--- library_name: peft tags: - alignment-handbook - trl - dpo - generated_from_trainer base_model: norallm/normistral-7b-warm datasets: - hugodk-sch/aftonposten_title_prefs model-index: - name: ap-normistral-7b-align-scan results: [] --- # ap-normistral-7b-align-scan This model is a fine-tuned version of [data/ap-normistral-7b-sft-qlora](https://huggingface.co/data/ap-normistral-7b-sft-qlora) on the hugodk-sch/aftonposten_title_prefs dataset. It achieves the following results on the evaluation set: - Loss: 0.7295 - Rewards/chosen: -0.1029 - Rewards/rejected: -0.1921 - Rewards/accuracies: 0.5507 - Rewards/margins: 0.0893 - Logps/rejected: -36.2867 - Logps/chosen: -32.6146 - Logits/rejected: 98.5914 - Logits/chosen: 98.6142 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:| | 0.6845 | 0.26 | 100 | 0.7399 | 0.0002 | -0.0442 | 0.5245 | 0.0444 | -36.0401 | -32.4428 | 98.7048 | 98.7141 | | 0.6115 | 0.52 | 200 | 0.7253 | -0.1275 | -0.2129 | 0.5303 | 0.0854 | -36.3214 | -32.6557 | 98.6043 | 98.6285 | | 0.5545 | 0.78 | 300 | 0.7249 | -0.1096 | -0.2129 | 0.5282 | 0.1033 | -36.3214 | -32.6259 | 98.6240 | 98.6482 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.14.6 - Tokenizers 0.15.1