--- library_name: transformers license: apache-2.0 base_model: microsoft/swinv2-small-patch4-window16-256 tags: - generated_from_trainer datasets: - howdyaendra/xblock-social-screenshots model-index: - name: microsoft-swinv2-small-patch4-window16-256-finetuned-xblockm results: [] --- # microsoft-swinv2-small-patch4-window16-256-finetuned-xblockm This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on the [howdyaendra/xblock-social-screenshots](https://huggingface.co/datasets/howdyaendra/xblock-social-screenshots) dataset. It achieves the following results on the evaluation set: - Loss: 0.1252 - Roc Auc: 0.9535 ## Model description This model is trained on several thousand screenshots reported to the [XBlock 3rd-party Bluesky labeller service](https://bsky.app/profile/xblock.aendra.dev). It is intended to be used to label Bluesky posts that have screenshots from social media sites embedded in them. Please also see [aendra-rininsland/xblock](https://github.com/aendra-rininsland/xblock). ## Intended uses & limitations Screenshot moderation ## Training and evaluation data 20% split of 1618 images ## Training procedure See [notebook](https://github.com/aendra-rininsland/xblock-notebooks/blob/main/xblock-m.ipynb). ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Roc Auc | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.4357 | 0.9877 | 20 | 0.2544 | 0.7784 | | 0.2027 | 1.9753 | 40 | 0.2016 | 0.8431 | | 0.1743 | 2.9630 | 60 | 0.1701 | 0.8912 | | 0.1625 | 4.0 | 81 | 0.1677 | 0.9083 | | 0.1321 | 4.9877 | 101 | 0.1447 | 0.9246 | | 0.1155 | 5.9753 | 121 | 0.1418 | 0.9311 | | 0.0959 | 6.9630 | 141 | 0.1381 | 0.9460 | | 0.0788 | 7.9012 | 160 | 0.1252 | 0.9535 | ### Framework versions - Transformers 4.44.1 - Pytorch 2.2.2 - Datasets 3.0.1 - Tokenizers 0.19.1