self, inputs_embeds, tokenizer, **kwargs):
|
230 |
+
terminators = [
|
231 |
+
tokenizer.eos_token_id,
|
232 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
233 |
+
]
|
234 |
+
streamer = TextIteratorStreamer(tokenizer=tokenizer)
|
235 |
+
generation_kwargs = {
|
236 |
+
'inputs_embeds': inputs_embeds,
|
237 |
+
'pad_token_id': 0,
|
238 |
+
'eos_token_id': terminators,
|
239 |
+
'streamer': streamer
|
240 |
+
}
|
241 |
+
generation_kwargs.update(kwargs)
|
242 |
+
|
243 |
+
thread = Thread(target=self.llm.generate, kwargs=generation_kwargs)
|
244 |
+
thread.start()
|
245 |
+
|
246 |
+
return streamer
|
247 |
+
|
248 |
+
def _decode_text(self, result_ids, tokenizer):
|
249 |
+
result_text = []
|
250 |
+
for result in result_ids:
|
251 |
+
result = result[result != 0]
|
252 |
+
if result[0] == tokenizer.bos_id:
|
253 |
+
result = result[1:]
|
254 |
+
if result[-1] == tokenizer.eos_id or result[-1] == tokenizer.eot_id:
|
255 |
+
result = result[:-1]
|
256 |
+
result_text.append(tokenizer.decode(result).strip())
|
257 |
+
return result_text
|
258 |
+
|
259 |
+
def slice_image(self, image):
|
260 |
+
return slice_image(
|
261 |
+
image,
|
262 |
+
self.config.slice_config.max_slice_nums,
|
263 |
+
self.config.slice_config.scale_resolution,
|
264 |
+
self.config.slice_config.patch_size,
|
265 |
+
)
|
266 |
+
|
267 |
+
def get_slice_image_placeholder(self, image, tokenizer):
|
268 |
+
image_placeholder = (
|
269 |
+
tokenizer.im_start
|
270 |
+
+ tokenizer.unk_token * self.config.query_num
|
271 |
+
+ tokenizer.im_end
|
272 |
+
)
|
273 |
+
|
274 |
+
slice_images = []
|
275 |
+
|
276 |
+
source_image, patches, best_grid = slice_image(
|
277 |
+
image,
|
278 |
+
self.config.slice_config.max_slice_nums,
|
279 |
+
self.config.slice_config.scale_resolution,
|
280 |
+
self.config.slice_config.patch_size,
|
281 |
+
)
|
282 |
+
|
283 |
+
slice_images.append(source_image)
|
284 |
+
final_placeholder = image_placeholder
|
285 |
+
|
286 |
+
if len(patches) > 0:
|
287 |
+
for i in range(len(patches)):
|
288 |
+
for j in range(len(patches[0])):
|
289 |
+
slice_images.append(patches[i][j])
|
290 |
+
|
291 |
+
final_placeholder += get_grid_placeholder(
|
292 |
+
tokenizer, best_grid, self.config.query_num
|
293 |
+
)
|
294 |
+
|
295 |
+
return slice_images, final_placeholder
|
296 |
+
|
297 |
+
def reshape_by_patch(self, image_tensor):
|
298 |
+
"""
|
299 |
+
:param image_tensor: shape [3, H, W]
|
300 |
+
:param patch_size:
|
301 |
+
:return: [3, patch_size, HW/patch_size]
|
302 |
+
"""
|
303 |
+
patch_size = self.config.patch_size
|
304 |
+
patches = torch.nn.functional.unfold(
|
305 |
+
image_tensor,
|
306 |
+
(patch_size, patch_size),
|
307 |
+
stride=(patch_size, patch_size)
|
308 |
+
)
|
309 |
+
|
310 |
+
patches = patches.reshape(image_tensor.size(0), patch_size, patch_size, -1)
|
311 |
+
patches = patches.permute(0, 1, 3, 2).reshape(image_tensor.size(0), patch_size, -1)
|
312 |
+
return patches
|
313 |
+
|
314 |
+
def generate(
|
315 |
+
self,
|
316 |
+
input_id_list=None,
|
317 |
+
img_list=None,
|
318 |
+
tgt_sizes=None,
|
319 |
+
tokenizer=None,
|
320 |
+
max_inp_length: Optional[int] = None,
|
321 |
+
vision_hidden_states=None,
|
322 |
+
return_vision_hidden_states=False,
|
323 |
+
stream=False,
|
324 |
+
**kwargs
|
325 |
+
):
|
326 |
+
|
327 |
+
assert input_id_list is not None
|
328 |
+
bs = len(input_id_list)
|
329 |
+
if img_list == None:
|
330 |
+
img_list = [[] for i in range(bs)]
|
331 |
+
assert bs == len(img_list)
|
332 |
+
|
333 |
+
model_inputs = self._process_list(tokenizer, input_id_list, max_inp_length)
|
334 |
+
|
335 |
+
if vision_hidden_states is None:
|
336 |
+
pixel_values = []
|
337 |
+
for i in range(bs):
|
338 |
+
img_inps = []
|
339 |
+
for img in img_list[i]:
|
340 |
+
img_inps.append(img.to(self.device))
|
341 |
+
if img_inps:
|
342 |
+
pixel_values.append(img_inps)
|
343 |
+
else:
|
344 |
+
pixel_values.append([])
|
345 |
+
model_inputs["pixel_values"] = pixel_values
|
346 |
+
model_inputs['tgt_sizes'] = tgt_sizes
|
347 |
+
else:
|
348 |
+
model_inputs["vision_hidden_states"] = vision_hidden_states
|
349 |
+
|
350 |
+
with torch.inference_mode():
|
351 |
+
(
|
352 |
+
model_inputs["inputs_embeds"],
|
353 |
+
vision_hidden_states,
|
354 |
+
) = self.get_vllm_embedding(model_inputs)
|
355 |
+
|
356 |
+
if stream:
|
357 |
+
result = self._decode_stream(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
358 |
+
else:
|
359 |
+
result = self._decode(model_inputs["inputs_embeds"], tokenizer, **kwargs)
|
360 |
+
|
361 |
+
if return_vision_hidden_states:
|
362 |
+
return result, vision_hidden_states
|
363 |
+
|
364 |
+
return result
|
365 |
+
|
366 |
+
def chat(
|
367 |
+
self,
|
368 |
+
image,
|
369 |
+
msgs,
|
370 |
+
tokenizer,
|
371 |
+
vision_hidden_states=None,
|
372 |
+
max_new_tokens=1024,
|
373 |
+
sampling=True,
|
374 |
+
max_inp_length=2048,
|
375 |
+
system_prompt='',
|
376 |
+
stream=False,
|
377 |
+
**kwargs
|
378 |
+
):
|
379 |
+
if isinstance(msgs, str):
|
380 |
+
msgs = json.loads(msgs)
|
381 |
+
|
382 |
+
copy_msgs = deepcopy(msgs)
|
383 |
+
assert len(copy_msgs) > 0, 'msgs is empty'
|
384 |
+
assert sampling or not stream, 'if use stream mode, make sure sampling=True'
|
385 |
+
|
386 |
+
if image is not None and isinstance(copy_msgs[0]['content'], str):
|
387 |
+
copy_msgs[0]['content'] = [image, copy_msgs[0]['content']]
|
388 |
+
|
389 |
+
images = []
|
390 |
+
tgt_sizes = []
|
391 |
+
for i, msg in enumerate(copy_msgs):
|
392 |
+
role = msg["role"]
|
393 |
+
content = msg["content"]
|
394 |
+
assert role in ["user", "assistant"]
|
395 |
+
if i == 0:
|
396 |
+
assert role == "user", "The role of first msg should be user"
|
397 |
+
if isinstance(content, str):
|
398 |
+
content = [content]
|
399 |
+
|
400 |
+
cur_msgs = []
|
401 |
+
for c in content:
|
402 |
+
if isinstance(c, Image.Image):
|
403 |
+
image = c
|
404 |
+
if self.config.slice_mode:
|
405 |
+
slice_images, image_placeholder = self.get_slice_image_placeholder(
|
406 |
+
image, tokenizer
|
407 |
+
)
|
408 |
+
cur_msgs.append(image_placeholder)
|
409 |
+
for slice_image in slice_images:
|
410 |
+
slice_image = self.transform(slice_image)
|
411 |
+
H, W = slice_image.shape[1:]
|
412 |
+
images.append(self.reshape_by_patch(slice_image))
|
413 |
+
tgt_sizes.append(torch.Tensor([H // self.config.patch_size, W // self.config.patch_size]).type(torch.int32))
|
414 |
+
else:
|
415 |
+
images.append(self.transform(image))
|
416 |
+
cur_msgs.append(
|
417 |
+
tokenizer.im_start
|
418 |
+
+ tokenizer.unk_token * self.config.query_num
|
419 |
+
+ tokenizer.im_end
|
420 |
+
)
|
421 |
+
elif isinstance(c, str):
|
422 |
+
cur_msgs.append(c)
|
423 |
+
|
424 |
+
|
425 |
+
msg['content'] = '\n'.join(cur_msgs)
|
426 |
+
if tgt_sizes:
|
427 |
+
tgt_sizes = torch.vstack(tgt_sizes)
|
428 |
+
|
429 |
+
if system_prompt:
|
430 |
+
sys_msg = {'role': 'system', 'content': system_prompt}
|
431 |
+
copy_msgs = [sys_msg] + copy_msgs
|
432 |
+
|
433 |
+
input_ids = tokenizer.apply_chat_template(copy_msgs, tokenize=True, add_generation_prompt=False)
|
434 |
+
|
435 |
+
if sampling:
|
436 |
+
generation_config = {
|
437 |
+
"top_p": 0.8,
|
438 |
+
"top_k": 100,
|
439 |
+
"temperature": 0.7,
|
440 |
+
"do_sample": True,
|
441 |
+
"repetition_penalty": 1.05
|
442 |
+
}
|
443 |
+
else:
|
444 |
+
generation_config = {
|
445 |
+
"num_beams": 3,
|
446 |
+
"repetition_penalty": 1.2,
|
447 |
+
}
|
448 |
+
|
449 |
+
generation_config.update(
|
450 |
+
(k, kwargs[k]) for k in generation_config.keys() & kwargs.keys()
|
451 |
+
)
|
452 |
+
|
453 |
+
with torch.inference_mode():
|
454 |
+
res, vision_hidden_states = self.generate(
|
455 |
+
input_id_list=[input_ids],
|
456 |
+
max_inp_length=max_inp_length,
|
457 |
+
img_list=[images],
|
458 |
+
tgt_sizes=[tgt_sizes],
|
459 |
+
tokenizer=tokenizer,
|
460 |
+
max_new_tokens=max_new_tokens,
|
461 |
+
vision_hidden_states=vision_hidden_states,
|
462 |
+
return_vision_hidden_states=True,
|
463 |
+
stream=stream,
|
464 |
+
**generation_config
|
465 |
+
)
|
466 |
+
|
467 |
+
if stream:
|
468 |
+
def stream_gen():
|
469 |
+
for text in res:
|
470 |
+
text = text.replace(tokenizer.eot_token, '').replace(tokenizer.eos_token, '')
|
471 |
+
yield text
|
472 |
+
return stream_gen()
|
473 |
+
|
474 |
+
else:
|
475 |
+
answer = res[0]
|
476 |
+
return answer
|
477 |
+
|
478 |
+
|
479 |
+
class PreTrainedTokenizerFastWrapper(PreTrainedTokenizerFast):
|
480 |
+
def __init__(self, **kwargs):
|
481 |
+
super().__init__(**kwargs)
|
482 |
+
self.eot_token = "<|eot_id|>"
|
483 |
+
self.im_start = "<image>"
|
484 |
+
self.im_end = "</image>"
|
485 |
+
self.ref_start = "<ref>"
|
486 |
+
self.ref_end = "</ref>"
|
487 |
+
self.box_start = "<box>"
|
488 |
+
self.box_end = "</box>"
|
489 |
+
self.quad_start = "<quad>"
|
490 |
+
self.quad_end = "</quad>"
|
491 |
+
self.slice_start = "<slice>"
|
492 |
+
self.slice_end = "</slice>"
|
493 |
+
|
494 |
+
@property
|
495 |
+
def eos_id(self):
|
496 |
+
return self.eos_token_id
|
497 |
+
|
498 |
+
@property
|
499 |
+
def bos_id(self):
|
500 |
+
return self.bos_token_id
|
501 |
+
|
502 |
+
@property
|
503 |
+
def unk_id(self):
|
504 |
+
return self.unk_token_id
|
505 |
+
|
506 |
+
@property
|
507 |
+
def eot_id(self):
|
508 |
+
return self.convert_tokens_to_ids(self.eot_token)
|
509 |
+
|
510 |
+
@property
|
511 |
+
def im_start_id(self):
|
512 |
+
return self.convert_tokens_to_ids(self.im_start)
|
513 |
+
|
514 |
+
@property
|
515 |
+
def im_end_id(self):
|
516 |
+
return self.convert_tokens_to_ids(self.im_end)
|
517 |
+
|
518 |
+
@staticmethod
|
519 |
+
def escape(text: str) -> str:
|
520 |
+
return text
|
521 |
+
|
522 |
+
@staticmethod
|
523 |
+
def unescape(text: str) -> str:
|
524 |
+
return text
|
525 |
+
|
526 |
+
|
527 |
+
def pad(orig_items, key, max_length=None, padding_value=0, padding_side="left"):
|
528 |
+
items = []
|
529 |
+
if isinstance(orig_items[0][key], list):
|
530 |
+
assert isinstance(orig_items[0][key][0], torch.Tensor)
|
531 |
+
for it in orig_items:
|
532 |
+
for tr in it[key]:
|
533 |
+
items.append({key: tr})
|
534 |
+
else:
|
535 |
+
assert isinstance(orig_items[0][key], torch.Tensor)
|
536 |
+
items = orig_items
|
537 |
+
|
538 |
+
batch_size = len(items)
|
539 |
+
shape = items[0][key].shape
|
540 |
+
dim = len(shape)
|
541 |
+
assert dim <= 3
|
542 |
+
if max_length is None:
|
543 |
+
max_length = 0
|
544 |
+
max_length = max(max_length, max(item[key].shape[-1] for item in items))
|
545 |
+
min_length = min(item[key].shape[-1] for item in items)
|
546 |
+
dtype = items[0][key].dtype
|
547 |
+
|
548 |
+
if dim == 1:
|
549 |
+
return torch.cat([item[key] for item in items], dim=0)
|
550 |
+
elif dim == 2:
|
551 |
+
if max_length == min_length:
|
552 |
+
return torch.cat([item[key] for item in items], dim=0)
|
553 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
554 |
+
else:
|
555 |
+
tensor = (
|
556 |
+
torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
|
557 |
+
+ padding_value
|
558 |
+
)
|
559 |
+
|
560 |
+
for i, item in enumerate(items):
|
561 |
+
if dim == 2:
|
562 |
+
if padding_side == "left":
|
563 |
+
tensor[i, -len(item[key][0]) :] = item[key][0].clone()
|
564 |
+
else:
|
565 |
+
tensor[i, : len(item[key][0])] = item[key][0].clone()
|
566 |
+
elif dim == 3:
|
567 |
+
if padding_side == "left":
|
568 |
+
tensor[i, -len(item[key][0]) :, :] = item[key][0].clone()
|
569 |
+
else:
|
570 |
+
tensor[i, : len(item[key][0]), :] = item[key][0].clone()
|
571 |
+
|
572 |
+
return tensor
|
573 |
+
|
574 |
+
|
575 |
+
def slice_image(
|
576 |
+
image, max_slice_nums=9, scale_resolution=448, patch_size=14, never_split=False
|
577 |
+
):
|
578 |
+
original_size = image.size
|
579 |
+
original_width, original_height = original_size
|
580 |
+
log_ratio = math.log(original_width / original_height)
|
581 |
+
ratio = original_width * original_height / (scale_resolution * scale_resolution)
|
582 |
+
multiple = min(math.ceil(ratio), max_slice_nums)
|
583 |
+
|
584 |
+
source_image = None
|
585 |
+
best_grid = None
|
586 |
+
patches = []
|
587 |
+
|
588 |
+
if multiple <= 1 or never_split:
|
589 |
+
# dont need to slice, upsample
|
590 |
+
best_size = find_best_resize(
|
591 |
+
original_size, scale_resolution, patch_size, allow_upscale=True
|
592 |
+
)
|
593 |
+
source_image = image.resize(best_size, Image.Resampling.BICUBIC)
|
594 |
+
else:
|
595 |
+
candidate_split_grids_nums = []
|
596 |
+
for i in [multiple - 1, multiple, multiple + 1]:
|
597 |
+
if i == 1 or i > max_slice_nums:
|
598 |
+
continue
|
599 |
+
candidate_split_grids_nums.append(i)
|
600 |
+
|
601 |
+
# source image, down-sampling and ensure divided by patch_size
|
602 |
+
best_resize = find_best_resize(original_size, scale_resolution, patch_size)
|
603 |
+
source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
|
604 |
+
candidate_grids = []
|
605 |
+
|
606 |
+
# find best grid
|
607 |
+
for split_grids_nums in candidate_split_grids_nums:
|
608 |
+
m = 1
|
609 |
+
while m <= split_grids_nums:
|
610 |
+
if split_grids_nums % m == 0:
|
611 |
+
candidate_grids.append([m, split_grids_nums // m])
|
612 |
+
m += 1
|
613 |
+
|
614 |
+
best_grid = [1, 1]
|
615 |
+
min_error = float("inf")
|
616 |
+
for grid in candidate_grids:
|
617 |
+
error = abs(log_ratio - math.log(grid[0] / grid[1]))
|
618 |
+
if error < min_error:
|
619 |
+
best_grid = grid
|
620 |
+
min_error = error
|
621 |
+
|
622 |
+
refine_size = get_refine_size(
|
623 |
+
original_size, best_grid, scale_resolution, patch_size, allow_upscale=True
|
624 |
+
)
|
625 |
+
|
626 |
+
refine_image = image.resize(refine_size, Image.Resampling.BICUBIC)
|
627 |
+
patches = split_to_patches(refine_image, best_grid)
|
628 |
+
|
629 |
+
return source_image, patches, best_grid
|
630 |
+
|
631 |
+
|
632 |
+
def ensure_divide(length, patch_size):
|
633 |
+
return max(round(length / patch_size) * patch_size, patch_size)
|
634 |
+
|
635 |
+
|
636 |
+
def find_best_resize(original_size, scale_resolution, patch_size, allow_upscale=False):
|
637 |
+
width, height = original_size
|
638 |
+
if (width * height > scale_resolution * scale_resolution) or allow_upscale:
|
639 |
+
r = width / height
|
640 |
+
height = int(scale_resolution / math.sqrt(r))
|
641 |
+
width = int(height * r)
|
642 |
+
best_width = ensure_divide(width, patch_size)
|
643 |
+
best_height = ensure_divide(height, patch_size)
|
644 |
+
return (best_width, best_height)
|
645 |
+
|
646 |
+
|
647 |
+
def get_refine_size(
|
648 |
+
original_size, grid, scale_resolution, patch_size, allow_upscale=False
|
649 |
+
):
|
650 |
+
width, height = original_size
|
651 |
+
grid_x, grid_y = grid
|
652 |
+
|
653 |
+
refine_width = ensure_divide(width, grid_x)
|
654 |
+
refine_height = ensure_divide(height, grid_y)
|
655 |
+
|
656 |
+
grid_width = refine_width / grid_x
|
657 |
+
grid_height = refine_height / grid_y
|
658 |
+
|
659 |
+
best_grid_size = find_best_resize(
|
660 |
+
(grid_width, grid_height),
|
661 |
+
scale_resolution,
|
662 |
+
patch_size,
|
663 |
+
allow_upscale=allow_upscale,
|
664 |
+
)
|
665 |
+
|
666 |
+
refine_size = (best_grid_size[0] * grid_x, best_grid_size[1] * grid_y)
|
667 |
+
|
668 |
+
return refine_size
|
669 |
+
|
670 |
+
|
671 |
+
def split_to_patches(image, grid):
|
672 |
+
patches = []
|
673 |
+
width, height = image.size
|
674 |
+
grid_x = int(width / grid[0])
|
675 |
+
grid_y = int(height / grid[1])
|
676 |
+
|
677 |
+
for i in range(0, height, grid_y):
|
678 |
+
images = []
|
679 |
+
for j in range(0, width, grid_x):
|
680 |
+
box = (j, i, j + grid_x, i + grid_y)
|
681 |
+
patch = image.crop(box)
|
682 |
+
images.append(patch)
|
683 |
+
patches.append(images)
|
684 |
+
|
685 |
+
return patches
|
686 |
+
|
687 |
+
|
688 |
+
def get_grid_placeholder(tokenizer, grid, query_num):
|
689 |
+
image_placeholder = (
|
690 |
+
tokenizer.im_start + tokenizer.unk_token * query_num + tokenizer.im_end
|
691 |
+
)
|
692 |
+
|
693 |
+
cols = grid[0]
|
694 |
+
rows = grid[1]
|
695 |
+
slices = []
|
696 |
+
for i in range(rows):
|
697 |
+
lines = []
|
698 |
+
for j in range(cols):
|
699 |
+
lines.append(image_placeholder)
|
700 |
+
slices.append("".join(lines))
|
701 |
+
slice_placeholder = tokenizer.slice_start + "\n".join(slices) + tokenizer.slice_end
|
702 |
+
return slice_placeholder
|
resampler.py
ADDED
@@ -0,0 +1,812 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import numpy as np
|
3 |
+
import warnings
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
from torch import Tensor
|
8 |
+
import torch.nn.functional as F
|
9 |
+
from torch.nn.functional import *
|
10 |
+
from torch.nn.modules.activation import *
|
11 |
+
from torch.nn.init import trunc_normal_
|
12 |
+
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
13 |
+
from transformers import PreTrainedModel
|
14 |
+
from transformers.integrations import is_deepspeed_zero3_enabled
|
15 |
+
|
16 |
+
def get_2d_sincos_pos_embed(embed_dim, image_size):
|
17 |
+
"""
|
18 |
+
image_size: image_size or (image_height, image_width)
|
19 |
+
return:
|
20 |
+
pos_embed: [image_height, image_width, embed_dim]
|
21 |
+
"""
|
22 |
+
if isinstance(image_size, int):
|
23 |
+
grid_h_size, grid_w_size = image_size, image_size
|
24 |
+
else:
|
25 |
+
grid_h_size, grid_w_size = image_size[0], image_size[1]
|
26 |
+
|
27 |
+
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
28 |
+
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
29 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
30 |
+
grid = np.stack(grid, axis=0)
|
31 |
+
|
32 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
33 |
+
return pos_embed
|
34 |
+
|
35 |
+
|
36 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
37 |
+
assert embed_dim % 2 == 0
|
38 |
+
|
39 |
+
# use half of dimensions to encode grid_h
|
40 |
+
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
|
41 |
+
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
|
42 |
+
|
43 |
+
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
|
44 |
+
return emb
|
45 |
+
|
46 |
+
|
47 |
+
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
|
48 |
+
"""
|
49 |
+
embed_dim: output dimension for each position
|
50 |
+
pos: a list of positions to be encoded: size (H, W)
|
51 |
+
out: (H, W, D)
|
52 |
+
"""
|
53 |
+
assert embed_dim % 2 == 0
|
54 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
55 |
+
omega /= embed_dim / 2.
|
56 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
57 |
+
|
58 |
+
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
|
59 |
+
|
60 |
+
emb_sin = np.sin(out) # (H, W, D/2)
|
61 |
+
emb_cos = np.cos(out) # (H, W, D/2)
|
62 |
+
|
63 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
64 |
+
return emb
|
65 |
+
|
66 |
+
|
67 |
+
class Resampler(nn.Module):
|
68 |
+
"""
|
69 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
70 |
+
given learnable queries and 2d sincos pos_emb
|
71 |
+
Outputs:
|
72 |
+
A tensor with the shape of (batch_size, num_queries, embed_dim)
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_queries,
|
78 |
+
embed_dim,
|
79 |
+
num_heads,
|
80 |
+
kv_dim=None,
|
81 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
82 |
+
adaptive=False,
|
83 |
+
max_size=(70, 70),
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
self.num_queries = num_queries
|
87 |
+
self.embed_dim = embed_dim
|
88 |
+
self.num_heads = num_heads
|
89 |
+
self.adaptive = adaptive
|
90 |
+
self.max_size = max_size
|
91 |
+
|
92 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
93 |
+
|
94 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
95 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
96 |
+
else:
|
97 |
+
self.kv_proj = nn.Identity()
|
98 |
+
|
99 |
+
self.attn = MultiheadAttention(embed_dim, num_heads)
|
100 |
+
self.ln_q = norm_layer(embed_dim)
|
101 |
+
self.ln_kv = norm_layer(embed_dim)
|
102 |
+
|
103 |
+
self.ln_post = norm_layer(embed_dim)
|
104 |
+
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
105 |
+
|
106 |
+
self._set_2d_pos_cache(self.max_size)
|
107 |
+
|
108 |
+
def _set_2d_pos_cache(self, max_size, device='cpu'):
|
109 |
+
if is_deepspeed_zero3_enabled():
|
110 |
+
device='cuda'
|
111 |
+
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
|
112 |
+
self.register_buffer("pos_embed", pos_embed, persistent=False)
|
113 |
+
|
114 |
+
def _adjust_pos_cache(self, tgt_sizes, device):
|
115 |
+
max_h = torch.max(tgt_sizes[:, 0])
|
116 |
+
max_w = torch.max(tgt_sizes[:, 1])
|
117 |
+
if max_h > self.max_size[0] or max_w > self.max_size[1]:
|
118 |
+
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
|
119 |
+
self._set_2d_pos_cache(self.max_size, device)
|
120 |
+
|
121 |
+
def _init_weights(self, m):
|
122 |
+
if isinstance(m, nn.Linear):
|
123 |
+
trunc_normal_(m.weight, std=.02)
|
124 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
125 |
+
nn.init.constant_(m.bias, 0)
|
126 |
+
elif isinstance(m, nn.LayerNorm):
|
127 |
+
nn.init.constant_(m.bias, 0)
|
128 |
+
nn.init.constant_(m.weight, 1.0)
|
129 |
+
|
130 |
+
def forward(self, x, tgt_sizes=None):
|
131 |
+
assert x.shape[0] == tgt_sizes.shape[0]
|
132 |
+
bs = x.shape[0]
|
133 |
+
|
134 |
+
device = x.device
|
135 |
+
dtype = x.dtype
|
136 |
+
|
137 |
+
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
|
138 |
+
|
139 |
+
self._adjust_pos_cache(tgt_sizes, device=device)
|
140 |
+
|
141 |
+
max_patch_len = torch.max(patch_len)
|
142 |
+
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
|
143 |
+
|
144 |
+
pos_embed = []
|
145 |
+
for i in range(bs):
|
146 |
+
tgt_h, tgt_w = tgt_sizes[i]
|
147 |
+
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
|
148 |
+
key_padding_mask[i, patch_len[i]:] = True
|
149 |
+
|
150 |
+
pos_embed = torch.nn.utils.rnn.pad_sequence(
|
151 |
+
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
|
152 |
+
|
153 |
+
x = self.kv_proj(x) # B * L * D
|
154 |
+
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
|
155 |
+
|
156 |
+
q = self.ln_q(self.query) # Q * D
|
157 |
+
|
158 |
+
out = self.attn(
|
159 |
+
self._repeat(q, bs), # Q * B * D
|
160 |
+
x + pos_embed, # L * B * D + L * B * D
|
161 |
+
x,
|
162 |
+
key_padding_mask=key_padding_mask)[0]
|
163 |
+
# out: Q * B * D
|
164 |
+
x = out.permute(1, 0, 2) # B * Q * D
|
165 |
+
|
166 |
+
x = self.ln_post(x)
|
167 |
+
x = x @ self.proj
|
168 |
+
return x
|
169 |
+
|
170 |
+
def _repeat(self, query, N: int):
|
171 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|
172 |
+
|
173 |
+
|
174 |
+
class MultiheadAttention(nn.MultiheadAttention):
|
175 |
+
def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False,
|
176 |
+
add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):
|
177 |
+
super().__init__(embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype)
|
178 |
+
|
179 |
+
# rewrite out_proj layer,with nn.Linear
|
180 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
|
181 |
+
|
182 |
+
def forward(
|
183 |
+
self,
|
184 |
+
query: Tensor,
|
185 |
+
key: Tensor,
|
186 |
+
value: Tensor,
|
187 |
+
key_padding_mask: Optional[Tensor] = None,
|
188 |
+
need_weights: bool = True,
|
189 |
+
attn_mask: Optional[Tensor] = None,
|
190 |
+
average_attn_weights: bool = True,
|
191 |
+
is_causal : bool = False) -> Tuple[Tensor, Optional[Tensor]]:
|
192 |
+
why_not_fast_path = ''
|
193 |
+
if ((attn_mask is not None and torch.is_floating_point(attn_mask))
|
194 |
+
or (key_padding_mask is not None) and torch.is_floating_point(key_padding_mask)):
|
195 |
+
why_not_fast_path = "floating-point masks are not supported for fast path."
|
196 |
+
|
197 |
+
is_batched = query.dim() == 3
|
198 |
+
|
199 |
+
key_padding_mask = F._canonical_mask(
|
200 |
+
mask=key_padding_mask,
|
201 |
+
mask_name="key_padding_mask",
|
202 |
+
other_type=F._none_or_dtype(attn_mask),
|
203 |
+
other_name="attn_mask",
|
204 |
+
target_type=query.dtype
|
205 |
+
)
|
206 |
+
|
207 |
+
attn_mask = F._canonical_mask(
|
208 |
+
mask=attn_mask,
|
209 |
+
mask_name="attn_mask",
|
210 |
+
other_type=None,
|
211 |
+
other_name="",
|
212 |
+
target_type=query.dtype,
|
213 |
+
check_other=False,
|
214 |
+
)
|
215 |
+
|
216 |
+
|
217 |
+
if not is_batched:
|
218 |
+
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
219 |
+
elif query is not key or key is not value:
|
220 |
+
# When lifting this restriction, don't forget to either
|
221 |
+
# enforce that the dtypes all match or test cases where
|
222 |
+
# they don't!
|
223 |
+
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
224 |
+
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
225 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
226 |
+
elif self.in_proj_weight is None:
|
227 |
+
why_not_fast_path = "in_proj_weight was None"
|
228 |
+
elif query.dtype != self.in_proj_weight.dtype:
|
229 |
+
# this case will fail anyway, but at least they'll get a useful error message.
|
230 |
+
why_not_fast_path = f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
231 |
+
elif self.training:
|
232 |
+
why_not_fast_path = "training is enabled"
|
233 |
+
elif (self.num_heads % 2) != 0:
|
234 |
+
why_not_fast_path = "self.num_heads is not even"
|
235 |
+
elif not self.batch_first:
|
236 |
+
why_not_fast_path = "batch_first was not True"
|
237 |
+
elif self.bias_k is not None:
|
238 |
+
why_not_fast_path = "self.bias_k was not None"
|
239 |
+
elif self.bias_v is not None:
|
240 |
+
why_not_fast_path = "self.bias_v was not None"
|
241 |
+
elif self.add_zero_attn:
|
242 |
+
why_not_fast_path = "add_zero_attn was enabled"
|
243 |
+
elif not self._qkv_same_embed_dim:
|
244 |
+
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
245 |
+
elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
|
246 |
+
why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
|
247 |
+
is not supported with NestedTensor input"
|
248 |
+
elif torch.is_autocast_enabled():
|
249 |
+
why_not_fast_path = "autocast is enabled"
|
250 |
+
|
251 |
+
if not why_not_fast_path:
|
252 |
+
tensor_args = (
|
253 |
+
query,
|
254 |
+
key,
|
255 |
+
value,
|
256 |
+
self.in_proj_weight,
|
257 |
+
self.in_proj_bias,
|
258 |
+
self.out_proj.weight,
|
259 |
+
self.out_proj.bias,
|
260 |
+
)
|
261 |
+
# We have to use list comprehensions below because TorchScript does not support
|
262 |
+
# generator expressions.
|
263 |
+
if torch.overrides.has_torch_function(tensor_args):
|
264 |
+
why_not_fast_path = "some Tensor argument has_torch_function"
|
265 |
+
elif _is_make_fx_tracing():
|
266 |
+
why_not_fast_path = "we are running make_fx tracing"
|
267 |
+
elif not all(_check_arg_device(x) for x in tensor_args):
|
268 |
+
why_not_fast_path = ("some Tensor argument's device is neither one of "
|
269 |
+
f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}")
|
270 |
+
elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
|
271 |
+
why_not_fast_path = ("grad is enabled and at least one of query or the "
|
272 |
+
"input/output projection weights or biases requires_grad")
|
273 |
+
if not why_not_fast_path:
|
274 |
+
merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
|
275 |
+
|
276 |
+
if self.in_proj_bias is not None and self.in_proj_weight is not None:
|
277 |
+
return torch._native_multi_head_attention(
|
278 |
+
query,
|
279 |
+
key,
|
280 |
+
value,
|
281 |
+
self.embed_dim,
|
282 |
+
self.num_heads,
|
283 |
+
self.in_proj_weight,
|
284 |
+
self.in_proj_bias,
|
285 |
+
self.out_proj.weight,
|
286 |
+
self.out_proj.bias,
|
287 |
+
merged_mask,
|
288 |
+
need_weights,
|
289 |
+
average_attn_weights,
|
290 |
+
mask_type)
|
291 |
+
|
292 |
+
any_nested = query.is_nested or key.is_nested or value.is_nested
|
293 |
+
assert not any_nested, ("MultiheadAttention does not support NestedTensor outside of its fast path. " +
|
294 |
+
f"The fast path was not hit because {why_not_fast_path}")
|
295 |
+
|
296 |
+
if self.batch_first and is_batched:
|
297 |
+
# make sure that the transpose op does not affect the "is" property
|
298 |
+
if key is value:
|
299 |
+
if query is key:
|
300 |
+
query = key = value = query.transpose(1, 0)
|
301 |
+
else:
|
302 |
+
query, key = (x.transpose(1, 0) for x in (query, key))
|
303 |
+
value = key
|
304 |
+
else:
|
305 |
+
query, key, value = (x.transpose(1, 0) for x in (query, key, value))
|
306 |
+
|
307 |
+
if not self._qkv_same_embed_dim:
|
308 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
309 |
+
query, key, value, self.embed_dim, self.num_heads,
|
310 |
+
self.in_proj_weight, self.in_proj_bias,
|
311 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
312 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
313 |
+
training=self.training,
|
314 |
+
key_padding_mask=key_padding_mask, need_weights=need_weights,
|
315 |
+
attn_mask=attn_mask,
|
316 |
+
use_separate_proj_weight=True,
|
317 |
+
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
318 |
+
v_proj_weight=self.v_proj_weight,
|
319 |
+
average_attn_weights=average_attn_weights,
|
320 |
+
is_causal=is_causal)
|
321 |
+
else:
|
322 |
+
attn_output, attn_output_weights = self.multi_head_attention_forward(
|
323 |
+
query, key, value, self.embed_dim, self.num_heads,
|
324 |
+
self.in_proj_weight, self.in_proj_bias,
|
325 |
+
self.bias_k, self.bias_v, self.add_zero_attn,
|
326 |
+
self.dropout, self.out_proj.weight, self.out_proj.bias,
|
327 |
+
training=self.training,
|
328 |
+
key_padding_mask=key_padding_mask,
|
329 |
+
need_weights=need_weights,
|
330 |
+
attn_mask=attn_mask,
|
331 |
+
average_attn_weights=average_attn_weights,
|
332 |
+
is_causal=is_causal)
|
333 |
+
if self.batch_first and is_batched:
|
334 |
+
return attn_output.transpose(1, 0), attn_output_weights
|
335 |
+
else:
|
336 |
+
return attn_output, attn_output_weights
|
337 |
+
|
338 |
+
def multi_head_attention_forward(
|
339 |
+
self,
|
340 |
+
query: Tensor,
|
341 |
+
key: Tensor,
|
342 |
+
value: Tensor,
|
343 |
+
embed_dim_to_check: int,
|
344 |
+
num_heads: int,
|
345 |
+
in_proj_weight: Optional[Tensor],
|
346 |
+
in_proj_bias: Optional[Tensor],
|
347 |
+
bias_k: Optional[Tensor],
|
348 |
+
bias_v: Optional[Tensor],
|
349 |
+
add_zero_attn: bool,
|
350 |
+
dropout_p: float,
|
351 |
+
out_proj_weight: Tensor,
|
352 |
+
out_proj_bias: Optional[Tensor],
|
353 |
+
training: bool = True,
|
354 |
+
key_padding_mask: Optional[Tensor] = None,
|
355 |
+
need_weights: bool = True,
|
356 |
+
attn_mask: Optional[Tensor] = None,
|
357 |
+
use_separate_proj_weight: bool = False,
|
358 |
+
q_proj_weight: Optional[Tensor] = None,
|
359 |
+
k_proj_weight: Optional[Tensor] = None,
|
360 |
+
v_proj_weight: Optional[Tensor] = None,
|
361 |
+
static_k: Optional[Tensor] = None,
|
362 |
+
static_v: Optional[Tensor] = None,
|
363 |
+
average_attn_weights: bool = True,
|
364 |
+
is_causal: bool = False,
|
365 |
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
366 |
+
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
367 |
+
if has_torch_function(tens_ops):
|
368 |
+
return handle_torch_function(
|
369 |
+
multi_head_attention_forward,
|
370 |
+
tens_ops,
|
371 |
+
query,
|
372 |
+
key,
|
373 |
+
value,
|
374 |
+
embed_dim_to_check,
|
375 |
+
num_heads,
|
376 |
+
in_proj_weight,
|
377 |
+
in_proj_bias,
|
378 |
+
bias_k,
|
379 |
+
bias_v,
|
380 |
+
add_zero_attn,
|
381 |
+
dropout_p,
|
382 |
+
out_proj_weight,
|
383 |
+
out_proj_bias,
|
384 |
+
training=training,
|
385 |
+
key_padding_mask=key_padding_mask,
|
386 |
+
need_weights=need_weights,
|
387 |
+
attn_mask=attn_mask,
|
388 |
+
is_causal=is_causal,
|
389 |
+
use_separate_proj_weight=use_separate_proj_weight,
|
390 |
+
q_proj_weight=q_proj_weight,
|
391 |
+
k_proj_weight=k_proj_weight,
|
392 |
+
v_proj_weight=v_proj_weight,
|
393 |
+
static_k=static_k,
|
394 |
+
static_v=static_v,
|
395 |
+
average_attn_weights=average_attn_weights,
|
396 |
+
)
|
397 |
+
|
398 |
+
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
399 |
+
|
400 |
+
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
401 |
+
# is batched, run the computation and before returning squeeze the
|
402 |
+
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
403 |
+
if not is_batched:
|
404 |
+
# unsqueeze if the input is unbatched
|
405 |
+
query = query.unsqueeze(1)
|
406 |
+
key = key.unsqueeze(1)
|
407 |
+
value = value.unsqueeze(1)
|
408 |
+
if key_padding_mask is not None:
|
409 |
+
key_padding_mask = key_padding_mask.unsqueeze(0)
|
410 |
+
|
411 |
+
# set up shape vars
|
412 |
+
tgt_len, bsz, embed_dim = query.shape
|
413 |
+
src_len, _, _ = key.shape
|
414 |
+
|
415 |
+
key_padding_mask = _canonical_mask(
|
416 |
+
mask=key_padding_mask,
|
417 |
+
mask_name="key_padding_mask",
|
418 |
+
other_type=_none_or_dtype(attn_mask),
|
419 |
+
other_name="attn_mask",
|
420 |
+
target_type=query.dtype
|
421 |
+
)
|
422 |
+
|
423 |
+
if is_causal and attn_mask is None:
|
424 |
+
raise RuntimeError(
|
425 |
+
"Need attn_mask if specifying the is_causal hint. "
|
426 |
+
"You may use the Transformer module method "
|
427 |
+
"`generate_square_subsequent_mask` to create this mask."
|
428 |
+
)
|
429 |
+
|
430 |
+
if is_causal and key_padding_mask is None and not need_weights:
|
431 |
+
# when we have a kpm or need weights, we need attn_mask
|
432 |
+
# Otherwise, we use the is_causal hint go as is_causal
|
433 |
+
# indicator to SDPA.
|
434 |
+
attn_mask = None
|
435 |
+
else:
|
436 |
+
attn_mask = _canonical_mask(
|
437 |
+
mask=attn_mask,
|
438 |
+
mask_name="attn_mask",
|
439 |
+
other_type=None,
|
440 |
+
other_name="",
|
441 |
+
target_type=query.dtype,
|
442 |
+
check_other=False,
|
443 |
+
)
|
444 |
+
|
445 |
+
if key_padding_mask is not None:
|
446 |
+
# We have the attn_mask, and use that to merge kpm into it.
|
447 |
+
# Turn off use of is_causal hint, as the merged mask is no
|
448 |
+
# longer causal.
|
449 |
+
is_causal = False
|
450 |
+
|
451 |
+
assert embed_dim == embed_dim_to_check, \
|
452 |
+
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
453 |
+
if isinstance(embed_dim, torch.Tensor):
|
454 |
+
# embed_dim can be a tensor when JIT tracing
|
455 |
+
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
456 |
+
else:
|
457 |
+
head_dim = embed_dim // num_heads
|
458 |
+
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
459 |
+
if use_separate_proj_weight:
|
460 |
+
# allow MHA to have different embedding dimensions when separate projection weights are used
|
461 |
+
assert key.shape[:2] == value.shape[:2], \
|
462 |
+
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
463 |
+
else:
|
464 |
+
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
465 |
+
|
466 |
+
#
|
467 |
+
# compute in-projection
|
468 |
+
#
|
469 |
+
if not use_separate_proj_weight:
|
470 |
+
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
471 |
+
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
472 |
+
else:
|
473 |
+
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
474 |
+
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
475 |
+
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
476 |
+
if in_proj_bias is None:
|
477 |
+
b_q = b_k = b_v = None
|
478 |
+
else:
|
479 |
+
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
480 |
+
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
481 |
+
|
482 |
+
# prep attention mask
|
483 |
+
|
484 |
+
if attn_mask is not None:
|
485 |
+
# ensure attn_mask's dim is 3
|
486 |
+
if attn_mask.dim() == 2:
|
487 |
+
correct_2d_size = (tgt_len, src_len)
|
488 |
+
if attn_mask.shape != correct_2d_size:
|
489 |
+
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
490 |
+
attn_mask = attn_mask.unsqueeze(0)
|
491 |
+
elif attn_mask.dim() == 3:
|
492 |
+
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
493 |
+
if attn_mask.shape != correct_3d_size:
|
494 |
+
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
495 |
+
else:
|
496 |
+
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
497 |
+
|
498 |
+
# add bias along batch dimension (currently second)
|
499 |
+
if bias_k is not None and bias_v is not None:
|
500 |
+
assert static_k is None, "bias cannot be added to static key."
|
501 |
+
assert static_v is None, "bias cannot be added to static value."
|
502 |
+
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
503 |
+
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
504 |
+
if attn_mask is not None:
|
505 |
+
attn_mask = pad(attn_mask, (0, 1))
|
506 |
+
if key_padding_mask is not None:
|
507 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
508 |
+
else:
|
509 |
+
assert bias_k is None
|
510 |
+
assert bias_v is None
|
511 |
+
|
512 |
+
#
|
513 |
+
# reshape q, k, v for multihead attention and make em batch first
|
514 |
+
#
|
515 |
+
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
516 |
+
if static_k is None:
|
517 |
+
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
518 |
+
else:
|
519 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
520 |
+
assert static_k.size(0) == bsz * num_heads, \
|
521 |
+
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
522 |
+
assert static_k.size(2) == head_dim, \
|
523 |
+
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
524 |
+
k = static_k
|
525 |
+
if static_v is None:
|
526 |
+
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
527 |
+
else:
|
528 |
+
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
529 |
+
assert static_v.size(0) == bsz * num_heads, \
|
530 |
+
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
531 |
+
assert static_v.size(2) == head_dim, \
|
532 |
+
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
533 |
+
v = static_v
|
534 |
+
|
535 |
+
# add zero attention along batch dimension (now first)
|
536 |
+
if add_zero_attn:
|
537 |
+
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
538 |
+
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
539 |
+
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
540 |
+
if attn_mask is not None:
|
541 |
+
attn_mask = pad(attn_mask, (0, 1))
|
542 |
+
if key_padding_mask is not None:
|
543 |
+
key_padding_mask = pad(key_padding_mask, (0, 1))
|
544 |
+
|
545 |
+
# update source sequence length after adjustments
|
546 |
+
src_len = k.size(1)
|
547 |
+
|
548 |
+
# merge key padding and attention masks
|
549 |
+
if key_padding_mask is not None:
|
550 |
+
assert key_padding_mask.shape == (bsz, src_len), \
|
551 |
+
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
552 |
+
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
553 |
+
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
554 |
+
if attn_mask is None:
|
555 |
+
attn_mask = key_padding_mask
|
556 |
+
else:
|
557 |
+
attn_mask = attn_mask + key_padding_mask
|
558 |
+
|
559 |
+
# adjust dropout probability
|
560 |
+
if not training:
|
561 |
+
dropout_p = 0.0
|
562 |
+
|
563 |
+
#
|
564 |
+
# (deep breath) calculate attention and out projection
|
565 |
+
#
|
566 |
+
|
567 |
+
if need_weights:
|
568 |
+
B, Nt, E = q.shape
|
569 |
+
q_scaled = q / math.sqrt(E)
|
570 |
+
|
571 |
+
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
572 |
+
|
573 |
+
if attn_mask is not None:
|
574 |
+
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
575 |
+
else:
|
576 |
+
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
577 |
+
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
578 |
+
if dropout_p > 0.0:
|
579 |
+
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
580 |
+
|
581 |
+
attn_output = torch.bmm(attn_output_weights, v)
|
582 |
+
|
583 |
+
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
584 |
+
attn_output = self.out_proj(attn_output)
|
585 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
586 |
+
|
587 |
+
# optionally average attention weights over heads
|
588 |
+
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
589 |
+
if average_attn_weights:
|
590 |
+
attn_output_weights = attn_output_weights.mean(dim=1)
|
591 |
+
|
592 |
+
if not is_batched:
|
593 |
+
# squeeze the output if input was unbatched
|
594 |
+
attn_output = attn_output.squeeze(1)
|
595 |
+
attn_output_weights = attn_output_weights.squeeze(0)
|
596 |
+
return attn_output, attn_output_weights
|
597 |
+
else:
|
598 |
+
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
599 |
+
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
600 |
+
# in order to match the input for SDPA of (N, num_heads, L, S)
|
601 |
+
if attn_mask is not None:
|
602 |
+
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
603 |
+
attn_mask = attn_mask.unsqueeze(0)
|
604 |
+
else:
|
605 |
+
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
606 |
+
|
607 |
+
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
608 |
+
k = k.view(bsz, num_heads, src_len, head_dim)
|
609 |
+
v = v.view(bsz, num_heads, src_len, head_dim)
|
610 |
+
|
611 |
+
attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
612 |
+
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
613 |
+
|
614 |
+
attn_output = self.out_proj(attn_output)
|
615 |
+
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
616 |
+
if not is_batched:
|
617 |
+
# squeeze the output if input was unbatched
|
618 |
+
attn_output = attn_output.squeeze(1)
|
619 |
+
return attn_output, None
|
620 |
+
|
621 |
+
|
622 |
+
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
|
623 |
+
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
|
624 |
+
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
|
625 |
+
# and returns if the input is batched or not.
|
626 |
+
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
|
627 |
+
|
628 |
+
# Shape check.
|
629 |
+
if query.dim() == 3:
|
630 |
+
# Batched Inputs
|
631 |
+
is_batched = True
|
632 |
+
assert key.dim() == 3 and value.dim() == 3, \
|
633 |
+
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
634 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
635 |
+
if key_padding_mask is not None:
|
636 |
+
assert key_padding_mask.dim() == 2, \
|
637 |
+
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
638 |
+
f" but found {key_padding_mask.dim()}-D tensor instead")
|
639 |
+
if attn_mask is not None:
|
640 |
+
assert attn_mask.dim() in (2, 3), \
|
641 |
+
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
642 |
+
f" but found {attn_mask.dim()}-D tensor instead")
|
643 |
+
elif query.dim() == 2:
|
644 |
+
# Unbatched Inputs
|
645 |
+
is_batched = False
|
646 |
+
assert key.dim() == 2 and value.dim() == 2, \
|
647 |
+
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
648 |
+
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
649 |
+
|
650 |
+
if key_padding_mask is not None:
|
651 |
+
assert key_padding_mask.dim() == 1, \
|
652 |
+
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
653 |
+
f" but found {key_padding_mask.dim()}-D tensor instead")
|
654 |
+
|
655 |
+
if attn_mask is not None:
|
656 |
+
assert attn_mask.dim() in (2, 3), \
|
657 |
+
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
658 |
+
f" but found {attn_mask.dim()}-D tensor instead")
|
659 |
+
if attn_mask.dim() == 3:
|
660 |
+
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
661 |
+
assert attn_mask.shape == expected_shape, \
|
662 |
+
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
|
663 |
+
else:
|
664 |
+
raise AssertionError(
|
665 |
+
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
|
666 |
+
|
667 |
+
return is_batched
|
668 |
+
|
669 |
+
|
670 |
+
def _canonical_mask(
|
671 |
+
mask: Optional[Tensor],
|
672 |
+
mask_name: str,
|
673 |
+
other_type: Optional[DType],
|
674 |
+
other_name: str,
|
675 |
+
target_type: DType,
|
676 |
+
check_other: bool = True,
|
677 |
+
) -> Optional[Tensor]:
|
678 |
+
|
679 |
+
if mask is not None:
|
680 |
+
_mask_dtype = mask.dtype
|
681 |
+
_mask_is_float = torch.is_floating_point(mask)
|
682 |
+
if _mask_dtype != torch.bool and not _mask_is_float:
|
683 |
+
raise AssertionError(
|
684 |
+
f"only bool and floating types of {mask_name} are supported")
|
685 |
+
if check_other and other_type is not None:
|
686 |
+
if _mask_dtype != other_type:
|
687 |
+
warnings.warn(
|
688 |
+
f"Support for mismatched {mask_name} and {other_name} "
|
689 |
+
"is deprecated. Use same type for both instead."
|
690 |
+
)
|
691 |
+
if not _mask_is_float:
|
692 |
+
mask = (
|
693 |
+
torch.zeros_like(mask, dtype=target_type)
|
694 |
+
.masked_fill_(mask, float("-inf"))
|
695 |
+
)
|
696 |
+
return mask
|
697 |
+
|
698 |
+
|
699 |
+
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
|
700 |
+
if input is None:
|
701 |
+
return None
|
702 |
+
elif isinstance(input, torch.Tensor):
|
703 |
+
return input.dtype
|
704 |
+
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
705 |
+
|
706 |
+
def _in_projection_packed(
|
707 |
+
q: Tensor,
|
708 |
+
k: Tensor,
|
709 |
+
v: Tensor,
|
710 |
+
w: Tensor,
|
711 |
+
b: Optional[Tensor] = None,
|
712 |
+
) -> List[Tensor]:
|
713 |
+
r"""
|
714 |
+
Performs the in-projection step of the attention operation, using packed weights.
|
715 |
+
Output is a triple containing projection tensors for query, key and value.
|
716 |
+
Args:
|
717 |
+
q, k, v: query, key and value tensors to be projected. For self-attention,
|
718 |
+
these are typically the same tensor; for encoder-decoder attention,
|
719 |
+
k and v are typically the same tensor. (We take advantage of these
|
720 |
+
identities for performance if they are present.) Regardless, q, k and v
|
721 |
+
must share a common embedding dimension; otherwise their shapes may vary.
|
722 |
+
w: projection weights for q, k and v, packed into a single tensor. Weights
|
723 |
+
are packed along dimension 0, in q, k, v order.
|
724 |
+
b: optional projection biases for q, k and v, packed into a single tensor
|
725 |
+
in q, k, v order.
|
726 |
+
Shape:
|
727 |
+
Inputs:
|
728 |
+
- q: :math:`(..., E)` where E is the embedding dimension
|
729 |
+
- k: :math:`(..., E)` where E is the embedding dimension
|
730 |
+
- v: :math:`(..., E)` where E is the embedding dimension
|
731 |
+
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
732 |
+
- b: :math:`E * 3` where E is the embedding dimension
|
733 |
+
Output:
|
734 |
+
- in output list :math:`[q', k', v']`, each output tensor will have the
|
735 |
+
same shape as the corresponding input tensor.
|
736 |
+
"""
|
737 |
+
E = q.size(-1)
|
738 |
+
if k is v:
|
739 |
+
if q is k:
|
740 |
+
# self-attention
|
741 |
+
proj = linear(q, w, b)
|
742 |
+
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
743 |
+
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
744 |
+
return proj[0], proj[1], proj[2]
|
745 |
+
else:
|
746 |
+
# encoder-decoder attention
|
747 |
+
w_q, w_kv = w.split([E, E * 2])
|
748 |
+
if b is None:
|
749 |
+
b_q = b_kv = None
|
750 |
+
else:
|
751 |
+
b_q, b_kv = b.split([E, E * 2])
|
752 |
+
q_proj = linear(q, w_q, b_q)
|
753 |
+
kv_proj = linear(k, w_kv, b_kv)
|
754 |
+
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
755 |
+
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
756 |
+
return (q_proj, kv_proj[0], kv_proj[1])
|
757 |
+
else:
|
758 |
+
w_q, w_k, w_v = w.chunk(3)
|
759 |
+
if b is None:
|
760 |
+
b_q = b_k = b_v = None
|
761 |
+
else:
|
762 |
+
b_q, b_k, b_v = b.chunk(3)
|
763 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
764 |
+
|
765 |
+
|
766 |
+
def _in_projection(
|
767 |
+
q: Tensor,
|
768 |
+
k: Tensor,
|
769 |
+
v: Tensor,
|
770 |
+
w_q: Tensor,
|
771 |
+
w_k: Tensor,
|
772 |
+
w_v: Tensor,
|
773 |
+
b_q: Optional[Tensor] = None,
|
774 |
+
b_k: Optional[Tensor] = None,
|
775 |
+
b_v: Optional[Tensor] = None,
|
776 |
+
) -> Tuple[Tensor, Tensor, Tensor]:
|
777 |
+
r"""
|
778 |
+
Performs the in-projection step of the attention operation. This is simply
|
779 |
+
a triple of linear projections, with shape constraints on the weights which
|
780 |
+
ensure embedding dimension uniformity in the projected outputs.
|
781 |
+
Output is a triple containing projection tensors for query, key and value.
|
782 |
+
Args:
|
783 |
+
q, k, v: query, key and value tensors to be projected.
|
784 |
+
w_q, w_k, w_v: weights for q, k and v, respectively.
|
785 |
+
b_q, b_k, b_v: optional biases for q, k and v, respectively.
|
786 |
+
Shape:
|
787 |
+
Inputs:
|
788 |
+
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
|
789 |
+
number of leading dimensions.
|
790 |
+
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
|
791 |
+
number of leading dimensions.
|
792 |
+
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
|
793 |
+
number of leading dimensions.
|
794 |
+
- w_q: :math:`(Eq, Eq)`
|
795 |
+
- w_k: :math:`(Eq, Ek)`
|
796 |
+
- w_v: :math:`(Eq, Ev)`
|
797 |
+
- b_q: :math:`(Eq)`
|
798 |
+
- b_k: :math:`(Eq)`
|
799 |
+
- b_v: :math:`(Eq)`
|
800 |
+
Output: in output triple :math:`(q', k', v')`,
|
801 |
+
- q': :math:`[Qdims..., Eq]`
|
802 |
+
- k': :math:`[Kdims..., Eq]`
|
803 |
+
- v': :math:`[Vdims..., Eq]`
|
804 |
+
"""
|
805 |
+
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
806 |
+
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
807 |
+
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
808 |
+
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
809 |
+
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
810 |
+
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
811 |
+
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
812 |
+
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
rng_state_0.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4b60c6e67e78f9e67a8aba1a0e479de7999ecc20bf17df7d424f8358e079819
|
3 |
+
size 15920
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e6946050881f78246d61e7a2d5ee922e733c8d80738866c6a8fb5bee23223418
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6ed1d9f52641d1754d5c68ca71beb3cbe40a66ee1b549941ee0ade7a1e161ec
|
3 |
+
size 15920
|
rng_state_3.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1792653f7a4196db595bcbeeac1bda44ee9de0b7ae480ac1b6d12db4c8a09d44
|
3 |
+
size 15920
|
rng_state_4.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94c340c8e9cbfd35b4e80e5cd674b2b2ad00a02f185011593784c2929de77d01
|
3 |
+
size 15920
|
rng_state_5.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb0f8cad0d4eda7f130b5e18b346a97dd862e1a5d57b68c3cac83c9cb76853b6
|
3 |
+
size 15920
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8df90dc44d85d90cdca0705c0ea6fc0ae82caacb319014d4aad49a71f23684ee
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8143910fe0f03885eaf75ca28ca0a562fbf8c31cf1e9b881667b4381a1e3947
|
3 |
+
size 15920
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c955503654e0db190bc167dfb2c816a4abfb4cd787ced5f65952f61734cb4ce9
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|end_of_text|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "!",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,2080 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "!",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"128000": {
|
12 |
+
"content": "<|begin_of_text|>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"128001": {
|
20 |
+
"content": "<|end_of_text|>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"128002": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"128003": {
|
36 |
+
"content": "<|reserved_special_token_1|>",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"128004": {
|
44 |
+
"content": "<|reserved_special_token_2|>",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
},
|
51 |
+
"128005": {
|
52 |
+
"content": "<|reserved_special_token_3|>",
|
53 |
+
"lstrip": false,
|
54 |
+
"normalized": false,
|
55 |
+
"rstrip": false,
|
56 |
+
"single_word": false,
|
57 |
+
"special": true
|
58 |
+
},
|
59 |
+
"128006": {
|
60 |
+
"content": "<|start_header_id|>",
|
61 |
+
"lstrip": false,
|
62 |
+
"normalized": false,
|
63 |
+
"rstrip": false,
|
64 |
+
"single_word": false,
|
65 |
+
"special": true
|
66 |
+
},
|
67 |
+
"128007": {
|
68 |
+
"content": "<|end_header_id|>",
|
69 |
+
"lstrip": false,
|
70 |
+
"normalized": false,
|
71 |
+
"rstrip": false,
|
72 |
+
"single_word": false,
|
73 |
+
"special": true
|
74 |
+
},
|
75 |
+
"128008": {
|
76 |
+
"content": "<|reserved_special_token_4|>",
|
77 |
+
"lstrip": false,
|
78 |
+
"normalized": false,
|
79 |
+
"rstrip": false,
|
80 |
+
"single_word": false,
|
81 |
+
"special": true
|
82 |
+
},
|
83 |
+
"128009": {
|
84 |
+
"content": "<|eot_id|>",
|
85 |
+
"lstrip": false,
|
86 |
+
"normalized": false,
|
87 |
+
"rstrip": false,
|
88 |
+
"single_word": false,
|
89 |
+
"special": true
|
90 |
+
},
|
91 |
+
"128010": {
|
92 |
+
"content": "<image>",
|
93 |
+
"lstrip": false,
|
94 |
+
"normalized": false,
|
95 |
+
"rstrip": false,
|
96 |
+
"single_word": false,
|
97 |
+
"special": true
|
98 |
+
},
|
99 |
+
"128011": {
|
100 |
+
"content": "</image>",
|
101 |
+
"lstrip": false,
|
102 |
+
"normalized": false,
|
103 |
+
"rstrip": false,
|
104 |
+
"single_word": false,
|
105 |
+
"special": true
|
106 |
+
},
|
107 |
+
"128012": {
|
108 |
+
"content": "<ref>",
|
109 |
+
"lstrip": false,
|
110 |
+
"normalized": false,
|
111 |
+
"rstrip": false,
|
112 |
+
"single_word": false,
|
113 |
+
"special": true
|
114 |
+
},
|
115 |
+
"128013": {
|
116 |
+
"content": "</ref>",
|
117 |
+
"lstrip": false,
|
118 |
+
"normalized": false,
|
119 |
+
"rstrip": false,
|
120 |
+
"single_word": false,
|
121 |
+
"special": true
|
122 |
+
},
|
123 |
+
"128014": {
|
124 |
+
"content": "<box>",
|
125 |
+
"lstrip": false,
|
126 |
+
"normalized": false,
|
127 |
+
"rstrip": false,
|
128 |
+
"single_word": false,
|
129 |
+
"special": true
|
130 |
+
},
|
131 |
+
"128015": {
|
132 |
+
"content": "</box>",
|
133 |
+
"lstrip": false,
|
134 |
+
"normalized": false,
|
135 |
+
"rstrip": false,
|
136 |
+
"single_word": false,
|
137 |
+
"special": true
|
138 |
+
},
|
139 |
+
"128016": {
|
140 |
+
"content": "<quad>",
|
141 |
+
"lstrip": false,
|
142 |
+
"normalized": false,
|
143 |
+
"rstrip": false,
|
144 |
+
"single_word": false,
|
145 |
+
"special": true
|
146 |
+
},
|
147 |
+
"128017": {
|
148 |
+
"content": "</quad>",
|
149 |
+
"lstrip": false,
|
150 |
+
"normalized": false,
|
151 |
+
"rstrip": false,
|
152 |
+
"single_word": false,
|
153 |
+
"special": true
|
154 |
+
},
|
155 |
+
"128018": {
|
156 |
+
"content": "<point>",
|
157 |
+
"lstrip": false,
|
158 |
+
"normalized": false,
|
159 |
+
"rstrip": false,
|
160 |
+
"single_word": false,
|
161 |
+
"special": true
|
162 |
+
},
|
163 |
+
"128019": {
|
164 |
+
"content": "</point>",
|
165 |
+
"lstrip": false,
|
166 |
+
"normalized": false,
|
167 |
+
"rstrip": false,
|
168 |
+
"single_word": false,
|
169 |
+
"special": true
|
170 |
+
},
|
171 |
+
"128020": {
|
172 |
+
"content": "<slice>",
|
173 |
+
"lstrip": false,
|
174 |
+
"normalized": false,
|
175 |
+
"rstrip": false,
|
176 |
+
"single_word": false,
|
177 |
+
"special": true
|
178 |
+
},
|
179 |
+
"128021": {
|
180 |
+
"content": "</slice>",
|
181 |
+
"lstrip": false,
|
182 |
+
"normalized": false,
|
183 |
+
"rstrip": false,
|
184 |
+
"single_word": false,
|
185 |
+
"special": true
|
186 |
+
},
|
187 |
+
"128022": {
|
188 |
+
"content": "<|reserved_special_token_17|>",
|
189 |
+
"lstrip": false,
|
190 |
+
"normalized": false,
|
191 |
+
"rstrip": false,
|
192 |
+
"single_word": false,
|
193 |
+
"special": true
|
194 |
+
},
|
195 |
+
"128023": {
|
196 |
+
"content": "<|reserved_special_token_18|>",
|
197 |
+
"lstrip": false,
|
198 |
+
"normalized": false,
|
199 |
+
"rstrip": false,
|
200 |
+
"single_word": false,
|
201 |
+
"special": true
|
202 |
+
},
|
203 |
+
"128024": {
|
204 |
+
"content": "<|reserved_special_token_19|>",
|
205 |
+
"lstrip": false,
|
206 |
+
"normalized": false,
|
207 |
+
"rstrip": false,
|
208 |
+
"single_word": false,
|
209 |
+
"special": true
|
210 |
+
},
|
211 |
+
"128025": {
|
212 |
+
"content": "<|reserved_special_token_20|>",
|
213 |
+
"lstrip": false,
|
214 |
+
"normalized": false,
|
215 |
+
"rstrip": false,
|
216 |
+
"single_word": false,
|
217 |
+
"special": true
|
218 |
+
},
|
219 |
+
"128026": {
|
220 |
+
"content": "<|reserved_special_token_21|>",
|
221 |
+
"lstrip": false,
|
222 |
+
"normalized": false,
|
223 |
+
"rstrip": false,
|
224 |
+
"single_word": false,
|
225 |
+
"special": true
|
226 |
+
},
|
227 |
+
"128027": {
|
228 |
+
"content": "<|reserved_special_token_22|>",
|
229 |
+
"lstrip": false,
|
230 |
+
"normalized": false,
|
231 |
+
"rstrip": false,
|
232 |
+
"single_word": false,
|
233 |
+
"special": true
|
234 |
+
},
|
235 |
+
"128028": {
|
236 |
+
"content": "<|reserved_special_token_23|>",
|
237 |
+
"lstrip": false,
|
238 |
+
"normalized": false,
|
239 |
+
"rstrip": false,
|
240 |
+
"single_word": false,
|
241 |
+
"special": true
|
242 |
+
},
|
243 |
+
"128029": {
|
244 |
+
"content": "<|reserved_special_token_24|>",
|
245 |
+
"lstrip": false,
|
246 |
+
"normalized": false,
|
247 |
+
"rstrip": false,
|
248 |
+
"single_word": false,
|
249 |
+
"special": true
|
250 |
+
},
|
251 |
+
"128030": {
|
252 |
+
"content": "<|reserved_special_token_25|>",
|
253 |
+
"lstrip": false,
|
254 |
+
"normalized": false,
|
255 |
+
"rstrip": false,
|
256 |
+
"single_word": false,
|
257 |
+
"special": true
|
258 |
+
},
|
259 |
+
"128031": {
|
260 |
+
"content": "<|reserved_special_token_26|>",
|
261 |
+
"lstrip": false,
|
262 |
+
"normalized": false,
|
263 |
+
"rstrip": false,
|
264 |
+
"single_word": false,
|
265 |
+
"special": true
|
266 |
+
},
|
267 |
+
"128032": {
|
268 |
+
"content": "<|reserved_special_token_27|>",
|
269 |
+
"lstrip": false,
|
270 |
+
"normalized": false,
|
271 |
+
"rstrip": false,
|
272 |
+
"single_word": false,
|
273 |
+
"special": true
|
274 |
+
},
|
275 |
+
"128033": {
|
276 |
+
"content": "<|reserved_special_token_28|>",
|
277 |
+
"lstrip": false,
|
278 |
+
"normalized": false,
|
279 |
+
"rstrip": false,
|
280 |
+
"single_word": false,
|
281 |
+
"special": true
|
282 |
+
},
|
283 |
+
"128034": {
|
284 |
+
"content": "<|reserved_special_token_29|>",
|
285 |
+
"lstrip": false,
|
286 |
+
"normalized": false,
|
287 |
+
"rstrip": false,
|
288 |
+
"single_word": false,
|
289 |
+
"special": true
|
290 |
+
},
|
291 |
+
"128035": {
|
292 |
+
"content": "<|reserved_special_token_30|>",
|
293 |
+
"lstrip": false,
|
294 |
+
"normalized": false,
|
295 |
+
"rstrip": false,
|
296 |
+
"single_word": false,
|
297 |
+
"special": true
|
298 |
+
},
|
299 |
+
"128036": {
|
300 |
+
"content": "<|reserved_special_token_31|>",
|
301 |
+
"lstrip": false,
|
302 |
+
"normalized": false,
|
303 |
+
"rstrip": false,
|
304 |
+
"single_word": false,
|
305 |
+
"special": true
|
306 |
+
},
|
307 |
+
"128037": {
|
308 |
+
"content": "<|reserved_special_token_32|>",
|
309 |
+
"lstrip": false,
|
310 |
+
"normalized": false,
|
311 |
+
"rstrip": false,
|
312 |
+
"single_word": false,
|
313 |
+
"special": true
|
314 |
+
},
|
315 |
+
"128038": {
|
316 |
+
"content": "<|reserved_special_token_33|>",
|
317 |
+
"lstrip": false,
|
318 |
+
"normalized": false,
|
319 |
+
"rstrip": false,
|
320 |
+
"single_word": false,
|
321 |
+
"special": true
|
322 |
+
},
|
323 |
+
"128039": {
|
324 |
+
"content": "<|reserved_special_token_34|>",
|
325 |
+
"lstrip": false,
|
326 |
+
"normalized": false,
|
327 |
+
"rstrip": false,
|
328 |
+
"single_word": false,
|
329 |
+
"special": true
|
330 |
+
},
|
331 |
+
"128040": {
|
332 |
+
"content": "<|reserved_special_token_35|>",
|
333 |
+
"lstrip": false,
|
334 |
+
"normalized": false,
|
335 |
+
"rstrip": false,
|
336 |
+
"single_word": false,
|
337 |
+
"special": true
|
338 |
+
},
|
339 |
+
"128041": {
|
340 |
+
"content": "<|reserved_special_token_36|>",
|
341 |
+
"lstrip": false,
|
342 |
+
"normalized": false,
|
343 |
+
"rstrip": false,
|
344 |
+
"single_word": false,
|
345 |
+
"special": true
|
346 |
+
},
|
347 |
+
"128042": {
|
348 |
+
"content": "<|reserved_special_token_37|>",
|
349 |
+
"lstrip": false,
|
350 |
+
"normalized": false,
|
351 |
+
"rstrip": false,
|
352 |
+
"single_word": false,
|
353 |
+
"special": true
|
354 |
+
},
|
355 |
+
"128043": {
|
356 |
+
"content": "<|reserved_special_token_38|>",
|
357 |
+
"lstrip": false,
|
358 |
+
"normalized": false,
|
359 |
+
"rstrip": false,
|
360 |
+
"single_word": false,
|
361 |
+
"special": true
|
362 |
+
},
|
363 |
+
"128044": {
|
364 |
+
"content": "<|reserved_special_token_39|>",
|
365 |
+
"lstrip": false,
|
366 |
+
"normalized": false,
|
367 |
+
"rstrip": false,
|
368 |
+
"single_word": false,
|
369 |
+
"special": true
|
370 |
+
},
|
371 |
+
"128045": {
|
372 |
+
"content": "<|reserved_special_token_40|>",
|
373 |
+
"lstrip": false,
|
374 |
+
"normalized": false,
|
375 |
+
"rstrip": false,
|
376 |
+
"single_word": false,
|
377 |
+
"special": true
|
378 |
+
},
|
379 |
+
"128046": {
|
380 |
+
"content": "<|reserved_special_token_41|>",
|
381 |
+
"lstrip": false,
|
382 |
+
"normalized": false,
|
383 |
+
"rstrip": false,
|
384 |
+
"single_word": false,
|
385 |
+
"special": true
|
386 |
+
},
|
387 |
+
"128047": {
|
388 |
+
"content": "<|reserved_special_token_42|>",
|
389 |
+
"lstrip": false,
|
390 |
+
"normalized": false,
|
391 |
+
"rstrip": false,
|
392 |
+
"single_word": false,
|
393 |
+
"special": true
|
394 |
+
},
|
395 |
+
"128048": {
|
396 |
+
"content": "<|reserved_special_token_43|>",
|
397 |
+
"lstrip": false,
|
398 |
+
"normalized": false,
|
399 |
+
"rstrip": false,
|
400 |
+
"single_word": false,
|
401 |
+
"special": true
|
402 |
+
},
|
403 |
+
"128049": {
|
404 |
+
"content": "<|reserved_special_token_44|>",
|
405 |
+
"lstrip": false,
|
406 |
+
"normalized": false,
|
407 |
+
"rstrip": false,
|
408 |
+
"single_word": false,
|
409 |
+
"special": true
|
410 |
+
},
|
411 |
+
"128050": {
|
412 |
+
"content": "<|reserved_special_token_45|>",
|
413 |
+
"lstrip": false,
|
414 |
+
"normalized": false,
|
415 |
+
"rstrip": false,
|
416 |
+
"single_word": false,
|
417 |
+
"special": true
|
418 |
+
},
|
419 |
+
"128051": {
|
420 |
+
"content": "<|reserved_special_token_46|>",
|
421 |
+
"lstrip": false,
|
422 |
+
"normalized": false,
|
423 |
+
"rstrip": false,
|
424 |
+
"single_word": false,
|
425 |
+
"special": true
|
426 |
+
},
|
427 |
+
"128052": {
|
428 |
+
"content": "<|reserved_special_token_47|>",
|
429 |
+
"lstrip": false,
|
430 |
+
"normalized": false,
|
431 |
+
"rstrip": false,
|
432 |
+
"single_word": false,
|
433 |
+
"special": true
|
434 |
+
},
|
435 |
+
"128053": {
|
436 |
+
"content": "<|reserved_special_token_48|>",
|
437 |
+
"lstrip": false,
|
438 |
+
"normalized": false,
|
439 |
+
"rstrip": false,
|
440 |
+
"single_word": false,
|
441 |
+
"special": true
|
442 |
+
},
|
443 |
+
"128054": {
|
444 |
+
"content": "<|reserved_special_token_49|>",
|
445 |
+
"lstrip": false,
|
446 |
+
"normalized": false,
|
447 |
+
"rstrip": false,
|
448 |
+
"single_word": false,
|
449 |
+
"special": true
|
450 |
+
},
|
451 |
+
"128055": {
|
452 |
+
"content": "<|reserved_special_token_50|>",
|
453 |
+
"lstrip": false,
|
454 |
+
"normalized": false,
|
455 |
+
"rstrip": false,
|
456 |
+
"single_word": false,
|
457 |
+
"special": true
|
458 |
+
},
|
459 |
+
"128056": {
|
460 |
+
"content": "<|reserved_special_token_51|>",
|
461 |
+
"lstrip": false,
|
462 |
+
"normalized": false,
|
463 |
+
"rstrip": false,
|
464 |
+
"single_word": false,
|
465 |
+
"special": true
|
466 |
+
},
|
467 |
+
"128057": {
|
468 |
+
"content": "<|reserved_special_token_52|>",
|
469 |
+
"lstrip": false,
|
470 |
+
"normalized": false,
|
471 |
+
"rstrip": false,
|
472 |
+
"single_word": false,
|
473 |
+
"special": true
|
474 |
+
},
|
475 |
+
"128058": {
|
476 |
+
"content": "<|reserved_special_token_53|>",
|
477 |
+
"lstrip": false,
|
478 |
+
"normalized": false,
|
479 |
+
"rstrip": false,
|
480 |
+
"single_word": false,
|
481 |
+
"special": true
|
482 |
+
},
|
483 |
+
"128059": {
|
484 |
+
"content": "<|reserved_special_token_54|>",
|
485 |
+
"lstrip": false,
|
486 |
+
"normalized": false,
|
487 |
+
"rstrip": false,
|
488 |
+
"single_word": false,
|
489 |
+
"special": true
|
490 |
+
},
|
491 |
+
"128060": {
|
492 |
+
"content": "<|reserved_special_token_55|>",
|
493 |
+
"lstrip": false,
|
494 |
+
"normalized": false,
|
495 |
+
"rstrip": false,
|
496 |
+
"single_word": false,
|
497 |
+
"special": true
|
498 |
+
},
|
499 |
+
"128061": {
|
500 |
+
"content": "<|reserved_special_token_56|>",
|
501 |
+
"lstrip": false,
|
502 |
+
"normalized": false,
|
503 |
+
"rstrip": false,
|
504 |
+
"single_word": false,
|
505 |
+
"special": true
|
506 |
+
},
|
507 |
+
"128062": {
|
508 |
+
"content": "<|reserved_special_token_57|>",
|
509 |
+
"lstrip": false,
|
510 |
+
"normalized": false,
|
511 |
+
"rstrip": false,
|
512 |
+
"single_word": false,
|
513 |
+
"special": true
|
514 |
+
},
|
515 |
+
"128063": {
|
516 |
+
"content": "<|reserved_special_token_58|>",
|
517 |
+
"lstrip": false,
|
518 |
+
"normalized": false,
|
519 |
+
"rstrip": false,
|
520 |
+
"single_word": false,
|
521 |
+
"special": true
|
522 |
+
},
|
523 |
+
"128064": {
|
524 |
+
"content": "<|reserved_special_token_59|>",
|
525 |
+
"lstrip": false,
|
526 |
+
"normalized": false,
|
527 |
+
"rstrip": false,
|
528 |
+
"single_word": false,
|
529 |
+
"special": true
|
530 |
+
},
|
531 |
+
"128065": {
|
532 |
+
"content": "<|reserved_special_token_60|>",
|
533 |
+
"lstrip": false,
|
534 |
+
"normalized": false,
|
535 |
+
"rstrip": false,
|
536 |
+
"single_word": false,
|
537 |
+
"special": true
|
538 |
+
},
|
539 |
+
"128066": {
|
540 |
+
"content": "<|reserved_special_token_61|>",
|
541 |
+
"lstrip": false,
|
542 |
+
"normalized": false,
|
543 |
+
"rstrip": false,
|
544 |
+
"single_word": false,
|
545 |
+
"special": true
|
546 |
+
},
|
547 |
+
"128067": {
|
548 |
+
"content": "<|reserved_special_token_62|>",
|
549 |
+
"lstrip": false,
|
550 |
+
"normalized": false,
|
551 |
+
"rstrip": false,
|
552 |
+
"single_word": false,
|
553 |
+
"special": true
|
554 |
+
},
|
555 |
+
"128068": {
|
556 |
+
"content": "<|reserved_special_token_63|>",
|
557 |
+
"lstrip": false,
|
558 |
+
"normalized": false,
|
559 |
+
"rstrip": false,
|
560 |
+
"single_word": false,
|
561 |
+
"special": true
|
562 |
+
},
|
563 |
+
"128069": {
|
564 |
+
"content": "<|reserved_special_token_64|>",
|
565 |
+
"lstrip": false,
|
566 |
+
"normalized": false,
|
567 |
+
"rstrip": false,
|
568 |
+
"single_word": false,
|
569 |
+
"special": true
|
570 |
+
},
|
571 |
+
"128070": {
|
572 |
+
"content": "<|reserved_special_token_65|>",
|
573 |
+
"lstrip": false,
|
574 |
+
"normalized": false,
|
575 |
+
"rstrip": false,
|
576 |
+
"single_word": false,
|
577 |
+
"special": true
|
578 |
+
},
|
579 |
+
"128071": {
|
580 |
+
"content": "<|reserved_special_token_66|>",
|
581 |
+
"lstrip": false,
|
582 |
+
"normalized": false,
|
583 |
+
"rstrip": false,
|
584 |
+
"single_word": false,
|
585 |
+
"special": true
|
586 |
+
},
|
587 |
+
"128072": {
|
588 |
+
"content": "<|reserved_special_token_67|>",
|
589 |
+
"lstrip": false,
|
590 |
+
"normalized": false,
|
591 |
+
"rstrip": false,
|
592 |
+
"single_word": false,
|
593 |
+
"special": true
|
594 |
+
},
|
595 |
+
"128073": {
|
596 |
+
"content": "<|reserved_special_token_68|>",
|
597 |
+
"lstrip": false,
|
598 |
+
"normalized": false,
|
599 |
+
"rstrip": false,
|
600 |
+
"single_word": false,
|
601 |
+
"special": true
|
602 |
+
},
|
603 |
+
"128074": {
|
604 |
+
"content": "<|reserved_special_token_69|>",
|
605 |
+
"lstrip": false,
|
606 |
+
"normalized": false,
|
607 |
+
"rstrip": false,
|
608 |
+
"single_word": false,
|
609 |
+
"special": true
|
610 |
+
},
|
611 |
+
"128075": {
|
612 |
+
"content": "<|reserved_special_token_70|>",
|
613 |
+
"lstrip": false,
|
614 |
+
"normalized": false,
|
615 |
+
"rstrip": false,
|
616 |
+
"single_word": false,
|
617 |
+
"special": true
|
618 |
+
},
|
619 |
+
"128076": {
|
620 |
+
"content": "<|reserved_special_token_71|>",
|
621 |
+
"lstrip": false,
|
622 |
+
"normalized": false,
|
623 |
+
"rstrip": false,
|
624 |
+
"single_word": false,
|
625 |
+
"special": true
|
626 |
+
},
|
627 |
+
"128077": {
|
628 |
+
"content": "<|reserved_special_token_72|>",
|
629 |
+
"lstrip": false,
|
630 |
+
"normalized": false,
|
631 |
+
"rstrip": false,
|
632 |
+
"single_word": false,
|
633 |
+
"special": true
|
634 |
+
},
|
635 |
+
"128078": {
|
636 |
+
"content": "<|reserved_special_token_73|>",
|
637 |
+
"lstrip": false,
|
638 |
+
"normalized": false,
|
639 |
+
"rstrip": false,
|
640 |
+
"single_word": false,
|
641 |
+
"special": true
|
642 |
+
},
|
643 |
+
"128079": {
|
644 |
+
"content": "<|reserved_special_token_74|>",
|
645 |
+
"lstrip": false,
|
646 |
+
"normalized": false,
|
647 |
+
"rstrip": false,
|
648 |
+
"single_word": false,
|
649 |
+
"special": true
|
650 |
+
},
|
651 |
+
"128080": {
|
652 |
+
"content": "<|reserved_special_token_75|>",
|
653 |
+
"lstrip": false,
|
654 |
+
"normalized": false,
|
655 |
+
"rstrip": false,
|
656 |
+
"single_word": false,
|
657 |
+
"special": true
|
658 |
+
},
|
659 |
+
"128081": {
|
660 |
+
"content": "<|reserved_special_token_76|>",
|
661 |
+
"lstrip": false,
|
662 |
+
"normalized": false,
|
663 |
+
"rstrip": false,
|
664 |
+
"single_word": false,
|
665 |
+
"special": true
|
666 |
+
},
|
667 |
+
"128082": {
|
668 |
+
"content": "<|reserved_special_token_77|>",
|
669 |
+
"lstrip": false,
|
670 |
+
"normalized": false,
|
671 |
+
"rstrip": false,
|
672 |
+
"single_word": false,
|
673 |
+
"special": true
|
674 |
+
},
|
675 |
+
"128083": {
|
676 |
+
"content": "<|reserved_special_token_78|>",
|
677 |
+
"lstrip": false,
|
678 |
+
"normalized": false,
|
679 |
+
"rstrip": false,
|
680 |
+
"single_word": false,
|
681 |
+
"special": true
|
682 |
+
},
|
683 |
+
"128084": {
|
684 |
+
"content": "<|reserved_special_token_79|>",
|
685 |
+
"lstrip": false,
|
686 |
+
"normalized": false,
|
687 |
+
"rstrip": false,
|
688 |
+
"single_word": false,
|
689 |
+
"special": true
|
690 |
+
},
|
691 |
+
"128085": {
|
692 |
+
"content": "<|reserved_special_token_80|>",
|
693 |
+
"lstrip": false,
|
694 |
+
"normalized": false,
|
695 |
+
"rstrip": false,
|
696 |
+
"single_word": false,
|
697 |
+
"special": true
|
698 |
+
},
|
699 |
+
"128086": {
|
700 |
+
"content": "<|reserved_special_token_81|>",
|
701 |
+
"lstrip": false,
|
702 |
+
"normalized": false,
|
703 |
+
"rstrip": false,
|
704 |
+
"single_word": false,
|
705 |
+
"special": true
|
706 |
+
},
|
707 |
+
"128087": {
|
708 |
+
"content": "<|reserved_special_token_82|>",
|
709 |
+
"lstrip": false,
|
710 |
+
"normalized": false,
|
711 |
+
"rstrip": false,
|
712 |
+
"single_word": false,
|
713 |
+
"special": true
|
714 |
+
},
|
715 |
+
"128088": {
|
716 |
+
"content": "<|reserved_special_token_83|>",
|
717 |
+
"lstrip": false,
|
718 |
+
"normalized": false,
|
719 |
+
"rstrip": false,
|
720 |
+
"single_word": false,
|
721 |
+
"special": true
|
722 |
+
},
|
723 |
+
"128089": {
|
724 |
+
"content": "<|reserved_special_token_84|>",
|
725 |
+
"lstrip": false,
|
726 |
+
"normalized": false,
|
727 |
+
"rstrip": false,
|
728 |
+
"single_word": false,
|
729 |
+
"special": true
|
730 |
+
},
|
731 |
+
"128090": {
|
732 |
+
"content": "<|reserved_special_token_85|>",
|
733 |
+
"lstrip": false,
|
734 |
+
"normalized": false,
|
735 |
+
"rstrip": false,
|
736 |
+
"single_word": false,
|
737 |
+
"special": true
|
738 |
+
},
|
739 |
+
"128091": {
|
740 |
+
"content": "<|reserved_special_token_86|>",
|
741 |
+
"lstrip": false,
|
742 |
+
"normalized": false,
|
743 |
+
"rstrip": false,
|
744 |
+
"single_word": false,
|
745 |
+
"special": true
|
746 |
+
},
|
747 |
+
"128092": {
|
748 |
+
"content": "<|reserved_special_token_87|>",
|
749 |
+
"lstrip": false,
|
750 |
+
"normalized": false,
|
751 |
+
"rstrip": false,
|
752 |
+
"single_word": false,
|
753 |
+
"special": true
|
754 |
+
},
|
755 |
+
"128093": {
|
756 |
+
"content": "<|reserved_special_token_88|>",
|
757 |
+
"lstrip": false,
|
758 |
+
"normalized": false,
|
759 |
+
"rstrip": false,
|
760 |
+
"single_word": false,
|
761 |
+
"special": true
|
762 |
+
},
|
763 |
+
"128094": {
|
764 |
+
"content": "<|reserved_special_token_89|>",
|
765 |
+
"lstrip": false,
|
766 |
+
"normalized": false,
|
767 |
+
"rstrip": false,
|
768 |
+
"single_word": false,
|
769 |
+
"special": true
|
770 |
+
},
|
771 |
+
"128095": {
|
772 |
+
"content": "<|reserved_special_token_90|>",
|
773 |
+
"lstrip": false,
|
774 |
+
"normalized": false,
|
775 |
+
"rstrip": false,
|
776 |
+
"single_word": false,
|
777 |
+
"special": true
|
778 |
+
},
|
779 |
+
"128096": {
|
780 |
+
"content": "<|reserved_special_token_91|>",
|
781 |
+
"lstrip": false,
|
782 |
+
"normalized": false,
|
783 |
+
"rstrip": false,
|
784 |
+
"single_word": false,
|
785 |
+
"special": true
|
786 |
+
},
|
787 |
+
"128097": {
|
788 |
+
"content": "<|reserved_special_token_92|>",
|
789 |
+
"lstrip": false,
|
790 |
+
"normalized": false,
|
791 |
+
"rstrip": false,
|
792 |
+
"single_word": false,
|
793 |
+
"special": true
|
794 |
+
},
|
795 |
+
"128098": {
|
796 |
+
"content": "<|reserved_special_token_93|>",
|
797 |
+
"lstrip": false,
|
798 |
+
"normalized": false,
|
799 |
+
"rstrip": false,
|
800 |
+
"single_word": false,
|
801 |
+
"special": true
|
802 |
+
},
|
803 |
+
"128099": {
|
804 |
+
"content": "<|reserved_special_token_94|>",
|
805 |
+
"lstrip": false,
|
806 |
+
"normalized": false,
|
807 |
+
"rstrip": false,
|
808 |
+
"single_word": false,
|
809 |
+
"special": true
|
810 |
+
},
|
811 |
+
"128100": {
|
812 |
+
"content": "<|reserved_special_token_95|>",
|
813 |
+
"lstrip": false,
|
814 |
+
"normalized": false,
|
815 |
+
"rstrip": false,
|
816 |
+
"single_word": false,
|
817 |
+
"special": true
|
818 |
+
},
|
819 |
+
"128101": {
|
820 |
+
"content": "<|reserved_special_token_96|>",
|
821 |
+
"lstrip": false,
|
822 |
+
"normalized": false,
|
823 |
+
"rstrip": false,
|
824 |
+
"single_word": false,
|
825 |
+
"special": true
|
826 |
+
},
|
827 |
+
"128102": {
|
828 |
+
"content": "<|reserved_special_token_97|>",
|
829 |
+
"lstrip": false,
|
830 |
+
"normalized": false,
|
831 |
+
"rstrip": false,
|
832 |
+
"single_word": false,
|
833 |
+
"special": true
|
834 |
+
},
|
835 |
+
"128103": {
|
836 |
+
"content": "<|reserved_special_token_98|>",
|
837 |
+
"lstrip": false,
|
838 |
+
"normalized": false,
|
839 |
+
"rstrip": false,
|
840 |
+
"single_word": false,
|
841 |
+
"special": true
|
842 |
+
},
|
843 |
+
"128104": {
|
844 |
+
"content": "<|reserved_special_token_99|>",
|
845 |
+
"lstrip": false,
|
846 |
+
"normalized": false,
|
847 |
+
"rstrip": false,
|
848 |
+
"single_word": false,
|
849 |
+
"special": true
|
850 |
+
},
|
851 |
+
"128105": {
|
852 |
+
"content": "<|reserved_special_token_100|>",
|
853 |
+
"lstrip": false,
|
854 |
+
"normalized": false,
|
855 |
+
"rstrip": false,
|
856 |
+
"single_word": false,
|
857 |
+
"special": true
|
858 |
+
},
|
859 |
+
"128106": {
|
860 |
+
"content": "<|reserved_special_token_101|>",
|
861 |
+
"lstrip": false,
|
862 |
+
"normalized": false,
|
863 |
+
"rstrip": false,
|
864 |
+
"single_word": false,
|
865 |
+
"special": true
|
866 |
+
},
|
867 |
+
"128107": {
|
868 |
+
"content": "<|reserved_special_token_102|>",
|
869 |
+
"lstrip": false,
|
870 |
+
"normalized": false,
|
871 |
+
"rstrip": false,
|
872 |
+
"single_word": false,
|
873 |
+
"special": true
|
874 |
+
},
|
875 |
+
"128108": {
|
876 |
+
"content": "<|reserved_special_token_103|>",
|
877 |
+
"lstrip": false,
|
878 |
+
"normalized": false,
|
879 |
+
"rstrip": false,
|
880 |
+
"single_word": false,
|
881 |
+
"special": true
|
882 |
+
},
|
883 |
+
"128109": {
|
884 |
+
"content": "<|reserved_special_token_104|>",
|
885 |
+
"lstrip": false,
|
886 |
+
"normalized": false,
|
887 |
+
"rstrip": false,
|
888 |
+
"single_word": false,
|
889 |
+
"special": true
|
890 |
+
},
|
891 |
+
"128110": {
|
892 |
+
"content": "<|reserved_special_token_105|>",
|
893 |
+
"lstrip": false,
|
894 |
+
"normalized": false,
|
895 |
+
"rstrip": false,
|
896 |
+
"single_word": false,
|
897 |
+
"special": true
|
898 |
+
},
|
899 |
+
"128111": {
|
900 |
+
"content": "<|reserved_special_token_106|>",
|
901 |
+
"lstrip": false,
|
902 |
+
"normalized": false,
|
903 |
+
"rstrip": false,
|
904 |
+
"single_word": false,
|
905 |
+
"special": true
|
906 |
+
},
|
907 |
+
"128112": {
|
908 |
+
"content": "<|reserved_special_token_107|>",
|
909 |
+
"lstrip": false,
|
910 |
+
"normalized": false,
|
911 |
+
"rstrip": false,
|
912 |
+
"single_word": false,
|
913 |
+
"special": true
|
914 |
+
},
|
915 |
+
"128113": {
|
916 |
+
"content": "<|reserved_special_token_108|>",
|
917 |
+
"lstrip": false,
|
918 |
+
"normalized": false,
|
919 |
+
"rstrip": false,
|
920 |
+
"single_word": false,
|
921 |
+
"special": true
|
922 |
+
},
|
923 |
+
"128114": {
|
924 |
+
"content": "<|reserved_special_token_109|>",
|
925 |
+
"lstrip": false,
|
926 |
+
"normalized": false,
|
927 |
+
"rstrip": false,
|
928 |
+
"single_word": false,
|
929 |
+
"special": true
|
930 |
+
},
|
931 |
+
"128115": {
|
932 |
+
"content": "<|reserved_special_token_110|>",
|
933 |
+
"lstrip": false,
|
934 |
+
"normalized": false,
|
935 |
+
"rstrip": false,
|
936 |
+
"single_word": false,
|
937 |
+
"special": true
|
938 |
+
},
|
939 |
+
"128116": {
|
940 |
+
"content": "<|reserved_special_token_111|>",
|
941 |
+
"lstrip": false,
|
942 |
+
"normalized": false,
|
943 |
+
"rstrip": false,
|
944 |
+
"single_word": false,
|
945 |
+
"special": true
|
946 |
+
},
|
947 |
+
"128117": {
|
948 |
+
"content": "<|reserved_special_token_112|>",
|
949 |
+
"lstrip": false,
|
950 |
+
"normalized": false,
|
951 |
+
"rstrip": false,
|
952 |
+
"single_word": false,
|
953 |
+
"special": true
|
954 |
+
},
|
955 |
+
"128118": {
|
956 |
+
"content": "<|reserved_special_token_113|>",
|
957 |
+
"lstrip": false,
|
958 |
+
"normalized": false,
|
959 |
+
"rstrip": false,
|
960 |
+
"single_word": false,
|
961 |
+
"special": true
|
962 |
+
},
|
963 |
+
"128119": {
|
964 |
+
"content": "<|reserved_special_token_114|>",
|
965 |
+
"lstrip": false,
|
966 |
+
"normalized": false,
|
967 |
+
"rstrip": false,
|
968 |
+
"single_word": false,
|
969 |
+
"special": true
|
970 |
+
},
|
971 |
+
"128120": {
|
972 |
+
"content": "<|reserved_special_token_115|>",
|
973 |
+
"lstrip": false,
|
974 |
+
"normalized": false,
|
975 |
+
"rstrip": false,
|
976 |
+
"single_word": false,
|
977 |
+
"special": true
|
978 |
+
},
|
979 |
+
"128121": {
|
980 |
+
"content": "<|reserved_special_token_116|>",
|
981 |
+
"lstrip": false,
|
982 |
+
"normalized": false,
|
983 |
+
"rstrip": false,
|
984 |
+
"single_word": false,
|
985 |
+
"special": true
|
986 |
+
},
|
987 |
+
"128122": {
|
988 |
+
"content": "<|reserved_special_token_117|>",
|
989 |
+
"lstrip": false,
|
990 |
+
"normalized": false,
|
991 |
+
"rstrip": false,
|
992 |
+
"single_word": false,
|
993 |
+
"special": true
|
994 |
+
},
|
995 |
+
"128123": {
|
996 |
+
"content": "<|reserved_special_token_118|>",
|
997 |
+
"lstrip": false,
|
998 |
+
"normalized": false,
|
999 |
+
"rstrip": false,
|
1000 |
+
"single_word": false,
|
1001 |
+
"special": true
|
1002 |
+
},
|
1003 |
+
"128124": {
|
1004 |
+
"content": "<|reserved_special_token_119|>",
|
1005 |
+
"lstrip": false,
|
1006 |
+
"normalized": false,
|
1007 |
+
"rstrip": false,
|
1008 |
+
"single_word": false,
|
1009 |
+
"special": true
|
1010 |
+
},
|
1011 |
+
"128125": {
|
1012 |
+
"content": "<|reserved_special_token_120|>",
|
1013 |
+
"lstrip": false,
|
1014 |
+
"normalized": false,
|
1015 |
+
"rstrip": false,
|
1016 |
+
"single_word": false,
|
1017 |
+
"special": true
|
1018 |
+
},
|
1019 |
+
"128126": {
|
1020 |
+
"content": "<|reserved_special_token_121|>",
|
1021 |
+
"lstrip": false,
|
1022 |
+
"normalized": false,
|
1023 |
+
"rstrip": false,
|
1024 |
+
"single_word": false,
|
1025 |
+
"special": true
|
1026 |
+
},
|
1027 |
+
"128127": {
|
1028 |
+
"content": "<|reserved_special_token_122|>",
|
1029 |
+
"lstrip": false,
|
1030 |
+
"normalized": false,
|
1031 |
+
"rstrip": false,
|
1032 |
+
"single_word": false,
|
1033 |
+
"special": true
|
1034 |
+
},
|
1035 |
+
"128128": {
|
1036 |
+
"content": "<|reserved_special_token_123|>",
|
1037 |
+
"lstrip": false,
|
1038 |
+
"normalized": false,
|
1039 |
+
"rstrip": false,
|
1040 |
+
"single_word": false,
|
1041 |
+
"special": true
|
1042 |
+
},
|
1043 |
+
"128129": {
|
1044 |
+
"content": "<|reserved_special_token_124|>",
|
1045 |
+
"lstrip": false,
|
1046 |
+
"normalized": false,
|
1047 |
+
"rstrip": false,
|
1048 |
+
"single_word": false,
|
1049 |
+
"special": true
|
1050 |
+
},
|
1051 |
+
"128130": {
|
1052 |
+
"content": "<|reserved_special_token_125|>",
|
1053 |
+
"lstrip": false,
|
1054 |
+
"normalized": false,
|
1055 |
+
"rstrip": false,
|
1056 |
+
"single_word": false,
|
1057 |
+
"special": true
|
1058 |
+
},
|
1059 |
+
"128131": {
|
1060 |
+
"content": "<|reserved_special_token_126|>",
|
1061 |
+
"lstrip": false,
|
1062 |
+
"normalized": false,
|
1063 |
+
"rstrip": false,
|
1064 |
+
"single_word": false,
|
1065 |
+
"special": true
|
1066 |
+
},
|
1067 |
+
"128132": {
|
1068 |
+
"content": "<|reserved_special_token_127|>",
|
1069 |
+
"lstrip": false,
|
1070 |
+
"normalized": false,
|
1071 |
+
"rstrip": false,
|
1072 |
+
"single_word": false,
|
1073 |
+
"special": true
|
1074 |
+
},
|
1075 |
+
"128133": {
|
1076 |
+
"content": "<|reserved_special_token_128|>",
|
1077 |
+
"lstrip": false,
|
1078 |
+
"normalized": false,
|
1079 |
+
"rstrip": false,
|
1080 |
+
"single_word": false,
|
1081 |
+
"special": true
|
1082 |
+
},
|
1083 |
+
"128134": {
|
1084 |
+
"content": "<|reserved_special_token_129|>",
|
1085 |
+
"lstrip": false,
|
1086 |
+
"normalized": false,
|
1087 |
+
"rstrip": false,
|
1088 |
+
"single_word": false,
|
1089 |
+
"special": true
|
1090 |
+
},
|
1091 |
+
"128135": {
|
1092 |
+
"content": "<|reserved_special_token_130|>",
|
1093 |
+
"lstrip": false,
|
1094 |
+
"normalized": false,
|
1095 |
+
"rstrip": false,
|
1096 |
+
"single_word": false,
|
1097 |
+
"special": true
|
1098 |
+
},
|
1099 |
+
"128136": {
|
1100 |
+
"content": "<|reserved_special_token_131|>",
|
1101 |
+
"lstrip": false,
|
1102 |
+
"normalized": false,
|
1103 |
+
"rstrip": false,
|
1104 |
+
"single_word": false,
|
1105 |
+
"special": true
|
1106 |
+
},
|
1107 |
+
"128137": {
|
1108 |
+
"content": "<|reserved_special_token_132|>",
|
1109 |
+
"lstrip": false,
|
1110 |
+
"normalized": false,
|
1111 |
+
"rstrip": false,
|
1112 |
+
"single_word": false,
|
1113 |
+
"special": true
|
1114 |
+
},
|
1115 |
+
"128138": {
|
1116 |
+
"content": "<|reserved_special_token_133|>",
|
1117 |
+
"lstrip": false,
|
1118 |
+
"normalized": false,
|
1119 |
+
"rstrip": false,
|
1120 |
+
"single_word": false,
|
1121 |
+
"special": true
|
1122 |
+
},
|
1123 |
+
"128139": {
|
1124 |
+
"content": "<|reserved_special_token_134|>",
|
1125 |
+
"lstrip": false,
|
1126 |
+
"normalized": false,
|
1127 |
+
"rstrip": false,
|
1128 |
+
"single_word": false,
|
1129 |
+
"special": true
|
1130 |
+
},
|
1131 |
+
"128140": {
|
1132 |
+
"content": "<|reserved_special_token_135|>",
|
1133 |
+
"lstrip": false,
|
1134 |
+
"normalized": false,
|
1135 |
+
"rstrip": false,
|
1136 |
+
"single_word": false,
|
1137 |
+
"special": true
|
1138 |
+
},
|
1139 |
+
"128141": {
|
1140 |
+
"content": "<|reserved_special_token_136|>",
|
1141 |
+
"lstrip": false,
|
1142 |
+
"normalized": false,
|
1143 |
+
"rstrip": false,
|
1144 |
+
"single_word": false,
|
1145 |
+
"special": true
|
1146 |
+
},
|
1147 |
+
"128142": {
|
1148 |
+
"content": "<|reserved_special_token_137|>",
|
1149 |
+
"lstrip": false,
|
1150 |
+
"normalized": false,
|
1151 |
+
"rstrip": false,
|
1152 |
+
"single_word": false,
|
1153 |
+
"special": true
|
1154 |
+
},
|
1155 |
+
"128143": {
|
1156 |
+
"content": "<|reserved_special_token_138|>",
|
1157 |
+
"lstrip": false,
|
1158 |
+
"normalized": false,
|
1159 |
+
"rstrip": false,
|
1160 |
+
"single_word": false,
|
1161 |
+
"special": true
|
1162 |
+
},
|
1163 |
+
"128144": {
|
1164 |
+
"content": "<|reserved_special_token_139|>",
|
1165 |
+
"lstrip": false,
|
1166 |
+
"normalized": false,
|
1167 |
+
"rstrip": false,
|
1168 |
+
"single_word": false,
|
1169 |
+
"special": true
|
1170 |
+
},
|
1171 |
+
"128145": {
|
1172 |
+
"content": "<|reserved_special_token_140|>",
|
1173 |
+
"lstrip": false,
|
1174 |
+
"normalized": false,
|
1175 |
+
"rstrip": false,
|
1176 |
+
"single_word": false,
|
1177 |
+
"special": true
|
1178 |
+
},
|
1179 |
+
"128146": {
|
1180 |
+
"content": "<|reserved_special_token_141|>",
|
1181 |
+
"lstrip": false,
|
1182 |
+
"normalized": false,
|
1183 |
+
"rstrip": false,
|
1184 |
+
"single_word": false,
|
1185 |
+
"special": true
|
1186 |
+
},
|
1187 |
+
"128147": {
|
1188 |
+
"content": "<|reserved_special_token_142|>",
|
1189 |
+
"lstrip": false,
|
1190 |
+
"normalized": false,
|
1191 |
+
"rstrip": false,
|
1192 |
+
"single_word": false,
|
1193 |
+
"special": true
|
1194 |
+
},
|
1195 |
+
"128148": {
|
1196 |
+
"content": "<|reserved_special_token_143|>",
|
1197 |
+
"lstrip": false,
|
1198 |
+
"normalized": false,
|
1199 |
+
"rstrip": false,
|
1200 |
+
"single_word": false,
|
1201 |
+
"special": true
|
1202 |
+
},
|
1203 |
+
"128149": {
|
1204 |
+
"content": "<|reserved_special_token_144|>",
|
1205 |
+
"lstrip": false,
|
1206 |
+
"normalized": false,
|
1207 |
+
"rstrip": false,
|
1208 |
+
"single_word": false,
|
1209 |
+
"special": true
|
1210 |
+
},
|
1211 |
+
"128150": {
|
1212 |
+
"content": "<|reserved_special_token_145|>",
|
1213 |
+
"lstrip": false,
|
1214 |
+
"normalized": false,
|
1215 |
+
"rstrip": false,
|
1216 |
+
"single_word": false,
|
1217 |
+
"special": true
|
1218 |
+
},
|
1219 |
+
"128151": {
|
1220 |
+
"content": "<|reserved_special_token_146|>",
|
1221 |
+
"lstrip": false,
|
1222 |
+
"normalized": false,
|
1223 |
+
"rstrip": false,
|
1224 |
+
"single_word": false,
|
1225 |
+
"special": true
|
1226 |
+
},
|
1227 |
+
"128152": {
|
1228 |
+
"content": "<|reserved_special_token_147|>",
|
1229 |
+
"lstrip": false,
|
1230 |
+
"normalized": false,
|
1231 |
+
"rstrip": false,
|
1232 |
+
"single_word": false,
|
1233 |
+
"special": true
|
1234 |
+
},
|
1235 |
+
"128153": {
|
1236 |
+
"content": "<|reserved_special_token_148|>",
|
1237 |
+
"lstrip": false,
|
1238 |
+
"normalized": false,
|
1239 |
+
"rstrip": false,
|
1240 |
+
"single_word": false,
|
1241 |
+
"special": true
|
1242 |
+
},
|
1243 |
+
"128154": {
|
1244 |
+
"content": "<|reserved_special_token_149|>",
|
1245 |
+
"lstrip": false,
|
1246 |
+
"normalized": false,
|
1247 |
+
"rstrip": false,
|
1248 |
+
"single_word": false,
|
1249 |
+
"special": true
|
1250 |
+
},
|
1251 |
+
"128155": {
|
1252 |
+
"content": "<|reserved_special_token_150|>",
|
1253 |
+
"lstrip": false,
|
1254 |
+
"normalized": false,
|
1255 |
+
"rstrip": false,
|
1256 |
+
"single_word": false,
|
1257 |
+
"special": true
|
1258 |
+
},
|
1259 |
+
"128156": {
|
1260 |
+
"content": "<|reserved_special_token_151|>",
|
1261 |
+
"lstrip": false,
|
1262 |
+
"normalized": false,
|
1263 |
+
"rstrip": false,
|
1264 |
+
"single_word": false,
|
1265 |
+
"special": true
|
1266 |
+
},
|
1267 |
+
"128157": {
|
1268 |
+
"content": "<|reserved_special_token_152|>",
|
1269 |
+
"lstrip": false,
|
1270 |
+
"normalized": false,
|
1271 |
+
"rstrip": false,
|
1272 |
+
"single_word": false,
|
1273 |
+
"special": true
|
1274 |
+
},
|
1275 |
+
"128158": {
|
1276 |
+
"content": "<|reserved_special_token_153|>",
|
1277 |
+
"lstrip": false,
|
1278 |
+
"normalized": false,
|
1279 |
+
"rstrip": false,
|
1280 |
+
"single_word": false,
|
1281 |
+
"special": true
|
1282 |
+
},
|
1283 |
+
"128159": {
|
1284 |
+
"content": "<|reserved_special_token_154|>",
|
1285 |
+
"lstrip": false,
|
1286 |
+
"normalized": false,
|
1287 |
+
"rstrip": false,
|
1288 |
+
"single_word": false,
|
1289 |
+
"special": true
|
1290 |
+
},
|
1291 |
+
"128160": {
|
1292 |
+
"content": "<|reserved_special_token_155|>",
|
1293 |
+
"lstrip": false,
|
1294 |
+
"normalized": false,
|
1295 |
+
"rstrip": false,
|
1296 |
+
"single_word": false,
|
1297 |
+
"special": true
|
1298 |
+
},
|
1299 |
+
"128161": {
|
1300 |
+
"content": "<|reserved_special_token_156|>",
|
1301 |
+
"lstrip": false,
|
1302 |
+
"normalized": false,
|
1303 |
+
"rstrip": false,
|
1304 |
+
"single_word": false,
|
1305 |
+
"special": true
|
1306 |
+
},
|
1307 |
+
"128162": {
|
1308 |
+
"content": "<|reserved_special_token_157|>",
|
1309 |
+
"lstrip": false,
|
1310 |
+
"normalized": false,
|
1311 |
+
"rstrip": false,
|
1312 |
+
"single_word": false,
|
1313 |
+
"special": true
|
1314 |
+
},
|
1315 |
+
"128163": {
|
1316 |
+
"content": "<|reserved_special_token_158|>",
|
1317 |
+
"lstrip": false,
|
1318 |
+
"normalized": false,
|
1319 |
+
"rstrip": false,
|
1320 |
+
"single_word": false,
|
1321 |
+
"special": true
|
1322 |
+
},
|
1323 |
+
"128164": {
|
1324 |
+
"content": "<|reserved_special_token_159|>",
|
1325 |
+
"lstrip": false,
|
1326 |
+
"normalized": false,
|
1327 |
+
"rstrip": false,
|
1328 |
+
"single_word": false,
|
1329 |
+
"special": true
|
1330 |
+
},
|
1331 |
+
"128165": {
|
1332 |
+
"content": "<|reserved_special_token_160|>",
|
1333 |
+
"lstrip": false,
|
1334 |
+
"normalized": false,
|
1335 |
+
"rstrip": false,
|
1336 |
+
"single_word": false,
|
1337 |
+
"special": true
|
1338 |
+
},
|
1339 |
+
"128166": {
|
1340 |
+
"content": "<|reserved_special_token_161|>",
|
1341 |
+
"lstrip": false,
|
1342 |
+
"normalized": false,
|
1343 |
+
"rstrip": false,
|
1344 |
+
"single_word": false,
|
1345 |
+
"special": true
|
1346 |
+
},
|
1347 |
+
"128167": {
|
1348 |
+
"content": "<|reserved_special_token_162|>",
|
1349 |
+
"lstrip": false,
|
1350 |
+
"normalized": false,
|
1351 |
+
"rstrip": false,
|
1352 |
+
"single_word": false,
|
1353 |
+
"special": true
|
1354 |
+
},
|
1355 |
+
"128168": {
|
1356 |
+
"content": "<|reserved_special_token_163|>",
|
1357 |
+
"lstrip": false,
|
1358 |
+
"normalized": false,
|
1359 |
+
"rstrip": false,
|
1360 |
+
"single_word": false,
|
1361 |
+
"special": true
|
1362 |
+
},
|
1363 |
+
"128169": {
|
1364 |
+
"content": "<|reserved_special_token_164|>",
|
1365 |
+
"lstrip": false,
|
1366 |
+
"normalized": false,
|
1367 |
+
"rstrip": false,
|
1368 |
+
"single_word": false,
|
1369 |
+
"special": true
|
1370 |
+
},
|
1371 |
+
"128170": {
|
1372 |
+
"content": "<|reserved_special_token_165|>",
|
1373 |
+
"lstrip": false,
|
1374 |
+
"normalized": false,
|
1375 |
+
"rstrip": false,
|
1376 |
+
"single_word": false,
|
1377 |
+
"special": true
|
1378 |
+
},
|
1379 |
+
"128171": {
|
1380 |
+
"content": "<|reserved_special_token_166|>",
|
1381 |
+
"lstrip": false,
|
1382 |
+
"normalized": false,
|
1383 |
+
"rstrip": false,
|
1384 |
+
"single_word": false,
|
1385 |
+
"special": true
|
1386 |
+
},
|
1387 |
+
"128172": {
|
1388 |
+
"content": "<|reserved_special_token_167|>",
|
1389 |
+
"lstrip": false,
|
1390 |
+
"normalized": false,
|
1391 |
+
"rstrip": false,
|
1392 |
+
"single_word": false,
|
1393 |
+
"special": true
|
1394 |
+
},
|
1395 |
+
"128173": {
|
1396 |
+
"content": "<|reserved_special_token_168|>",
|
1397 |
+
"lstrip": false,
|
1398 |
+
"normalized": false,
|
1399 |
+
"rstrip": false,
|
1400 |
+
"single_word": false,
|
1401 |
+
"special": true
|
1402 |
+
},
|
1403 |
+
"128174": {
|
1404 |
+
"content": "<|reserved_special_token_169|>",
|
1405 |
+
"lstrip": false,
|
1406 |
+
"normalized": false,
|
1407 |
+
"rstrip": false,
|
1408 |
+
"single_word": false,
|
1409 |
+
"special": true
|
1410 |
+
},
|
1411 |
+
"128175": {
|
1412 |
+
"content": "<|reserved_special_token_170|>",
|
1413 |
+
"lstrip": false,
|
1414 |
+
"normalized": false,
|
1415 |
+
"rstrip": false,
|
1416 |
+
"single_word": false,
|
1417 |
+
"special": true
|
1418 |
+
},
|
1419 |
+
"128176": {
|
1420 |
+
"content": "<|reserved_special_token_171|>",
|
1421 |
+
"lstrip": false,
|
1422 |
+
"normalized": false,
|
1423 |
+
"rstrip": false,
|
1424 |
+
"single_word": false,
|
1425 |
+
"special": true
|
1426 |
+
},
|
1427 |
+
"128177": {
|
1428 |
+
"content": "<|reserved_special_token_172|>",
|
1429 |
+
"lstrip": false,
|
1430 |
+
"normalized": false,
|
1431 |
+
"rstrip": false,
|
1432 |
+
"single_word": false,
|
1433 |
+
"special": true
|
1434 |
+
},
|
1435 |
+
"128178": {
|
1436 |
+
"content": "<|reserved_special_token_173|>",
|
1437 |
+
"lstrip": false,
|
1438 |
+
"normalized": false,
|
1439 |
+
"rstrip": false,
|
1440 |
+
"single_word": false,
|
1441 |
+
"special": true
|
1442 |
+
},
|
1443 |
+
"128179": {
|
1444 |
+
"content": "<|reserved_special_token_174|>",
|
1445 |
+
"lstrip": false,
|
1446 |
+
"normalized": false,
|
1447 |
+
"rstrip": false,
|
1448 |
+
"single_word": false,
|
1449 |
+
"special": true
|
1450 |
+
},
|
1451 |
+
"128180": {
|
1452 |
+
"content": "<|reserved_special_token_175|>",
|
1453 |
+
"lstrip": false,
|
1454 |
+
"normalized": false,
|
1455 |
+
"rstrip": false,
|
1456 |
+
"single_word": false,
|
1457 |
+
"special": true
|
1458 |
+
},
|
1459 |
+
"128181": {
|
1460 |
+
"content": "<|reserved_special_token_176|>",
|
1461 |
+
"lstrip": false,
|
1462 |
+
"normalized": false,
|
1463 |
+
"rstrip": false,
|
1464 |
+
"single_word": false,
|
1465 |
+
"special": true
|
1466 |
+
},
|
1467 |
+
"128182": {
|
1468 |
+
"content": "<|reserved_special_token_177|>",
|
1469 |
+
"lstrip": false,
|
1470 |
+
"normalized": false,
|
1471 |
+
"rstrip": false,
|
1472 |
+
"single_word": false,
|
1473 |
+
"special": true
|
1474 |
+
},
|
1475 |
+
"128183": {
|
1476 |
+
"content": "<|reserved_special_token_178|>",
|
1477 |
+
"lstrip": false,
|
1478 |
+
"normalized": false,
|
1479 |
+
"rstrip": false,
|
1480 |
+
"single_word": false,
|
1481 |
+
"special": true
|
1482 |
+
},
|
1483 |
+
"128184": {
|
1484 |
+
"content": "<|reserved_special_token_179|>",
|
1485 |
+
"lstrip": false,
|
1486 |
+
"normalized": false,
|
1487 |
+
"rstrip": false,
|
1488 |
+
"single_word": false,
|
1489 |
+
"special": true
|
1490 |
+
},
|
1491 |
+
"128185": {
|
1492 |
+
"content": "<|reserved_special_token_180|>",
|
1493 |
+
"lstrip": false,
|
1494 |
+
"normalized": false,
|
1495 |
+
"rstrip": false,
|
1496 |
+
"single_word": false,
|
1497 |
+
"special": true
|
1498 |
+
},
|
1499 |
+
"128186": {
|
1500 |
+
"content": "<|reserved_special_token_181|>",
|
1501 |
+
"lstrip": false,
|
1502 |
+
"normalized": false,
|
1503 |
+
"rstrip": false,
|
1504 |
+
"single_word": false,
|
1505 |
+
"special": true
|
1506 |
+
},
|
1507 |
+
"128187": {
|
1508 |
+
"content": "<|reserved_special_token_182|>",
|
1509 |
+
"lstrip": false,
|
1510 |
+
"normalized": false,
|
1511 |
+
"rstrip": false,
|
1512 |
+
"single_word": false,
|
1513 |
+
"special": true
|
1514 |
+
},
|
1515 |
+
"128188": {
|
1516 |
+
"content": "<|reserved_special_token_183|>",
|
1517 |
+
"lstrip": false,
|
1518 |
+
"normalized": false,
|
1519 |
+
"rstrip": false,
|
1520 |
+
"single_word": false,
|
1521 |
+
"special": true
|
1522 |
+
},
|
1523 |
+
"128189": {
|
1524 |
+
"content": "<|reserved_special_token_184|>",
|
1525 |
+
"lstrip": false,
|
1526 |
+
"normalized": false,
|
1527 |
+
"rstrip": false,
|
1528 |
+
"single_word": false,
|
1529 |
+
"special": true
|
1530 |
+
},
|
1531 |
+
"128190": {
|
1532 |
+
"content": "<|reserved_special_token_185|>",
|
1533 |
+
"lstrip": false,
|
1534 |
+
"normalized": false,
|
1535 |
+
"rstrip": false,
|
1536 |
+
"single_word": false,
|
1537 |
+
"special": true
|
1538 |
+
},
|
1539 |
+
"128191": {
|
1540 |
+
"content": "<|reserved_special_token_186|>",
|
1541 |
+
"lstrip": false,
|
1542 |
+
"normalized": false,
|
1543 |
+
"rstrip": false,
|
1544 |
+
"single_word": false,
|
1545 |
+
"special": true
|
1546 |
+
},
|
1547 |
+
"128192": {
|
1548 |
+
"content": "<|reserved_special_token_187|>",
|
1549 |
+
"lstrip": false,
|
1550 |
+
"normalized": false,
|
1551 |
+
"rstrip": false,
|
1552 |
+
"single_word": false,
|
1553 |
+
"special": true
|
1554 |
+
},
|
1555 |
+
"128193": {
|
1556 |
+
"content": "<|reserved_special_token_188|>",
|
1557 |
+
"lstrip": false,
|
1558 |
+
"normalized": false,
|
1559 |
+
"rstrip": false,
|
1560 |
+
"single_word": false,
|
1561 |
+
"special": true
|
1562 |
+
},
|
1563 |
+
"128194": {
|
1564 |
+
"content": "<|reserved_special_token_189|>",
|
1565 |
+
"lstrip": false,
|
1566 |
+
"normalized": false,
|
1567 |
+
"rstrip": false,
|
1568 |
+
"single_word": false,
|
1569 |
+
"special": true
|
1570 |
+
},
|
1571 |
+
"128195": {
|
1572 |
+
"content": "<|reserved_special_token_190|>",
|
1573 |
+
"lstrip": false,
|
1574 |
+
"normalized": false,
|
1575 |
+
"rstrip": false,
|
1576 |
+
"single_word": false,
|
1577 |
+
"special": true
|
1578 |
+
},
|
1579 |
+
"128196": {
|
1580 |
+
"content": "<|reserved_special_token_191|>",
|
1581 |
+
"lstrip": false,
|
1582 |
+
"normalized": false,
|
1583 |
+
"rstrip": false,
|
1584 |
+
"single_word": false,
|
1585 |
+
"special": true
|
1586 |
+
},
|
1587 |
+
"128197": {
|
1588 |
+
"content": "<|reserved_special_token_192|>",
|
1589 |
+
"lstrip": false,
|
1590 |
+
"normalized": false,
|
1591 |
+
"rstrip": false,
|
1592 |
+
"single_word": false,
|
1593 |
+
"special": true
|
1594 |
+
},
|
1595 |
+
"128198": {
|
1596 |
+
"content": "<|reserved_special_token_193|>",
|
1597 |
+
"lstrip": false,
|
1598 |
+
"normalized": false,
|
1599 |
+
"rstrip": false,
|
1600 |
+
"single_word": false,
|
1601 |
+
"special": true
|
1602 |
+
},
|
1603 |
+
"128199": {
|
1604 |
+
"content": "<|reserved_special_token_194|>",
|
1605 |
+
"lstrip": false,
|
1606 |
+
"normalized": false,
|
1607 |
+
"rstrip": false,
|
1608 |
+
"single_word": false,
|
1609 |
+
"special": true
|
1610 |
+
},
|
1611 |
+
"128200": {
|
1612 |
+
"content": "<|reserved_special_token_195|>",
|
1613 |
+
"lstrip": false,
|
1614 |
+
"normalized": false,
|
1615 |
+
"rstrip": false,
|
1616 |
+
"single_word": false,
|
1617 |
+
"special": true
|
1618 |
+
},
|
1619 |
+
"128201": {
|
1620 |
+
"content": "<|reserved_special_token_196|>",
|
1621 |
+
"lstrip": false,
|
1622 |
+
"normalized": false,
|
1623 |
+
"rstrip": false,
|
1624 |
+
"single_word": false,
|
1625 |
+
"special": true
|
1626 |
+
},
|
1627 |
+
"128202": {
|
1628 |
+
"content": "<|reserved_special_token_197|>",
|
1629 |
+
"lstrip": false,
|
1630 |
+
"normalized": false,
|
1631 |
+
"rstrip": false,
|
1632 |
+
"single_word": false,
|
1633 |
+
"special": true
|
1634 |
+
},
|
1635 |
+
"128203": {
|
1636 |
+
"content": "<|reserved_special_token_198|>",
|
1637 |
+
"lstrip": false,
|
1638 |
+
"normalized": false,
|
1639 |
+
"rstrip": false,
|
1640 |
+
"single_word": false,
|
1641 |
+
"special": true
|
1642 |
+
},
|
1643 |
+
"128204": {
|
1644 |
+
"content": "<|reserved_special_token_199|>",
|
1645 |
+
"lstrip": false,
|
1646 |
+
"normalized": false,
|
1647 |
+
"rstrip": false,
|
1648 |
+
"single_word": false,
|
1649 |
+
"special": true
|
1650 |
+
},
|
1651 |
+
"128205": {
|
1652 |
+
"content": "<|reserved_special_token_200|>",
|
1653 |
+
"lstrip": false,
|
1654 |
+
"normalized": false,
|
1655 |
+
"rstrip": false,
|
1656 |
+
"single_word": false,
|
1657 |
+
"special": true
|
1658 |
+
},
|
1659 |
+
"128206": {
|
1660 |
+
"content": "<|reserved_special_token_201|>",
|
1661 |
+
"lstrip": false,
|
1662 |
+
"normalized": false,
|
1663 |
+
"rstrip": false,
|
1664 |
+
"single_word": false,
|
1665 |
+
"special": true
|
1666 |
+
},
|
1667 |
+
"128207": {
|
1668 |
+
"content": "<|reserved_special_token_202|>",
|
1669 |
+
"lstrip": false,
|
1670 |
+
"normalized": false,
|
1671 |
+
"rstrip": false,
|
1672 |
+
"single_word": false,
|
1673 |
+
"special": true
|
1674 |
+
},
|
1675 |
+
"128208": {
|
1676 |
+
"content": "<|reserved_special_token_203|>",
|
1677 |
+
"lstrip": false,
|
1678 |
+
"normalized": false,
|
1679 |
+
"rstrip": false,
|
1680 |
+
"single_word": false,
|
1681 |
+
"special": true
|
1682 |
+
},
|
1683 |
+
"128209": {
|
1684 |
+
"content": "<|reserved_special_token_204|>",
|
1685 |
+
"lstrip": false,
|
1686 |
+
"normalized": false,
|
1687 |
+
"rstrip": false,
|
1688 |
+
"single_word": false,
|
1689 |
+
"special": true
|
1690 |
+
},
|
1691 |
+
"128210": {
|
1692 |
+
"content": "<|reserved_special_token_205|>",
|
1693 |
+
"lstrip": false,
|
1694 |
+
"normalized": false,
|
1695 |
+
"rstrip": false,
|
1696 |
+
"single_word": false,
|
1697 |
+
"special": true
|
1698 |
+
},
|
1699 |
+
"128211": {
|
1700 |
+
"content": "<|reserved_special_token_206|>",
|
1701 |
+
"lstrip": false,
|
1702 |
+
"normalized": false,
|
1703 |
+
"rstrip": false,
|
1704 |
+
"single_word": false,
|
1705 |
+
"special": true
|
1706 |
+
},
|
1707 |
+
"128212": {
|
1708 |
+
"content": "<|reserved_special_token_207|>",
|
1709 |
+
"lstrip": false,
|
1710 |
+
"normalized": false,
|
1711 |
+
"rstrip": false,
|
1712 |
+
"single_word": false,
|
1713 |
+
"special": true
|
1714 |
+
},
|
1715 |
+
"128213": {
|
1716 |
+
"content": "<|reserved_special_token_208|>",
|
1717 |
+
"lstrip": false,
|
1718 |
+
"normalized": false,
|
1719 |
+
"rstrip": false,
|
1720 |
+
"single_word": false,
|
1721 |
+
"special": true
|
1722 |
+
},
|
1723 |
+
"128214": {
|
1724 |
+
"content": "<|reserved_special_token_209|>",
|
1725 |
+
"lstrip": false,
|
1726 |
+
"normalized": false,
|
1727 |
+
"rstrip": false,
|
1728 |
+
"single_word": false,
|
1729 |
+
"special": true
|
1730 |
+
},
|
1731 |
+
"128215": {
|
1732 |
+
"content": "<|reserved_special_token_210|>",
|
1733 |
+
"lstrip": false,
|
1734 |
+
"normalized": false,
|
1735 |
+
"rstrip": false,
|
1736 |
+
"single_word": false,
|
1737 |
+
"special": true
|
1738 |
+
},
|
1739 |
+
"128216": {
|
1740 |
+
"content": "<|reserved_special_token_211|>",
|
1741 |
+
"lstrip": false,
|
1742 |
+
"normalized": false,
|
1743 |
+
"rstrip": false,
|
1744 |
+
"single_word": false,
|
1745 |
+
"special": true
|
1746 |
+
},
|
1747 |
+
"128217": {
|
1748 |
+
"content": "<|reserved_special_token_212|>",
|
1749 |
+
"lstrip": false,
|
1750 |
+
"normalized": false,
|
1751 |
+
"rstrip": false,
|
1752 |
+
"single_word": false,
|
1753 |
+
"special": true
|
1754 |
+
},
|
1755 |
+
"128218": {
|
1756 |
+
"content": "<|reserved_special_token_213|>",
|
1757 |
+
"lstrip": false,
|
1758 |
+
"normalized": false,
|
1759 |
+
"rstrip": false,
|
1760 |
+
"single_word": false,
|
1761 |
+
"special": true
|
1762 |
+
},
|
1763 |
+
"128219": {
|
1764 |
+
"content": "<|reserved_special_token_214|>",
|
1765 |
+
"lstrip": false,
|
1766 |
+
"normalized": false,
|
1767 |
+
"rstrip": false,
|
1768 |
+
"single_word": false,
|
1769 |
+
"special": true
|
1770 |
+
},
|
1771 |
+
"128220": {
|
1772 |
+
"content": "<|reserved_special_token_215|>",
|
1773 |
+
"lstrip": false,
|
1774 |
+
"normalized": false,
|
1775 |
+
"rstrip": false,
|
1776 |
+
"single_word": false,
|
1777 |
+
"special": true
|
1778 |
+
},
|
1779 |
+
"128221": {
|
1780 |
+
"content": "<|reserved_special_token_216|>",
|
1781 |
+
"lstrip": false,
|
1782 |
+
"normalized": false,
|
1783 |
+
"rstrip": false,
|
1784 |
+
"single_word": false,
|
1785 |
+
"special": true
|
1786 |
+
},
|
1787 |
+
"128222": {
|
1788 |
+
"content": "<|reserved_special_token_217|>",
|
1789 |
+
"lstrip": false,
|
1790 |
+
"normalized": false,
|
1791 |
+
"rstrip": false,
|
1792 |
+
"single_word": false,
|
1793 |
+
"special": true
|
1794 |
+
},
|
1795 |
+
"128223": {
|
1796 |
+
"content": "<|reserved_special_token_218|>",
|
1797 |
+
"lstrip": false,
|
1798 |
+
"normalized": false,
|
1799 |
+
"rstrip": false,
|
1800 |
+
"single_word": false,
|
1801 |
+
"special": true
|
1802 |
+
},
|
1803 |
+
"128224": {
|
1804 |
+
"content": "<|reserved_special_token_219|>",
|
1805 |
+
"lstrip": false,
|
1806 |
+
"normalized": false,
|
1807 |
+
"rstrip": false,
|
1808 |
+
"single_word": false,
|
1809 |
+
"special": true
|
1810 |
+
},
|
1811 |
+
"128225": {
|
1812 |
+
"content": "<|reserved_special_token_220|>",
|
1813 |
+
"lstrip": false,
|
1814 |
+
"normalized": false,
|
1815 |
+
"rstrip": false,
|
1816 |
+
"single_word": false,
|
1817 |
+
"special": true
|
1818 |
+
},
|
1819 |
+
"128226": {
|
1820 |
+
"content": "<|reserved_special_token_221|>",
|
1821 |
+
"lstrip": false,
|
1822 |
+
"normalized": false,
|
1823 |
+
"rstrip": false,
|
1824 |
+
"single_word": false,
|
1825 |
+
"special": true
|
1826 |
+
},
|
1827 |
+
"128227": {
|
1828 |
+
"content": "<|reserved_special_token_222|>",
|
1829 |
+
"lstrip": false,
|
1830 |
+
"normalized": false,
|
1831 |
+
"rstrip": false,
|
1832 |
+
"single_word": false,
|
1833 |
+
"special": true
|
1834 |
+
},
|
1835 |
+
"128228": {
|
1836 |
+
"content": "<|reserved_special_token_223|>",
|
1837 |
+
"lstrip": false,
|
1838 |
+
"normalized": false,
|
1839 |
+
"rstrip": false,
|
1840 |
+
"single_word": false,
|
1841 |
+
"special": true
|
1842 |
+
},
|
1843 |
+
"128229": {
|
1844 |
+
"content": "<|reserved_special_token_224|>",
|
1845 |
+
"lstrip": false,
|
1846 |
+
"normalized": false,
|
1847 |
+
"rstrip": false,
|
1848 |
+
"single_word": false,
|
1849 |
+
"special": true
|
1850 |
+
},
|
1851 |
+
"128230": {
|
1852 |
+
"content": "<|reserved_special_token_225|>",
|
1853 |
+
"lstrip": false,
|
1854 |
+
"normalized": false,
|
1855 |
+
"rstrip": false,
|
1856 |
+
"single_word": false,
|
1857 |
+
"special": true
|
1858 |
+
},
|
1859 |
+
"128231": {
|
1860 |
+
"content": "<|reserved_special_token_226|>",
|
1861 |
+
"lstrip": false,
|
1862 |
+
"normalized": false,
|
1863 |
+
"rstrip": false,
|
1864 |
+
"single_word": false,
|
1865 |
+
"special": true
|
1866 |
+
},
|
1867 |
+
"128232": {
|
1868 |
+
"content": "<|reserved_special_token_227|>",
|
1869 |
+
"lstrip": false,
|
1870 |
+
"normalized": false,
|
1871 |
+
"rstrip": false,
|
1872 |
+
"single_word": false,
|
1873 |
+
"special": true
|
1874 |
+
},
|
1875 |
+
"128233": {
|
1876 |
+
"content": "<|reserved_special_token_228|>",
|
1877 |
+
"lstrip": false,
|
1878 |
+
"normalized": false,
|
1879 |
+
"rstrip": false,
|
1880 |
+
"single_word": false,
|
1881 |
+
"special": true
|
1882 |
+
},
|
1883 |
+
"128234": {
|
1884 |
+
"content": "<|reserved_special_token_229|>",
|
1885 |
+
"lstrip": false,
|
1886 |
+
"normalized": false,
|
1887 |
+
"rstrip": false,
|
1888 |
+
"single_word": false,
|
1889 |
+
"special": true
|
1890 |
+
},
|
1891 |
+
"128235": {
|
1892 |
+
"content": "<|reserved_special_token_230|>",
|
1893 |
+
"lstrip": false,
|
1894 |
+
"normalized": false,
|
1895 |
+
"rstrip": false,
|
1896 |
+
"single_word": false,
|
1897 |
+
"special": true
|
1898 |
+
},
|
1899 |
+
"128236": {
|
1900 |
+
"content": "<|reserved_special_token_231|>",
|
1901 |
+
"lstrip": false,
|
1902 |
+
"normalized": false,
|
1903 |
+
"rstrip": false,
|
1904 |
+
"single_word": false,
|
1905 |
+
"special": true
|
1906 |
+
},
|
1907 |
+
"128237": {
|
1908 |
+
"content": "<|reserved_special_token_232|>",
|
1909 |
+
"lstrip": false,
|
1910 |
+
"normalized": false,
|
1911 |
+
"rstrip": false,
|
1912 |
+
"single_word": false,
|
1913 |
+
"special": true
|
1914 |
+
},
|
1915 |
+
"128238": {
|
1916 |
+
"content": "<|reserved_special_token_233|>",
|
1917 |
+
"lstrip": false,
|
1918 |
+
"normalized": false,
|
1919 |
+
"rstrip": false,
|
1920 |
+
"single_word": false,
|
1921 |
+
"special": true
|
1922 |
+
},
|
1923 |
+
"128239": {
|
1924 |
+
"content": "<|reserved_special_token_234|>",
|
1925 |
+
"lstrip": false,
|
1926 |
+
"normalized": false,
|
1927 |
+
"rstrip": false,
|
1928 |
+
"single_word": false,
|
1929 |
+
"special": true
|
1930 |
+
},
|
1931 |
+
"128240": {
|
1932 |
+
"content": "<|reserved_special_token_235|>",
|
1933 |
+
"lstrip": false,
|
1934 |
+
"normalized": false,
|
1935 |
+
"rstrip": false,
|
1936 |
+
"single_word": false,
|
1937 |
+
"special": true
|
1938 |
+
},
|
1939 |
+
"128241": {
|
1940 |
+
"content": "<|reserved_special_token_236|>",
|
1941 |
+
"lstrip": false,
|
1942 |
+
"normalized": false,
|
1943 |
+
"rstrip": false,
|
1944 |
+
"single_word": false,
|
1945 |
+
"special": true
|
1946 |
+
},
|
1947 |
+
"128242": {
|
1948 |
+
"content": "<|reserved_special_token_237|>",
|
1949 |
+
"lstrip": false,
|
1950 |
+
"normalized": false,
|
1951 |
+
"rstrip": false,
|
1952 |
+
"single_word": false,
|
1953 |
+
"special": true
|
1954 |
+
},
|
1955 |
+
"128243": {
|
1956 |
+
"content": "<|reserved_special_token_238|>",
|
1957 |
+
"lstrip": false,
|
1958 |
+
"normalized": false,
|
1959 |
+
"rstrip": false,
|
1960 |
+
"single_word": false,
|
1961 |
+
"special": true
|
1962 |
+
},
|
1963 |
+
"128244": {
|
1964 |
+
"content": "<|reserved_special_token_239|>",
|
1965 |
+
"lstrip": false,
|
1966 |
+
"normalized": false,
|
1967 |
+
"rstrip": false,
|
1968 |
+
"single_word": false,
|
1969 |
+
"special": true
|
1970 |
+
},
|
1971 |
+
"128245": {
|
1972 |
+
"content": "<|reserved_special_token_240|>",
|
1973 |
+
"lstrip": false,
|
1974 |
+
"normalized": false,
|
1975 |
+
"rstrip": false,
|
1976 |
+
"single_word": false,
|
1977 |
+
"special": true
|
1978 |
+
},
|
1979 |
+
"128246": {
|
1980 |
+
"content": "<|reserved_special_token_241|>",
|
1981 |
+
"lstrip": false,
|
1982 |
+
"normalized": false,
|
1983 |
+
"rstrip": false,
|
1984 |
+
"single_word": false,
|
1985 |
+
"special": true
|
1986 |
+
},
|
1987 |
+
"128247": {
|
1988 |
+
"content": "<|reserved_special_token_242|>",
|
1989 |
+
"lstrip": false,
|
1990 |
+
"normalized": false,
|
1991 |
+
"rstrip": false,
|
1992 |
+
"single_word": false,
|
1993 |
+
"special": true
|
1994 |
+
},
|
1995 |
+
"128248": {
|
1996 |
+
"content": "<|reserved_special_token_243|>",
|
1997 |
+
"lstrip": false,
|
1998 |
+
"normalized": false,
|
1999 |
+
"rstrip": false,
|
2000 |
+
"single_word": false,
|
2001 |
+
"special": true
|
2002 |
+
},
|
2003 |
+
"128249": {
|
2004 |
+
"content": "<|reserved_special_token_244|>",
|
2005 |
+
"lstrip": false,
|
2006 |
+
"normalized": false,
|
2007 |
+
"rstrip": false,
|
2008 |
+
"single_word": false,
|
2009 |
+
"special": true
|
2010 |
+
},
|
2011 |
+
"128250": {
|
2012 |
+
"content": "<|reserved_special_token_245|>",
|
2013 |
+
"lstrip": false,
|
2014 |
+
"normalized": false,
|
2015 |
+
"rstrip": false,
|
2016 |
+
"single_word": false,
|
2017 |
+
"special": true
|
2018 |
+
},
|
2019 |
+
"128251": {
|
2020 |
+
"content": "<|reserved_special_token_246|>",
|
2021 |
+
"lstrip": false,
|
2022 |
+
"normalized": false,
|
2023 |
+
"rstrip": false,
|
2024 |
+
"single_word": false,
|
2025 |
+
"special": true
|
2026 |
+
},
|
2027 |
+
"128252": {
|
2028 |
+
"content": "<|reserved_special_token_247|>",
|
2029 |
+
"lstrip": false,
|
2030 |
+
"normalized": false,
|
2031 |
+
"rstrip": false,
|
2032 |
+
"single_word": false,
|
2033 |
+
"special": true
|
2034 |
+
},
|
2035 |
+
"128253": {
|
2036 |
+
"content": "<|reserved_special_token_248|>",
|
2037 |
+
"lstrip": false,
|
2038 |
+
"normalized": false,
|
2039 |
+
"rstrip": false,
|
2040 |
+
"single_word": false,
|
2041 |
+
"special": true
|
2042 |
+
},
|
2043 |
+
"128254": {
|
2044 |
+
"content": "<|reserved_special_token_249|>",
|
2045 |
+
"lstrip": false,
|
2046 |
+
"normalized": false,
|
2047 |
+
"rstrip": false,
|
2048 |
+
"single_word": false,
|
2049 |
+
"special": true
|
2050 |
+
},
|
2051 |
+
"128255": {
|
2052 |
+
"content": "<|reserved_special_token_250|>",
|
2053 |
+
"lstrip": false,
|
2054 |
+
"normalized": false,
|
2055 |
+
"rstrip": false,
|
2056 |
+
"single_word": false,
|
2057 |
+
"special": true
|
2058 |
+
}
|
2059 |
+
},
|
2060 |
+
"auto_map": {
|
2061 |
+
"AutoTokenizer": [
|
2062 |
+
"modeling_minicpmv.PreTrainedTokenizerFastWrapper",
|
2063 |
+
null
|
2064 |
+
]
|
2065 |
+
},
|
2066 |
+
"bos_token": "<|begin_of_text|>",
|
2067 |
+
"chat_template": "{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
|
2068 |
+
"clean_up_tokenization_spaces": true,
|
2069 |
+
"eos_token": "<|end_of_text|>",
|
2070 |
+
"model_input_names": [
|
2071 |
+
"input_ids",
|
2072 |
+
"attention_mask"
|
2073 |
+
],
|
2074 |
+
"model_max_length": 1000000000000000019884624838656,
|
2075 |
+
"pad_token": "!",
|
2076 |
+
"padding_side": "right",
|
2077 |
+
"tokenizer_class": "PreTrainedTokenizerFastWrapper",
|
2078 |
+
"truncation_side": "right",
|
2079 |
+
"unk_token": "<unk>"
|
2080 |
+
}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a78ecf29549624f8a589728340238ba127296f2f6dc18c6e5d4a7595ae5f690b
|
3 |
+
size 7480
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|