File size: 23,843 Bytes
43caa5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
2023-10-17 17:51:15,725 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,726 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): ElectraModel(
      (embeddings): ElectraEmbeddings(
        (word_embeddings): Embedding(32001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): ElectraEncoder(
        (layer): ModuleList(
          (0-11): 12 x ElectraLayer(
            (attention): ElectraAttention(
              (self): ElectraSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): ElectraSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): ElectraIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): ElectraOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=17, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-17 17:51:15,726 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 MultiCorpus: 1166 train + 165 dev + 415 test sentences
 - NER_HIPE_2022 Corpus: 1166 train + 165 dev + 415 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/newseye/fi/with_doc_seperator
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Train:  1166 sentences
2023-10-17 17:51:15,727         (train_with_dev=False, train_with_test=False)
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Training Params:
2023-10-17 17:51:15,727  - learning_rate: "5e-05" 
2023-10-17 17:51:15,727  - mini_batch_size: "8"
2023-10-17 17:51:15,727  - max_epochs: "10"
2023-10-17 17:51:15,727  - shuffle: "True"
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Plugins:
2023-10-17 17:51:15,727  - TensorboardLogger
2023-10-17 17:51:15,727  - LinearScheduler | warmup_fraction: '0.1'
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Final evaluation on model from best epoch (best-model.pt)
2023-10-17 17:51:15,727  - metric: "('micro avg', 'f1-score')"
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Computation:
2023-10-17 17:51:15,727  - compute on device: cuda:0
2023-10-17 17:51:15,727  - embedding storage: none
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 Model training base path: "hmbench-newseye/fi-hmteams/teams-base-historic-multilingual-discriminator-bs8-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,727 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:15,728 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-17 17:51:17,221 epoch 1 - iter 14/146 - loss 3.64932727 - time (sec): 1.49 - samples/sec: 2867.39 - lr: 0.000004 - momentum: 0.000000
2023-10-17 17:51:18,616 epoch 1 - iter 28/146 - loss 3.24147358 - time (sec): 2.89 - samples/sec: 3050.04 - lr: 0.000009 - momentum: 0.000000
2023-10-17 17:51:20,366 epoch 1 - iter 42/146 - loss 2.52637762 - time (sec): 4.64 - samples/sec: 2820.99 - lr: 0.000014 - momentum: 0.000000
2023-10-17 17:51:21,662 epoch 1 - iter 56/146 - loss 2.07805214 - time (sec): 5.93 - samples/sec: 2843.80 - lr: 0.000019 - momentum: 0.000000
2023-10-17 17:51:22,860 epoch 1 - iter 70/146 - loss 1.82936614 - time (sec): 7.13 - samples/sec: 2864.60 - lr: 0.000024 - momentum: 0.000000
2023-10-17 17:51:24,170 epoch 1 - iter 84/146 - loss 1.60733726 - time (sec): 8.44 - samples/sec: 2875.49 - lr: 0.000028 - momentum: 0.000000
2023-10-17 17:51:25,653 epoch 1 - iter 98/146 - loss 1.41652938 - time (sec): 9.92 - samples/sec: 2901.33 - lr: 0.000033 - momentum: 0.000000
2023-10-17 17:51:26,915 epoch 1 - iter 112/146 - loss 1.29603818 - time (sec): 11.19 - samples/sec: 2910.85 - lr: 0.000038 - momentum: 0.000000
2023-10-17 17:51:28,301 epoch 1 - iter 126/146 - loss 1.18560723 - time (sec): 12.57 - samples/sec: 2914.11 - lr: 0.000043 - momentum: 0.000000
2023-10-17 17:51:30,183 epoch 1 - iter 140/146 - loss 1.07325034 - time (sec): 14.45 - samples/sec: 2922.08 - lr: 0.000048 - momentum: 0.000000
2023-10-17 17:51:31,007 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:31,008 EPOCH 1 done: loss 1.0409 - lr: 0.000048
2023-10-17 17:51:31,833 DEV : loss 0.19442486763000488 - f1-score (micro avg)  0.4893
2023-10-17 17:51:31,838 saving best model
2023-10-17 17:51:32,169 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:33,822 epoch 2 - iter 14/146 - loss 0.28292930 - time (sec): 1.65 - samples/sec: 2889.28 - lr: 0.000050 - momentum: 0.000000
2023-10-17 17:51:35,067 epoch 2 - iter 28/146 - loss 0.25593623 - time (sec): 2.90 - samples/sec: 2924.31 - lr: 0.000049 - momentum: 0.000000
2023-10-17 17:51:36,271 epoch 2 - iter 42/146 - loss 0.24056504 - time (sec): 4.10 - samples/sec: 2973.51 - lr: 0.000048 - momentum: 0.000000
2023-10-17 17:51:37,400 epoch 2 - iter 56/146 - loss 0.24098347 - time (sec): 5.23 - samples/sec: 3023.55 - lr: 0.000048 - momentum: 0.000000
2023-10-17 17:51:39,011 epoch 2 - iter 70/146 - loss 0.23990925 - time (sec): 6.84 - samples/sec: 3004.42 - lr: 0.000047 - momentum: 0.000000
2023-10-17 17:51:40,625 epoch 2 - iter 84/146 - loss 0.22035000 - time (sec): 8.46 - samples/sec: 2931.59 - lr: 0.000047 - momentum: 0.000000
2023-10-17 17:51:42,021 epoch 2 - iter 98/146 - loss 0.20717226 - time (sec): 9.85 - samples/sec: 2902.48 - lr: 0.000046 - momentum: 0.000000
2023-10-17 17:51:43,290 epoch 2 - iter 112/146 - loss 0.20187917 - time (sec): 11.12 - samples/sec: 2913.22 - lr: 0.000046 - momentum: 0.000000
2023-10-17 17:51:44,685 epoch 2 - iter 126/146 - loss 0.19646511 - time (sec): 12.52 - samples/sec: 2935.37 - lr: 0.000045 - momentum: 0.000000
2023-10-17 17:51:46,635 epoch 2 - iter 140/146 - loss 0.18970816 - time (sec): 14.46 - samples/sec: 2944.06 - lr: 0.000045 - momentum: 0.000000
2023-10-17 17:51:47,195 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:47,195 EPOCH 2 done: loss 0.1871 - lr: 0.000045
2023-10-17 17:51:48,684 DEV : loss 0.12840227782726288 - f1-score (micro avg)  0.6597
2023-10-17 17:51:48,690 saving best model
2023-10-17 17:51:49,150 ----------------------------------------------------------------------------------------------------
2023-10-17 17:51:50,352 epoch 3 - iter 14/146 - loss 0.12172571 - time (sec): 1.20 - samples/sec: 2897.39 - lr: 0.000044 - momentum: 0.000000
2023-10-17 17:51:52,174 epoch 3 - iter 28/146 - loss 0.09513845 - time (sec): 3.02 - samples/sec: 2796.32 - lr: 0.000043 - momentum: 0.000000
2023-10-17 17:51:53,613 epoch 3 - iter 42/146 - loss 0.09306659 - time (sec): 4.46 - samples/sec: 2847.48 - lr: 0.000043 - momentum: 0.000000
2023-10-17 17:51:55,371 epoch 3 - iter 56/146 - loss 0.08892443 - time (sec): 6.22 - samples/sec: 2801.67 - lr: 0.000042 - momentum: 0.000000
2023-10-17 17:51:56,653 epoch 3 - iter 70/146 - loss 0.09802952 - time (sec): 7.50 - samples/sec: 2817.17 - lr: 0.000042 - momentum: 0.000000
2023-10-17 17:51:58,035 epoch 3 - iter 84/146 - loss 0.09938552 - time (sec): 8.88 - samples/sec: 2849.02 - lr: 0.000041 - momentum: 0.000000
2023-10-17 17:51:59,244 epoch 3 - iter 98/146 - loss 0.09932542 - time (sec): 10.09 - samples/sec: 2830.08 - lr: 0.000041 - momentum: 0.000000
2023-10-17 17:52:00,940 epoch 3 - iter 112/146 - loss 0.09988457 - time (sec): 11.79 - samples/sec: 2851.55 - lr: 0.000040 - momentum: 0.000000
2023-10-17 17:52:02,529 epoch 3 - iter 126/146 - loss 0.09937404 - time (sec): 13.38 - samples/sec: 2840.97 - lr: 0.000040 - momentum: 0.000000
2023-10-17 17:52:04,197 epoch 3 - iter 140/146 - loss 0.10083464 - time (sec): 15.04 - samples/sec: 2855.29 - lr: 0.000039 - momentum: 0.000000
2023-10-17 17:52:04,661 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:04,661 EPOCH 3 done: loss 0.0986 - lr: 0.000039
2023-10-17 17:52:05,924 DEV : loss 0.11469055712223053 - f1-score (micro avg)  0.7558
2023-10-17 17:52:05,929 saving best model
2023-10-17 17:52:06,381 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:07,886 epoch 4 - iter 14/146 - loss 0.08001683 - time (sec): 1.50 - samples/sec: 3162.98 - lr: 0.000038 - momentum: 0.000000
2023-10-17 17:52:09,311 epoch 4 - iter 28/146 - loss 0.08313806 - time (sec): 2.92 - samples/sec: 3113.44 - lr: 0.000038 - momentum: 0.000000
2023-10-17 17:52:10,918 epoch 4 - iter 42/146 - loss 0.08932962 - time (sec): 4.53 - samples/sec: 2955.43 - lr: 0.000037 - momentum: 0.000000
2023-10-17 17:52:12,208 epoch 4 - iter 56/146 - loss 0.08311168 - time (sec): 5.82 - samples/sec: 2896.03 - lr: 0.000037 - momentum: 0.000000
2023-10-17 17:52:13,719 epoch 4 - iter 70/146 - loss 0.07749470 - time (sec): 7.33 - samples/sec: 2885.81 - lr: 0.000036 - momentum: 0.000000
2023-10-17 17:52:15,338 epoch 4 - iter 84/146 - loss 0.07439762 - time (sec): 8.95 - samples/sec: 2898.06 - lr: 0.000036 - momentum: 0.000000
2023-10-17 17:52:16,556 epoch 4 - iter 98/146 - loss 0.07128648 - time (sec): 10.17 - samples/sec: 2885.30 - lr: 0.000035 - momentum: 0.000000
2023-10-17 17:52:17,985 epoch 4 - iter 112/146 - loss 0.07040154 - time (sec): 11.60 - samples/sec: 2874.41 - lr: 0.000035 - momentum: 0.000000
2023-10-17 17:52:19,504 epoch 4 - iter 126/146 - loss 0.06725890 - time (sec): 13.12 - samples/sec: 2895.24 - lr: 0.000034 - momentum: 0.000000
2023-10-17 17:52:21,050 epoch 4 - iter 140/146 - loss 0.06467563 - time (sec): 14.66 - samples/sec: 2904.48 - lr: 0.000034 - momentum: 0.000000
2023-10-17 17:52:21,683 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:21,684 EPOCH 4 done: loss 0.0643 - lr: 0.000034
2023-10-17 17:52:22,973 DEV : loss 0.12082179635763168 - f1-score (micro avg)  0.7424
2023-10-17 17:52:22,978 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:24,381 epoch 5 - iter 14/146 - loss 0.06422344 - time (sec): 1.40 - samples/sec: 2739.89 - lr: 0.000033 - momentum: 0.000000
2023-10-17 17:52:25,958 epoch 5 - iter 28/146 - loss 0.05442231 - time (sec): 2.98 - samples/sec: 2842.57 - lr: 0.000032 - momentum: 0.000000
2023-10-17 17:52:27,408 epoch 5 - iter 42/146 - loss 0.04507790 - time (sec): 4.43 - samples/sec: 2940.79 - lr: 0.000032 - momentum: 0.000000
2023-10-17 17:52:29,131 epoch 5 - iter 56/146 - loss 0.05002005 - time (sec): 6.15 - samples/sec: 2884.12 - lr: 0.000031 - momentum: 0.000000
2023-10-17 17:52:30,452 epoch 5 - iter 70/146 - loss 0.04635323 - time (sec): 7.47 - samples/sec: 2896.08 - lr: 0.000031 - momentum: 0.000000
2023-10-17 17:52:31,711 epoch 5 - iter 84/146 - loss 0.04594857 - time (sec): 8.73 - samples/sec: 2876.47 - lr: 0.000030 - momentum: 0.000000
2023-10-17 17:52:33,300 epoch 5 - iter 98/146 - loss 0.04185253 - time (sec): 10.32 - samples/sec: 2899.36 - lr: 0.000030 - momentum: 0.000000
2023-10-17 17:52:34,569 epoch 5 - iter 112/146 - loss 0.04051975 - time (sec): 11.59 - samples/sec: 2904.58 - lr: 0.000029 - momentum: 0.000000
2023-10-17 17:52:36,442 epoch 5 - iter 126/146 - loss 0.04226250 - time (sec): 13.46 - samples/sec: 2874.79 - lr: 0.000029 - momentum: 0.000000
2023-10-17 17:52:37,925 epoch 5 - iter 140/146 - loss 0.04401633 - time (sec): 14.95 - samples/sec: 2857.55 - lr: 0.000028 - momentum: 0.000000
2023-10-17 17:52:38,457 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:38,458 EPOCH 5 done: loss 0.0431 - lr: 0.000028
2023-10-17 17:52:39,713 DEV : loss 0.12378506362438202 - f1-score (micro avg)  0.7638
2023-10-17 17:52:39,718 saving best model
2023-10-17 17:52:40,156 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:41,483 epoch 6 - iter 14/146 - loss 0.02821174 - time (sec): 1.32 - samples/sec: 2970.80 - lr: 0.000027 - momentum: 0.000000
2023-10-17 17:52:43,424 epoch 6 - iter 28/146 - loss 0.02719467 - time (sec): 3.27 - samples/sec: 2716.97 - lr: 0.000027 - momentum: 0.000000
2023-10-17 17:52:44,685 epoch 6 - iter 42/146 - loss 0.02593663 - time (sec): 4.53 - samples/sec: 2689.02 - lr: 0.000026 - momentum: 0.000000
2023-10-17 17:52:46,264 epoch 6 - iter 56/146 - loss 0.02530266 - time (sec): 6.11 - samples/sec: 2759.35 - lr: 0.000026 - momentum: 0.000000
2023-10-17 17:52:48,033 epoch 6 - iter 70/146 - loss 0.02607955 - time (sec): 7.87 - samples/sec: 2739.94 - lr: 0.000025 - momentum: 0.000000
2023-10-17 17:52:49,466 epoch 6 - iter 84/146 - loss 0.02856308 - time (sec): 9.31 - samples/sec: 2799.68 - lr: 0.000025 - momentum: 0.000000
2023-10-17 17:52:50,941 epoch 6 - iter 98/146 - loss 0.03007988 - time (sec): 10.78 - samples/sec: 2810.94 - lr: 0.000024 - momentum: 0.000000
2023-10-17 17:52:52,315 epoch 6 - iter 112/146 - loss 0.02972773 - time (sec): 12.16 - samples/sec: 2807.81 - lr: 0.000024 - momentum: 0.000000
2023-10-17 17:52:53,786 epoch 6 - iter 126/146 - loss 0.02975220 - time (sec): 13.63 - samples/sec: 2816.61 - lr: 0.000023 - momentum: 0.000000
2023-10-17 17:52:55,150 epoch 6 - iter 140/146 - loss 0.03021626 - time (sec): 14.99 - samples/sec: 2858.97 - lr: 0.000023 - momentum: 0.000000
2023-10-17 17:52:55,649 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:55,649 EPOCH 6 done: loss 0.0306 - lr: 0.000023
2023-10-17 17:52:56,904 DEV : loss 0.1446683704853058 - f1-score (micro avg)  0.7591
2023-10-17 17:52:56,909 ----------------------------------------------------------------------------------------------------
2023-10-17 17:52:58,252 epoch 7 - iter 14/146 - loss 0.01067881 - time (sec): 1.34 - samples/sec: 2768.15 - lr: 0.000022 - momentum: 0.000000
2023-10-17 17:52:59,748 epoch 7 - iter 28/146 - loss 0.01553625 - time (sec): 2.84 - samples/sec: 2972.30 - lr: 0.000021 - momentum: 0.000000
2023-10-17 17:53:01,210 epoch 7 - iter 42/146 - loss 0.02338274 - time (sec): 4.30 - samples/sec: 3013.27 - lr: 0.000021 - momentum: 0.000000
2023-10-17 17:53:02,788 epoch 7 - iter 56/146 - loss 0.02276518 - time (sec): 5.88 - samples/sec: 2958.23 - lr: 0.000020 - momentum: 0.000000
2023-10-17 17:53:04,135 epoch 7 - iter 70/146 - loss 0.02040107 - time (sec): 7.22 - samples/sec: 2979.45 - lr: 0.000020 - momentum: 0.000000
2023-10-17 17:53:05,707 epoch 7 - iter 84/146 - loss 0.01887587 - time (sec): 8.80 - samples/sec: 2899.23 - lr: 0.000019 - momentum: 0.000000
2023-10-17 17:53:07,090 epoch 7 - iter 98/146 - loss 0.02062489 - time (sec): 10.18 - samples/sec: 2927.81 - lr: 0.000019 - momentum: 0.000000
2023-10-17 17:53:08,404 epoch 7 - iter 112/146 - loss 0.02270664 - time (sec): 11.49 - samples/sec: 2967.68 - lr: 0.000018 - momentum: 0.000000
2023-10-17 17:53:10,026 epoch 7 - iter 126/146 - loss 0.02108995 - time (sec): 13.12 - samples/sec: 2940.26 - lr: 0.000018 - momentum: 0.000000
2023-10-17 17:53:11,723 epoch 7 - iter 140/146 - loss 0.02146590 - time (sec): 14.81 - samples/sec: 2904.13 - lr: 0.000017 - momentum: 0.000000
2023-10-17 17:53:12,214 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:12,214 EPOCH 7 done: loss 0.0221 - lr: 0.000017
2023-10-17 17:53:13,493 DEV : loss 0.13926248252391815 - f1-score (micro avg)  0.7588
2023-10-17 17:53:13,498 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:14,805 epoch 8 - iter 14/146 - loss 0.04199538 - time (sec): 1.31 - samples/sec: 2869.25 - lr: 0.000016 - momentum: 0.000000
2023-10-17 17:53:16,360 epoch 8 - iter 28/146 - loss 0.03623353 - time (sec): 2.86 - samples/sec: 2858.33 - lr: 0.000016 - momentum: 0.000000
2023-10-17 17:53:17,765 epoch 8 - iter 42/146 - loss 0.02909497 - time (sec): 4.27 - samples/sec: 2789.70 - lr: 0.000015 - momentum: 0.000000
2023-10-17 17:53:19,130 epoch 8 - iter 56/146 - loss 0.02582501 - time (sec): 5.63 - samples/sec: 2822.08 - lr: 0.000015 - momentum: 0.000000
2023-10-17 17:53:20,472 epoch 8 - iter 70/146 - loss 0.02248507 - time (sec): 6.97 - samples/sec: 2905.70 - lr: 0.000014 - momentum: 0.000000
2023-10-17 17:53:21,992 epoch 8 - iter 84/146 - loss 0.02039668 - time (sec): 8.49 - samples/sec: 2948.75 - lr: 0.000014 - momentum: 0.000000
2023-10-17 17:53:23,243 epoch 8 - iter 98/146 - loss 0.02065091 - time (sec): 9.74 - samples/sec: 2953.56 - lr: 0.000013 - momentum: 0.000000
2023-10-17 17:53:24,793 epoch 8 - iter 112/146 - loss 0.01976567 - time (sec): 11.29 - samples/sec: 2967.93 - lr: 0.000013 - momentum: 0.000000
2023-10-17 17:53:26,152 epoch 8 - iter 126/146 - loss 0.01878112 - time (sec): 12.65 - samples/sec: 2964.08 - lr: 0.000012 - momentum: 0.000000
2023-10-17 17:53:27,832 epoch 8 - iter 140/146 - loss 0.01820202 - time (sec): 14.33 - samples/sec: 2977.10 - lr: 0.000012 - momentum: 0.000000
2023-10-17 17:53:28,544 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:28,544 EPOCH 8 done: loss 0.0180 - lr: 0.000012
2023-10-17 17:53:29,816 DEV : loss 0.1338219791650772 - f1-score (micro avg)  0.8125
2023-10-17 17:53:29,821 saving best model
2023-10-17 17:53:30,265 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:31,690 epoch 9 - iter 14/146 - loss 0.00900173 - time (sec): 1.42 - samples/sec: 3146.38 - lr: 0.000011 - momentum: 0.000000
2023-10-17 17:53:33,172 epoch 9 - iter 28/146 - loss 0.01353775 - time (sec): 2.91 - samples/sec: 2969.76 - lr: 0.000010 - momentum: 0.000000
2023-10-17 17:53:34,800 epoch 9 - iter 42/146 - loss 0.01411638 - time (sec): 4.53 - samples/sec: 2925.56 - lr: 0.000010 - momentum: 0.000000
2023-10-17 17:53:36,570 epoch 9 - iter 56/146 - loss 0.01717406 - time (sec): 6.30 - samples/sec: 2832.55 - lr: 0.000009 - momentum: 0.000000
2023-10-17 17:53:38,322 epoch 9 - iter 70/146 - loss 0.01651724 - time (sec): 8.06 - samples/sec: 2779.14 - lr: 0.000009 - momentum: 0.000000
2023-10-17 17:53:39,653 epoch 9 - iter 84/146 - loss 0.01447022 - time (sec): 9.39 - samples/sec: 2809.42 - lr: 0.000008 - momentum: 0.000000
2023-10-17 17:53:41,289 epoch 9 - iter 98/146 - loss 0.01305284 - time (sec): 11.02 - samples/sec: 2793.58 - lr: 0.000008 - momentum: 0.000000
2023-10-17 17:53:42,484 epoch 9 - iter 112/146 - loss 0.01276152 - time (sec): 12.22 - samples/sec: 2817.73 - lr: 0.000007 - momentum: 0.000000
2023-10-17 17:53:43,877 epoch 9 - iter 126/146 - loss 0.01240197 - time (sec): 13.61 - samples/sec: 2825.26 - lr: 0.000007 - momentum: 0.000000
2023-10-17 17:53:45,221 epoch 9 - iter 140/146 - loss 0.01247661 - time (sec): 14.95 - samples/sec: 2864.35 - lr: 0.000006 - momentum: 0.000000
2023-10-17 17:53:45,888 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:45,888 EPOCH 9 done: loss 0.0125 - lr: 0.000006
2023-10-17 17:53:47,153 DEV : loss 0.1447986215353012 - f1-score (micro avg)  0.7973
2023-10-17 17:53:47,157 ----------------------------------------------------------------------------------------------------
2023-10-17 17:53:48,470 epoch 10 - iter 14/146 - loss 0.01128755 - time (sec): 1.31 - samples/sec: 3088.10 - lr: 0.000005 - momentum: 0.000000
2023-10-17 17:53:49,879 epoch 10 - iter 28/146 - loss 0.01029360 - time (sec): 2.72 - samples/sec: 2992.37 - lr: 0.000005 - momentum: 0.000000
2023-10-17 17:53:51,519 epoch 10 - iter 42/146 - loss 0.01240356 - time (sec): 4.36 - samples/sec: 2861.25 - lr: 0.000004 - momentum: 0.000000
2023-10-17 17:53:52,894 epoch 10 - iter 56/146 - loss 0.01088444 - time (sec): 5.74 - samples/sec: 2944.20 - lr: 0.000004 - momentum: 0.000000
2023-10-17 17:53:54,438 epoch 10 - iter 70/146 - loss 0.01024052 - time (sec): 7.28 - samples/sec: 2969.04 - lr: 0.000003 - momentum: 0.000000
2023-10-17 17:53:56,006 epoch 10 - iter 84/146 - loss 0.00903528 - time (sec): 8.85 - samples/sec: 2930.05 - lr: 0.000003 - momentum: 0.000000
2023-10-17 17:53:57,751 epoch 10 - iter 98/146 - loss 0.01043615 - time (sec): 10.59 - samples/sec: 2857.32 - lr: 0.000002 - momentum: 0.000000
2023-10-17 17:53:59,290 epoch 10 - iter 112/146 - loss 0.01019047 - time (sec): 12.13 - samples/sec: 2865.50 - lr: 0.000002 - momentum: 0.000000
2023-10-17 17:54:00,771 epoch 10 - iter 126/146 - loss 0.00966469 - time (sec): 13.61 - samples/sec: 2864.12 - lr: 0.000001 - momentum: 0.000000
2023-10-17 17:54:02,058 epoch 10 - iter 140/146 - loss 0.01137448 - time (sec): 14.90 - samples/sec: 2865.91 - lr: 0.000000 - momentum: 0.000000
2023-10-17 17:54:02,617 ----------------------------------------------------------------------------------------------------
2023-10-17 17:54:02,617 EPOCH 10 done: loss 0.0111 - lr: 0.000000
2023-10-17 17:54:03,903 DEV : loss 0.14230762422084808 - f1-score (micro avg)  0.8044
2023-10-17 17:54:04,247 ----------------------------------------------------------------------------------------------------
2023-10-17 17:54:04,249 Loading model from best epoch ...
2023-10-17 17:54:05,633 SequenceTagger predicts: Dictionary with 17 tags: O, S-LOC, B-LOC, E-LOC, I-LOC, S-PER, B-PER, E-PER, I-PER, S-ORG, B-ORG, E-ORG, I-ORG, S-HumanProd, B-HumanProd, E-HumanProd, I-HumanProd
2023-10-17 17:54:08,070 
Results:
- F-score (micro) 0.7704
- F-score (macro) 0.7203
- Accuracy 0.6484

By class:
              precision    recall  f1-score   support

         PER     0.8179    0.8649    0.8408       348
         LOC     0.6503    0.8123    0.7223       261
         ORG     0.5745    0.5192    0.5455        52
   HumanProd     0.7727    0.7727    0.7727        22

   micro avg     0.7300    0.8155    0.7704       683
   macro avg     0.7039    0.7423    0.7203       683
weighted avg     0.7339    0.8155    0.7708       683

2023-10-17 17:54:08,070 ----------------------------------------------------------------------------------------------------