--- license: apache-2.0 language: - en base_model: - deepseek-ai/DeepSeek-V3 library_name: transformers tags: - DeepSeek - abliterated - uncensored --- # huihui-ai/DeepSeek-V3-abliterated This is an uncensored version of [deepseek-ai/DeepSeek-V3](https://huggingface.co/deepseek-ai/DeepSeek-V3) created with abliteration (see [remove-refusals-with-transformers](https://github.com/Sumandora/remove-refusals-with-transformers) to know more about it). This is a crude, proof-of-concept implementation to remove refusals from an LLM model without using TransformerLens. # Note All files have been uploaded. If you have already downloaded it before, please download again to automatically get any missing files. ``` huggingface-cli download huihui-ai/DeepSeek-V3-abliterated --local-dir ./huihui-ai/DeepSeek-V3-abliterated --token hf_xxxx ``` The next goal is [deepseek-ai/DeepSeek-V3-0324](https://huggingface.co/deepseek-ai/DeepSeek-V3-0324). ## Use with ollama You can use [huihui_ai/deepseek-v3-abliterated](https://ollama.com/huihui_ai/deepseek-v3-abliterated) directly ``` ollama run huihui_ai/deepseek-v3-abliterated ``` [Q4_K_M](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-q4_K_M), [Q3_K_M](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-Q3_K_M), [Q2_K](https://ollama.com/huihui_ai/deepseek-v3-abliterated:671b-Q2_K) have been uploaded. ## Use with transformers ``` from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextStreamer import torch import os import signal cpu_count = os.cpu_count() print(f"Number of CPU cores in the system: {cpu_count}") half_cpu_count = cpu_count // 2 os.environ["MKL_NUM_THREADS"] = str(half_cpu_count) os.environ["OMP_NUM_THREADS"] = str(half_cpu_count) torch.set_num_threads(half_cpu_count) print(f"PyTorch threads: {torch.get_num_threads()}") print(f"MKL threads: {os.getenv('MKL_NUM_THREADS')}") print(f"OMP threads: {os.getenv('OMP_NUM_THREADS')}") NEW_MODEL_ID = "huihui-ai/DeepSeek-V3-abliterated" print(f"Load Model {NEW_MODEL_ID} ... ") quant_config_4 = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True, llm_int8_enable_fp32_cpu_offload=True, ) # Single RTX 4090 NUM_TRANS_LAYERS = 61 def create_device_map(): device_map = { 'model.embed_tokens': 0, 'model.norm': 0, 'model.rotary_emb': 0, 'lm_head': 0 } for start, end, gpu_id in [(0, 5, 0)]: for i in range(start, end): device_map[f'model.layers.{i}'] = gpu_id for i in range(5, NUM_TRANS_LAYERS): device_map[f'model.layers.{i}'] = "cpu" return device_map device_map = create_device_map() model = AutoModelForCausalLM.from_pretrained( NEW_MODEL_ID, device_map=device_map, trust_remote_code=True, quantization_config=quant_config_4, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(NEW_MODEL_ID, trust_remote_code=True) if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token tokenizer.pad_token_id = tokenizer.eos_token_id initial_messages = [{"role": "system", "content": "You are a helpful assistant."}] messages = initial_messages.copy() class CustomTextStreamer(TextStreamer): def __init__(self, tokenizer, skip_prompt=True, skip_special_tokens=True): super().__init__(tokenizer, skip_prompt=skip_prompt, skip_special_tokens=skip_special_tokens) self.generated_text = "" self.stop_flag = False def on_finalized_text(self, text: str, stream_end: bool = False): self.generated_text += text print(text, end="", flush=True) if self.stop_flag: raise StopIteration def stop_generation(self): self.stop_flag = True def generate_stream(model, tokenizer, messages, max_new_tokens): input_ids = tokenizer.apply_chat_template( messages, tokenize=True, add_generation_prompt=True, return_tensors="pt" ) attention_mask = torch.ones_like(input_ids, dtype=torch.long) tokens = input_ids.to(model.device) attention_mask = attention_mask.to(model.device) streamer = CustomTextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) def signal_handler(sig, frame): streamer.stop_generation() print("\n[Generation stopped by user with Ctrl+C]") signal.signal(signal.SIGINT, signal_handler) print("Response: ", end="", flush=True) try: generated_ids = model.generate( tokens, attention_mask=attention_mask, use_cache=False, max_new_tokens=max_new_tokens, do_sample=True, pad_token_id=tokenizer.pad_token_id, streamer=streamer ) del generated_ids except StopIteration: print("\n[Stopped by user]") del input_ids, attention_mask torch.cuda.empty_cache() signal.signal(signal.SIGINT, signal.SIG_DFL) return streamer.generated_text, streamer.stop_flag while True: user_input = input("User: ").strip() if user_input.lower() == "/exit": print("Exiting chat.") break if user_input.lower() == "/clear": messages = initial_messages.copy() print("Chat history cleared. Starting a new conversation.") continue if not user_input: print("Input cannot be empty. Please enter something.") continue messages.append({"role": "user", "content": user_input}) response, stop_flag = generate_stream(model, tokenizer, messages, 8192) if stop_flag: continue messages.append({"role": "assistant", "content": response}) ``` ### Donation If you like it, please click 'like' and follow us for more updates. You can follow [x.com/support_huihui](https://x.com/support_huihui) to get the latest model information from huihui.ai. ##### Your donation helps us continue our further development and improvement, a cup of coffee can do it. - bitcoin(BTC): ``` bc1qqnkhuchxw0zqjh2ku3lu4hq45hc6gy84uk70ge ```