hoangduy0610 commited on
Commit
e008a76
·
verified ·
1 Parent(s): c8a0fb7

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -15
README.md CHANGED
@@ -27,6 +27,8 @@ model-index:
27
  - name: F1
28
  type: f1
29
  value: 0.8684210526315789
 
 
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -34,24 +36,14 @@ should probably proofread and complete it, then remove this comment. -->
34
 
35
  # uit-cs221-sentiment-analysis
36
 
37
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
 
 
38
  It achieves the following results on the evaluation set:
39
  - Loss: 0.3057
40
  - Accuracy: 0.8667
41
  - F1: 0.8684
42
 
43
- ## Model description
44
-
45
- More information needed
46
-
47
- ## Intended uses & limitations
48
-
49
- More information needed
50
-
51
- ## Training and evaluation data
52
-
53
- More information needed
54
-
55
  ## Training procedure
56
 
57
  ### Training hyperparameters
@@ -67,11 +59,13 @@ The following hyperparameters were used during training:
67
 
68
  ### Training results
69
 
70
-
 
 
71
 
72
  ### Framework versions
73
 
74
  - Transformers 4.38.2
75
  - Pytorch 2.1.2
76
  - Datasets 2.1.0
77
- - Tokenizers 0.15.2
 
27
  - name: F1
28
  type: f1
29
  value: 0.8684210526315789
30
+ language:
31
+ - en
32
  ---
33
 
34
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
36
 
37
  # uit-cs221-sentiment-analysis
38
 
39
+ ## Model description
40
+
41
+ This model is used for sentiment analysis. It is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
42
  It achieves the following results on the evaluation set:
43
  - Loss: 0.3057
44
  - Accuracy: 0.8667
45
  - F1: 0.8684
46
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  ## Training procedure
48
 
49
  ### Training hyperparameters
 
59
 
60
  ### Training results
61
 
62
+ - Loss: 0.3057
63
+ - Accuracy: 0.8667
64
+ - F1: 0.8684
65
 
66
  ### Framework versions
67
 
68
  - Transformers 4.38.2
69
  - Pytorch 2.1.2
70
  - Datasets 2.1.0
71
+ - Tokenizers 0.15.2