--- library_name: transformers language: - fa license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large fa - Mobin Tadbir Sharif results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: fa split: None args: 'config: fa, split: test' metrics: - name: Wer type: wer value: 91.65836687359301 --- # Whisper Large fa - Mobin Tadbir Sharif This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8106 - Wer: 91.6584 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 1.581 | 0.0869 | 1000 | 2.5843 | 104.8093 | | 2.2554 | 0.1738 | 2000 | 2.3093 | 111.6202 | | 2.1214 | 0.2607 | 3000 | 2.1839 | 105.5556 | | 2.024 | 0.3477 | 4000 | 2.1036 | 113.6312 | | 1.9005 | 0.4346 | 5000 | 2.0217 | 135.5618 | | 1.7344 | 0.5215 | 6000 | 1.8019 | 107.0619 | | 1.4862 | 0.6084 | 7000 | 1.5560 | 101.7136 | | 1.253 | 0.6953 | 8000 | 1.3641 | 106.0004 | | 1.0361 | 0.7822 | 9000 | 1.1275 | 98.4010 | | 0.8509 | 0.8692 | 10000 | 0.9458 | 97.6069 | | 0.7212 | 0.9561 | 11000 | 0.8106 | 91.6584 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0