--- license: apache-2.0 library_name: transformers pipeline_tag: text-generation --- # Grok-1 (PyTorch Version) This repository contains the model and weights of the **torch version** of Grok-1 open-weights model. You could find a complete example code of using the torch-version Grok-1 in [ColossalAI GitHub Repository](https://github.com/hpcaitech/ColossalAI/tree/main/examples/language/grok-1). We also applies parallelism techniques from ColossalAI framework (Tensor Parallelism for now) to accelerate the inference. You could find the original weights released by [xAI](https://x.ai/blog) in [Hugging Face](https://huggingface.co/xai-org/grok-1) and the original model in the Grok open release [GitHub Repository](https://github.com/xai-org/grok-1/tree/main). ## Conversion We translated the original modeling written in JAX into PyTorch version, and converted the weights by mapping tensor files with parameter keys, de-quantizing the tensors with corresponding packed scales, and save to checkpoint file with torch APIs. A transformers-compatible version of tokenizer is contributed by [Xenova](https://huggingface.co/Xenova) and [ArthurZ](https://huggingface.co/ArthurZ). ## Usage ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer torch.set_default_dtype(torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained("hpcai-tech/grok-1", trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( "hpcai-tech/grok-1", trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16, ) model.eval() text = "Replace this with your text" input_ids = tokenizer(text, return_tensors="pt").input_ids input_ids = input_ids.cuda() attention_mask = torch.ones_like(input_ids) generate_kwargs = {} # Add any additional args if you want inputs = { "input_ids": input_ids, "attention_mask": attention_mask, **generate_kwargs, } outputs = model.generate(**inputs) print(outputs) ``` Note: A multi-GPU machine is required to test the model with the example code (For now, a 8x80G multi-GPU machine is required).