Upload folder using huggingface_hub
Browse files- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +11 -0
- runs/events.out.tfevents.1697711216.46dc0c540dd0.4319.3 +3 -0
- test.tsv +0 -0
- training.log +241 -0
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e377980b53e56f7a60373a4788cecb775938c102a970c711e90541f09224315c
|
3 |
+
size 19048098
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 10:28:01 0.0000 0.8801 0.1375 0.3320 0.1553 0.2116 0.1187
|
3 |
+
2 10:29:07 0.0000 0.3258 0.1231 0.3564 0.2538 0.2965 0.1740
|
4 |
+
3 10:30:14 0.0000 0.2681 0.1242 0.2974 0.3087 0.3030 0.1785
|
5 |
+
4 10:31:21 0.0000 0.2379 0.1483 0.2257 0.4223 0.2942 0.1735
|
6 |
+
5 10:32:28 0.0000 0.2159 0.1355 0.2507 0.3617 0.2961 0.1743
|
7 |
+
6 10:33:34 0.0000 0.1977 0.1463 0.2445 0.3352 0.2827 0.1653
|
8 |
+
7 10:34:41 0.0000 0.1859 0.1627 0.2324 0.4261 0.3008 0.1776
|
9 |
+
8 10:35:48 0.0000 0.1731 0.1696 0.2160 0.3826 0.2761 0.1607
|
10 |
+
9 10:36:55 0.0000 0.1687 0.1792 0.2210 0.4299 0.2920 0.1717
|
11 |
+
10 10:38:02 0.0000 0.1635 0.1842 0.2163 0.4261 0.2870 0.1685
|
runs/events.out.tfevents.1697711216.46dc0c540dd0.4319.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b46a6af3d776ba7667e5af21bc1292642bcb2dfd06178524c161b2f41e04973a
|
3 |
+
size 1464420
|
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,241 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
2 |
+
2023-10-19 10:26:56,941 Model: "SequenceTagger(
|
3 |
+
(embeddings): TransformerWordEmbeddings(
|
4 |
+
(model): BertModel(
|
5 |
+
(embeddings): BertEmbeddings(
|
6 |
+
(word_embeddings): Embedding(32001, 128)
|
7 |
+
(position_embeddings): Embedding(512, 128)
|
8 |
+
(token_type_embeddings): Embedding(2, 128)
|
9 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
11 |
+
)
|
12 |
+
(encoder): BertEncoder(
|
13 |
+
(layer): ModuleList(
|
14 |
+
(0-1): 2 x BertLayer(
|
15 |
+
(attention): BertAttention(
|
16 |
+
(self): BertSelfAttention(
|
17 |
+
(query): Linear(in_features=128, out_features=128, bias=True)
|
18 |
+
(key): Linear(in_features=128, out_features=128, bias=True)
|
19 |
+
(value): Linear(in_features=128, out_features=128, bias=True)
|
20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
21 |
+
)
|
22 |
+
(output): BertSelfOutput(
|
23 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
24 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
26 |
+
)
|
27 |
+
)
|
28 |
+
(intermediate): BertIntermediate(
|
29 |
+
(dense): Linear(in_features=128, out_features=512, bias=True)
|
30 |
+
(intermediate_act_fn): GELUActivation()
|
31 |
+
)
|
32 |
+
(output): BertOutput(
|
33 |
+
(dense): Linear(in_features=512, out_features=128, bias=True)
|
34 |
+
(LayerNorm): LayerNorm((128,), eps=1e-12, elementwise_affine=True)
|
35 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
36 |
+
)
|
37 |
+
)
|
38 |
+
)
|
39 |
+
)
|
40 |
+
(pooler): BertPooler(
|
41 |
+
(dense): Linear(in_features=128, out_features=128, bias=True)
|
42 |
+
(activation): Tanh()
|
43 |
+
)
|
44 |
+
)
|
45 |
+
)
|
46 |
+
(locked_dropout): LockedDropout(p=0.5)
|
47 |
+
(linear): Linear(in_features=128, out_features=17, bias=True)
|
48 |
+
(loss_function): CrossEntropyLoss()
|
49 |
+
)"
|
50 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
51 |
+
2023-10-19 10:26:56,941 MultiCorpus: 20847 train + 1123 dev + 3350 test sentences
|
52 |
+
- NER_HIPE_2022 Corpus: 20847 train + 1123 dev + 3350 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/de/with_doc_seperator
|
53 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
54 |
+
2023-10-19 10:26:56,941 Train: 20847 sentences
|
55 |
+
2023-10-19 10:26:56,941 (train_with_dev=False, train_with_test=False)
|
56 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
57 |
+
2023-10-19 10:26:56,941 Training Params:
|
58 |
+
2023-10-19 10:26:56,941 - learning_rate: "5e-05"
|
59 |
+
2023-10-19 10:26:56,941 - mini_batch_size: "8"
|
60 |
+
2023-10-19 10:26:56,941 - max_epochs: "10"
|
61 |
+
2023-10-19 10:26:56,941 - shuffle: "True"
|
62 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
63 |
+
2023-10-19 10:26:56,941 Plugins:
|
64 |
+
2023-10-19 10:26:56,941 - TensorboardLogger
|
65 |
+
2023-10-19 10:26:56,941 - LinearScheduler | warmup_fraction: '0.1'
|
66 |
+
2023-10-19 10:26:56,941 ----------------------------------------------------------------------------------------------------
|
67 |
+
2023-10-19 10:26:56,942 Final evaluation on model from best epoch (best-model.pt)
|
68 |
+
2023-10-19 10:26:56,942 - metric: "('micro avg', 'f1-score')"
|
69 |
+
2023-10-19 10:26:56,942 ----------------------------------------------------------------------------------------------------
|
70 |
+
2023-10-19 10:26:56,942 Computation:
|
71 |
+
2023-10-19 10:26:56,942 - compute on device: cuda:0
|
72 |
+
2023-10-19 10:26:56,942 - embedding storage: none
|
73 |
+
2023-10-19 10:26:56,942 ----------------------------------------------------------------------------------------------------
|
74 |
+
2023-10-19 10:26:56,942 Model training base path: "hmbench-newseye/de-dbmdz/bert-tiny-historic-multilingual-cased-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-1"
|
75 |
+
2023-10-19 10:26:56,942 ----------------------------------------------------------------------------------------------------
|
76 |
+
2023-10-19 10:26:56,942 ----------------------------------------------------------------------------------------------------
|
77 |
+
2023-10-19 10:26:56,942 Logging anything other than scalars to TensorBoard is currently not supported.
|
78 |
+
2023-10-19 10:27:03,158 epoch 1 - iter 260/2606 - loss 3.11893094 - time (sec): 6.22 - samples/sec: 5861.68 - lr: 0.000005 - momentum: 0.000000
|
79 |
+
2023-10-19 10:27:09,222 epoch 1 - iter 520/2606 - loss 2.45662908 - time (sec): 12.28 - samples/sec: 5832.63 - lr: 0.000010 - momentum: 0.000000
|
80 |
+
2023-10-19 10:27:15,610 epoch 1 - iter 780/2606 - loss 1.81424223 - time (sec): 18.67 - samples/sec: 6026.34 - lr: 0.000015 - momentum: 0.000000
|
81 |
+
2023-10-19 10:27:21,740 epoch 1 - iter 1040/2606 - loss 1.50115032 - time (sec): 24.80 - samples/sec: 5987.58 - lr: 0.000020 - momentum: 0.000000
|
82 |
+
2023-10-19 10:27:27,811 epoch 1 - iter 1300/2606 - loss 1.33359036 - time (sec): 30.87 - samples/sec: 5875.91 - lr: 0.000025 - momentum: 0.000000
|
83 |
+
2023-10-19 10:27:34,064 epoch 1 - iter 1560/2606 - loss 1.18442141 - time (sec): 37.12 - samples/sec: 5907.76 - lr: 0.000030 - momentum: 0.000000
|
84 |
+
2023-10-19 10:27:40,175 epoch 1 - iter 1820/2606 - loss 1.07763140 - time (sec): 43.23 - samples/sec: 5919.80 - lr: 0.000035 - momentum: 0.000000
|
85 |
+
2023-10-19 10:27:47,178 epoch 1 - iter 2080/2606 - loss 0.99105876 - time (sec): 50.24 - samples/sec: 5878.65 - lr: 0.000040 - momentum: 0.000000
|
86 |
+
2023-10-19 10:27:53,271 epoch 1 - iter 2340/2606 - loss 0.93099772 - time (sec): 56.33 - samples/sec: 5900.79 - lr: 0.000045 - momentum: 0.000000
|
87 |
+
2023-10-19 10:27:59,502 epoch 1 - iter 2600/2606 - loss 0.88085087 - time (sec): 62.56 - samples/sec: 5863.64 - lr: 0.000050 - momentum: 0.000000
|
88 |
+
2023-10-19 10:27:59,628 ----------------------------------------------------------------------------------------------------
|
89 |
+
2023-10-19 10:27:59,629 EPOCH 1 done: loss 0.8801 - lr: 0.000050
|
90 |
+
2023-10-19 10:28:01,912 DEV : loss 0.13753747940063477 - f1-score (micro avg) 0.2116
|
91 |
+
2023-10-19 10:28:01,936 saving best model
|
92 |
+
2023-10-19 10:28:01,964 ----------------------------------------------------------------------------------------------------
|
93 |
+
2023-10-19 10:28:08,109 epoch 2 - iter 260/2606 - loss 0.42374739 - time (sec): 6.14 - samples/sec: 5818.81 - lr: 0.000049 - momentum: 0.000000
|
94 |
+
2023-10-19 10:28:14,214 epoch 2 - iter 520/2606 - loss 0.40655630 - time (sec): 12.25 - samples/sec: 5937.03 - lr: 0.000049 - momentum: 0.000000
|
95 |
+
2023-10-19 10:28:20,349 epoch 2 - iter 780/2606 - loss 0.38998511 - time (sec): 18.38 - samples/sec: 5993.86 - lr: 0.000048 - momentum: 0.000000
|
96 |
+
2023-10-19 10:28:26,415 epoch 2 - iter 1040/2606 - loss 0.37158150 - time (sec): 24.45 - samples/sec: 5925.55 - lr: 0.000048 - momentum: 0.000000
|
97 |
+
2023-10-19 10:28:32,653 epoch 2 - iter 1300/2606 - loss 0.35862543 - time (sec): 30.69 - samples/sec: 5952.53 - lr: 0.000047 - momentum: 0.000000
|
98 |
+
2023-10-19 10:28:38,675 epoch 2 - iter 1560/2606 - loss 0.35173504 - time (sec): 36.71 - samples/sec: 5989.35 - lr: 0.000047 - momentum: 0.000000
|
99 |
+
2023-10-19 10:28:44,715 epoch 2 - iter 1820/2606 - loss 0.34322686 - time (sec): 42.75 - samples/sec: 5938.37 - lr: 0.000046 - momentum: 0.000000
|
100 |
+
2023-10-19 10:28:50,907 epoch 2 - iter 2080/2606 - loss 0.33733039 - time (sec): 48.94 - samples/sec: 5962.65 - lr: 0.000046 - momentum: 0.000000
|
101 |
+
2023-10-19 10:28:57,064 epoch 2 - iter 2340/2606 - loss 0.33269201 - time (sec): 55.10 - samples/sec: 5945.67 - lr: 0.000045 - momentum: 0.000000
|
102 |
+
2023-10-19 10:29:03,285 epoch 2 - iter 2600/2606 - loss 0.32557472 - time (sec): 61.32 - samples/sec: 5979.13 - lr: 0.000044 - momentum: 0.000000
|
103 |
+
2023-10-19 10:29:03,427 ----------------------------------------------------------------------------------------------------
|
104 |
+
2023-10-19 10:29:03,428 EPOCH 2 done: loss 0.3258 - lr: 0.000044
|
105 |
+
2023-10-19 10:29:07,968 DEV : loss 0.12312041968107224 - f1-score (micro avg) 0.2965
|
106 |
+
2023-10-19 10:29:07,990 saving best model
|
107 |
+
2023-10-19 10:29:08,021 ----------------------------------------------------------------------------------------------------
|
108 |
+
2023-10-19 10:29:14,860 epoch 3 - iter 260/2606 - loss 0.26992693 - time (sec): 6.84 - samples/sec: 5253.15 - lr: 0.000044 - momentum: 0.000000
|
109 |
+
2023-10-19 10:29:20,959 epoch 3 - iter 520/2606 - loss 0.27143201 - time (sec): 12.94 - samples/sec: 5426.17 - lr: 0.000043 - momentum: 0.000000
|
110 |
+
2023-10-19 10:29:27,212 epoch 3 - iter 780/2606 - loss 0.28917169 - time (sec): 19.19 - samples/sec: 5584.66 - lr: 0.000043 - momentum: 0.000000
|
111 |
+
2023-10-19 10:29:33,343 epoch 3 - iter 1040/2606 - loss 0.27927986 - time (sec): 25.32 - samples/sec: 5644.03 - lr: 0.000042 - momentum: 0.000000
|
112 |
+
2023-10-19 10:29:39,332 epoch 3 - iter 1300/2606 - loss 0.27479024 - time (sec): 31.31 - samples/sec: 5666.91 - lr: 0.000042 - momentum: 0.000000
|
113 |
+
2023-10-19 10:29:45,461 epoch 3 - iter 1560/2606 - loss 0.27799701 - time (sec): 37.44 - samples/sec: 5709.66 - lr: 0.000041 - momentum: 0.000000
|
114 |
+
2023-10-19 10:29:51,294 epoch 3 - iter 1820/2606 - loss 0.27344105 - time (sec): 43.27 - samples/sec: 5735.62 - lr: 0.000041 - momentum: 0.000000
|
115 |
+
2023-10-19 10:29:57,408 epoch 3 - iter 2080/2606 - loss 0.27372467 - time (sec): 49.39 - samples/sec: 5863.20 - lr: 0.000040 - momentum: 0.000000
|
116 |
+
2023-10-19 10:30:03,653 epoch 3 - iter 2340/2606 - loss 0.27074986 - time (sec): 55.63 - samples/sec: 5899.95 - lr: 0.000039 - momentum: 0.000000
|
117 |
+
2023-10-19 10:30:09,900 epoch 3 - iter 2600/2606 - loss 0.26787206 - time (sec): 61.88 - samples/sec: 5925.07 - lr: 0.000039 - momentum: 0.000000
|
118 |
+
2023-10-19 10:30:10,035 ----------------------------------------------------------------------------------------------------
|
119 |
+
2023-10-19 10:30:10,035 EPOCH 3 done: loss 0.2681 - lr: 0.000039
|
120 |
+
2023-10-19 10:30:14,548 DEV : loss 0.12417197227478027 - f1-score (micro avg) 0.303
|
121 |
+
2023-10-19 10:30:14,571 saving best model
|
122 |
+
2023-10-19 10:30:14,604 ----------------------------------------------------------------------------------------------------
|
123 |
+
2023-10-19 10:30:20,857 epoch 4 - iter 260/2606 - loss 0.23462566 - time (sec): 6.25 - samples/sec: 6095.08 - lr: 0.000038 - momentum: 0.000000
|
124 |
+
2023-10-19 10:30:27,021 epoch 4 - iter 520/2606 - loss 0.23856366 - time (sec): 12.42 - samples/sec: 5956.74 - lr: 0.000038 - momentum: 0.000000
|
125 |
+
2023-10-19 10:30:33,016 epoch 4 - iter 780/2606 - loss 0.24865085 - time (sec): 18.41 - samples/sec: 5808.11 - lr: 0.000037 - momentum: 0.000000
|
126 |
+
2023-10-19 10:30:39,248 epoch 4 - iter 1040/2606 - loss 0.23899456 - time (sec): 24.64 - samples/sec: 5891.22 - lr: 0.000037 - momentum: 0.000000
|
127 |
+
2023-10-19 10:30:46,210 epoch 4 - iter 1300/2606 - loss 0.23494139 - time (sec): 31.61 - samples/sec: 5868.53 - lr: 0.000036 - momentum: 0.000000
|
128 |
+
2023-10-19 10:30:52,318 epoch 4 - iter 1560/2606 - loss 0.23793258 - time (sec): 37.71 - samples/sec: 5842.14 - lr: 0.000036 - momentum: 0.000000
|
129 |
+
2023-10-19 10:30:58,462 epoch 4 - iter 1820/2606 - loss 0.23925018 - time (sec): 43.86 - samples/sec: 5872.72 - lr: 0.000035 - momentum: 0.000000
|
130 |
+
2023-10-19 10:31:04,747 epoch 4 - iter 2080/2606 - loss 0.24063825 - time (sec): 50.14 - samples/sec: 5899.49 - lr: 0.000034 - momentum: 0.000000
|
131 |
+
2023-10-19 10:31:10,663 epoch 4 - iter 2340/2606 - loss 0.24108957 - time (sec): 56.06 - samples/sec: 5878.16 - lr: 0.000034 - momentum: 0.000000
|
132 |
+
2023-10-19 10:31:16,822 epoch 4 - iter 2600/2606 - loss 0.23788664 - time (sec): 62.22 - samples/sec: 5892.69 - lr: 0.000033 - momentum: 0.000000
|
133 |
+
2023-10-19 10:31:16,960 ----------------------------------------------------------------------------------------------------
|
134 |
+
2023-10-19 10:31:16,960 EPOCH 4 done: loss 0.2379 - lr: 0.000033
|
135 |
+
2023-10-19 10:31:21,461 DEV : loss 0.14830529689788818 - f1-score (micro avg) 0.2942
|
136 |
+
2023-10-19 10:31:21,484 ----------------------------------------------------------------------------------------------------
|
137 |
+
2023-10-19 10:31:27,504 epoch 5 - iter 260/2606 - loss 0.21632271 - time (sec): 6.02 - samples/sec: 5700.59 - lr: 0.000033 - momentum: 0.000000
|
138 |
+
2023-10-19 10:31:33,543 epoch 5 - iter 520/2606 - loss 0.20875397 - time (sec): 12.06 - samples/sec: 5799.10 - lr: 0.000032 - momentum: 0.000000
|
139 |
+
2023-10-19 10:31:39,695 epoch 5 - iter 780/2606 - loss 0.21727693 - time (sec): 18.21 - samples/sec: 5795.11 - lr: 0.000032 - momentum: 0.000000
|
140 |
+
2023-10-19 10:31:45,911 epoch 5 - iter 1040/2606 - loss 0.21610880 - time (sec): 24.43 - samples/sec: 5961.70 - lr: 0.000031 - momentum: 0.000000
|
141 |
+
2023-10-19 10:31:52,195 epoch 5 - iter 1300/2606 - loss 0.21362450 - time (sec): 30.71 - samples/sec: 5917.59 - lr: 0.000031 - momentum: 0.000000
|
142 |
+
2023-10-19 10:31:58,206 epoch 5 - iter 1560/2606 - loss 0.21468184 - time (sec): 36.72 - samples/sec: 5940.53 - lr: 0.000030 - momentum: 0.000000
|
143 |
+
2023-10-19 10:32:04,312 epoch 5 - iter 1820/2606 - loss 0.21378284 - time (sec): 42.83 - samples/sec: 5963.13 - lr: 0.000029 - momentum: 0.000000
|
144 |
+
2023-10-19 10:32:11,150 epoch 5 - iter 2080/2606 - loss 0.21569807 - time (sec): 49.66 - samples/sec: 5919.65 - lr: 0.000029 - momentum: 0.000000
|
145 |
+
2023-10-19 10:32:17,262 epoch 5 - iter 2340/2606 - loss 0.21694641 - time (sec): 55.78 - samples/sec: 5892.62 - lr: 0.000028 - momentum: 0.000000
|
146 |
+
2023-10-19 10:32:23,462 epoch 5 - iter 2600/2606 - loss 0.21590122 - time (sec): 61.98 - samples/sec: 5913.56 - lr: 0.000028 - momentum: 0.000000
|
147 |
+
2023-10-19 10:32:23,608 ----------------------------------------------------------------------------------------------------
|
148 |
+
2023-10-19 10:32:23,608 EPOCH 5 done: loss 0.2159 - lr: 0.000028
|
149 |
+
2023-10-19 10:32:28,124 DEV : loss 0.13548018038272858 - f1-score (micro avg) 0.2961
|
150 |
+
2023-10-19 10:32:28,148 ----------------------------------------------------------------------------------------------------
|
151 |
+
2023-10-19 10:32:34,136 epoch 6 - iter 260/2606 - loss 0.19425732 - time (sec): 5.99 - samples/sec: 6445.66 - lr: 0.000027 - momentum: 0.000000
|
152 |
+
2023-10-19 10:32:40,053 epoch 6 - iter 520/2606 - loss 0.20229066 - time (sec): 11.90 - samples/sec: 6274.72 - lr: 0.000027 - momentum: 0.000000
|
153 |
+
2023-10-19 10:32:46,105 epoch 6 - iter 780/2606 - loss 0.20201165 - time (sec): 17.96 - samples/sec: 6216.67 - lr: 0.000026 - momentum: 0.000000
|
154 |
+
2023-10-19 10:32:52,101 epoch 6 - iter 1040/2606 - loss 0.19912505 - time (sec): 23.95 - samples/sec: 6199.07 - lr: 0.000026 - momentum: 0.000000
|
155 |
+
2023-10-19 10:32:58,306 epoch 6 - iter 1300/2606 - loss 0.20082645 - time (sec): 30.16 - samples/sec: 6168.82 - lr: 0.000025 - momentum: 0.000000
|
156 |
+
2023-10-19 10:33:04,202 epoch 6 - iter 1560/2606 - loss 0.19897949 - time (sec): 36.05 - samples/sec: 6086.20 - lr: 0.000024 - momentum: 0.000000
|
157 |
+
2023-10-19 10:33:10,249 epoch 6 - iter 1820/2606 - loss 0.19908713 - time (sec): 42.10 - samples/sec: 6031.05 - lr: 0.000024 - momentum: 0.000000
|
158 |
+
2023-10-19 10:33:16,477 epoch 6 - iter 2080/2606 - loss 0.19567788 - time (sec): 48.33 - samples/sec: 6073.86 - lr: 0.000023 - momentum: 0.000000
|
159 |
+
2023-10-19 10:33:22,717 epoch 6 - iter 2340/2606 - loss 0.19369496 - time (sec): 54.57 - samples/sec: 6090.00 - lr: 0.000023 - momentum: 0.000000
|
160 |
+
2023-10-19 10:33:28,844 epoch 6 - iter 2600/2606 - loss 0.19757153 - time (sec): 60.70 - samples/sec: 6043.76 - lr: 0.000022 - momentum: 0.000000
|
161 |
+
2023-10-19 10:33:28,988 ----------------------------------------------------------------------------------------------------
|
162 |
+
2023-10-19 10:33:28,989 EPOCH 6 done: loss 0.1977 - lr: 0.000022
|
163 |
+
2023-10-19 10:33:34,156 DEV : loss 0.1463058739900589 - f1-score (micro avg) 0.2827
|
164 |
+
2023-10-19 10:33:34,179 ----------------------------------------------------------------------------------------------------
|
165 |
+
2023-10-19 10:33:40,498 epoch 7 - iter 260/2606 - loss 0.18497675 - time (sec): 6.32 - samples/sec: 5665.48 - lr: 0.000022 - momentum: 0.000000
|
166 |
+
2023-10-19 10:33:46,641 epoch 7 - iter 520/2606 - loss 0.18548242 - time (sec): 12.46 - samples/sec: 5965.82 - lr: 0.000021 - momentum: 0.000000
|
167 |
+
2023-10-19 10:33:52,751 epoch 7 - iter 780/2606 - loss 0.18017411 - time (sec): 18.57 - samples/sec: 6010.61 - lr: 0.000021 - momentum: 0.000000
|
168 |
+
2023-10-19 10:33:58,890 epoch 7 - iter 1040/2606 - loss 0.18483920 - time (sec): 24.71 - samples/sec: 5890.98 - lr: 0.000020 - momentum: 0.000000
|
169 |
+
2023-10-19 10:34:05,274 epoch 7 - iter 1300/2606 - loss 0.18558021 - time (sec): 31.09 - samples/sec: 5864.86 - lr: 0.000019 - momentum: 0.000000
|
170 |
+
2023-10-19 10:34:11,422 epoch 7 - iter 1560/2606 - loss 0.18791905 - time (sec): 37.24 - samples/sec: 5917.49 - lr: 0.000019 - momentum: 0.000000
|
171 |
+
2023-10-19 10:34:17,694 epoch 7 - iter 1820/2606 - loss 0.18434786 - time (sec): 43.51 - samples/sec: 5929.83 - lr: 0.000018 - momentum: 0.000000
|
172 |
+
2023-10-19 10:34:23,763 epoch 7 - iter 2080/2606 - loss 0.18656303 - time (sec): 49.58 - samples/sec: 5913.72 - lr: 0.000018 - momentum: 0.000000
|
173 |
+
2023-10-19 10:34:30,010 epoch 7 - iter 2340/2606 - loss 0.18578748 - time (sec): 55.83 - samples/sec: 5918.57 - lr: 0.000017 - momentum: 0.000000
|
174 |
+
2023-10-19 10:34:36,238 epoch 7 - iter 2600/2606 - loss 0.18558486 - time (sec): 62.06 - samples/sec: 5906.60 - lr: 0.000017 - momentum: 0.000000
|
175 |
+
2023-10-19 10:34:36,388 ----------------------------------------------------------------------------------------------------
|
176 |
+
2023-10-19 10:34:36,388 EPOCH 7 done: loss 0.1859 - lr: 0.000017
|
177 |
+
2023-10-19 10:34:41,622 DEV : loss 0.1627039760351181 - f1-score (micro avg) 0.3008
|
178 |
+
2023-10-19 10:34:41,644 ----------------------------------------------------------------------------------------------------
|
179 |
+
2023-10-19 10:34:47,971 epoch 8 - iter 260/2606 - loss 0.18111838 - time (sec): 6.33 - samples/sec: 5775.54 - lr: 0.000016 - momentum: 0.000000
|
180 |
+
2023-10-19 10:34:54,080 epoch 8 - iter 520/2606 - loss 0.18137979 - time (sec): 12.44 - samples/sec: 5959.36 - lr: 0.000016 - momentum: 0.000000
|
181 |
+
2023-10-19 10:35:00,107 epoch 8 - iter 780/2606 - loss 0.17816738 - time (sec): 18.46 - samples/sec: 5880.44 - lr: 0.000015 - momentum: 0.000000
|
182 |
+
2023-10-19 10:35:06,288 epoch 8 - iter 1040/2606 - loss 0.17712968 - time (sec): 24.64 - samples/sec: 6001.89 - lr: 0.000014 - momentum: 0.000000
|
183 |
+
2023-10-19 10:35:12,317 epoch 8 - iter 1300/2606 - loss 0.17233100 - time (sec): 30.67 - samples/sec: 5979.56 - lr: 0.000014 - momentum: 0.000000
|
184 |
+
2023-10-19 10:35:18,311 epoch 8 - iter 1560/2606 - loss 0.17193540 - time (sec): 36.67 - samples/sec: 5914.70 - lr: 0.000013 - momentum: 0.000000
|
185 |
+
2023-10-19 10:35:24,459 epoch 8 - iter 1820/2606 - loss 0.17667085 - time (sec): 42.81 - samples/sec: 5954.85 - lr: 0.000013 - momentum: 0.000000
|
186 |
+
2023-10-19 10:35:30,561 epoch 8 - iter 2080/2606 - loss 0.17442414 - time (sec): 48.92 - samples/sec: 5950.78 - lr: 0.000012 - momentum: 0.000000
|
187 |
+
2023-10-19 10:35:36,623 epoch 8 - iter 2340/2606 - loss 0.17322645 - time (sec): 54.98 - samples/sec: 5977.27 - lr: 0.000012 - momentum: 0.000000
|
188 |
+
2023-10-19 10:35:42,807 epoch 8 - iter 2600/2606 - loss 0.17314424 - time (sec): 61.16 - samples/sec: 5996.05 - lr: 0.000011 - momentum: 0.000000
|
189 |
+
2023-10-19 10:35:42,940 ----------------------------------------------------------------------------------------------------
|
190 |
+
2023-10-19 10:35:42,941 EPOCH 8 done: loss 0.1731 - lr: 0.000011
|
191 |
+
2023-10-19 10:35:48,166 DEV : loss 0.16963887214660645 - f1-score (micro avg) 0.2761
|
192 |
+
2023-10-19 10:35:48,191 ----------------------------------------------------------------------------------------------------
|
193 |
+
2023-10-19 10:35:54,315 epoch 9 - iter 260/2606 - loss 0.14720245 - time (sec): 6.12 - samples/sec: 5984.96 - lr: 0.000011 - momentum: 0.000000
|
194 |
+
2023-10-19 10:36:00,503 epoch 9 - iter 520/2606 - loss 0.14323789 - time (sec): 12.31 - samples/sec: 6004.62 - lr: 0.000010 - momentum: 0.000000
|
195 |
+
2023-10-19 10:36:06,788 epoch 9 - iter 780/2606 - loss 0.15143859 - time (sec): 18.60 - samples/sec: 5925.32 - lr: 0.000009 - momentum: 0.000000
|
196 |
+
2023-10-19 10:36:13,033 epoch 9 - iter 1040/2606 - loss 0.15467000 - time (sec): 24.84 - samples/sec: 5826.48 - lr: 0.000009 - momentum: 0.000000
|
197 |
+
2023-10-19 10:36:19,209 epoch 9 - iter 1300/2606 - loss 0.16182122 - time (sec): 31.02 - samples/sec: 5895.96 - lr: 0.000008 - momentum: 0.000000
|
198 |
+
2023-10-19 10:36:25,386 epoch 9 - iter 1560/2606 - loss 0.16198334 - time (sec): 37.19 - samples/sec: 5907.62 - lr: 0.000008 - momentum: 0.000000
|
199 |
+
2023-10-19 10:36:31,525 epoch 9 - iter 1820/2606 - loss 0.16864382 - time (sec): 43.33 - samples/sec: 5904.81 - lr: 0.000007 - momentum: 0.000000
|
200 |
+
2023-10-19 10:36:37,662 epoch 9 - iter 2080/2606 - loss 0.16802225 - time (sec): 49.47 - samples/sec: 5890.69 - lr: 0.000007 - momentum: 0.000000
|
201 |
+
2023-10-19 10:36:43,833 epoch 9 - iter 2340/2606 - loss 0.16935804 - time (sec): 55.64 - samples/sec: 5932.50 - lr: 0.000006 - momentum: 0.000000
|
202 |
+
2023-10-19 10:36:49,940 epoch 9 - iter 2600/2606 - loss 0.16889534 - time (sec): 61.75 - samples/sec: 5931.99 - lr: 0.000006 - momentum: 0.000000
|
203 |
+
2023-10-19 10:36:50,092 ----------------------------------------------------------------------------------------------------
|
204 |
+
2023-10-19 10:36:50,092 EPOCH 9 done: loss 0.1687 - lr: 0.000006
|
205 |
+
2023-10-19 10:36:55,314 DEV : loss 0.17923599481582642 - f1-score (micro avg) 0.292
|
206 |
+
2023-10-19 10:36:55,338 ----------------------------------------------------------------------------------------------------
|
207 |
+
2023-10-19 10:37:01,470 epoch 10 - iter 260/2606 - loss 0.16670870 - time (sec): 6.13 - samples/sec: 6043.12 - lr: 0.000005 - momentum: 0.000000
|
208 |
+
2023-10-19 10:37:08,006 epoch 10 - iter 520/2606 - loss 0.17291448 - time (sec): 12.67 - samples/sec: 5812.79 - lr: 0.000004 - momentum: 0.000000
|
209 |
+
2023-10-19 10:37:14,177 epoch 10 - iter 780/2606 - loss 0.16212646 - time (sec): 18.84 - samples/sec: 5895.13 - lr: 0.000004 - momentum: 0.000000
|
210 |
+
2023-10-19 10:37:20,303 epoch 10 - iter 1040/2606 - loss 0.16389360 - time (sec): 24.96 - samples/sec: 5847.20 - lr: 0.000003 - momentum: 0.000000
|
211 |
+
2023-10-19 10:37:26,591 epoch 10 - iter 1300/2606 - loss 0.16609968 - time (sec): 31.25 - samples/sec: 5920.88 - lr: 0.000003 - momentum: 0.000000
|
212 |
+
2023-10-19 10:37:32,767 epoch 10 - iter 1560/2606 - loss 0.16761010 - time (sec): 37.43 - samples/sec: 5920.04 - lr: 0.000002 - momentum: 0.000000
|
213 |
+
2023-10-19 10:37:38,766 epoch 10 - iter 1820/2606 - loss 0.16561236 - time (sec): 43.43 - samples/sec: 5920.44 - lr: 0.000002 - momentum: 0.000000
|
214 |
+
2023-10-19 10:37:44,938 epoch 10 - iter 2080/2606 - loss 0.16463496 - time (sec): 49.60 - samples/sec: 5903.12 - lr: 0.000001 - momentum: 0.000000
|
215 |
+
2023-10-19 10:37:51,157 epoch 10 - iter 2340/2606 - loss 0.16348950 - time (sec): 55.82 - samples/sec: 5870.39 - lr: 0.000001 - momentum: 0.000000
|
216 |
+
2023-10-19 10:37:57,513 epoch 10 - iter 2600/2606 - loss 0.16347898 - time (sec): 62.17 - samples/sec: 5899.09 - lr: 0.000000 - momentum: 0.000000
|
217 |
+
2023-10-19 10:37:57,656 ----------------------------------------------------------------------------------------------------
|
218 |
+
2023-10-19 10:37:57,656 EPOCH 10 done: loss 0.1635 - lr: 0.000000
|
219 |
+
2023-10-19 10:38:02,888 DEV : loss 0.18416452407836914 - f1-score (micro avg) 0.287
|
220 |
+
2023-10-19 10:38:02,942 ----------------------------------------------------------------------------------------------------
|
221 |
+
2023-10-19 10:38:02,942 Loading model from best epoch ...
|
222 |
+
2023-10-19 10:38:03,021 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
|
223 |
+
2023-10-19 10:38:09,420
|
224 |
+
Results:
|
225 |
+
- F-score (micro) 0.2335
|
226 |
+
- F-score (macro) 0.1202
|
227 |
+
- Accuracy 0.1328
|
228 |
+
|
229 |
+
By class:
|
230 |
+
precision recall f1-score support
|
231 |
+
|
232 |
+
LOC 0.4412 0.3089 0.3634 1214
|
233 |
+
PER 0.1569 0.0792 0.1053 808
|
234 |
+
ORG 0.0217 0.0085 0.0122 353
|
235 |
+
HumanProd 0.0000 0.0000 0.0000 15
|
236 |
+
|
237 |
+
micro avg 0.3166 0.1849 0.2335 2390
|
238 |
+
macro avg 0.1549 0.0992 0.1202 2390
|
239 |
+
weighted avg 0.2803 0.1849 0.2220 2390
|
240 |
+
|
241 |
+
2023-10-19 10:38:09,420 ----------------------------------------------------------------------------------------------------
|