File size: 3,441 Bytes
d9e7398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---

library_name: transformers
license: apache-2.0
license_link: https://huggingface.co/huihui-ai/Qwen2.5-1.5B-Instruct-abliterated/blob/main/LICENSE
language:
- zho
- eng
- fra
- spa
- por
- deu
- ita
- rus
- jpn
- kor
- vie
- tha
- ara
pipeline_tag: text-generation
base_model: Qwen/Qwen2.5-1.5B-Instruct
tags:
- chat
- abliterated
- uncensored
---


# huihui-ai/Qwen2.5-1.5B-Instruct-abliterated


This is an uncensored version of [Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct) created with abliteration (see [this article](https://huggingface.co/blog/mlabonne/abliteration) to know more about it).

Special thanks to [@FailSpy](https://huggingface.co/failspy) for the original code and technique. Please follow him if you're interested in abliterated models.

## ollama

You can use [huihui_ai/qwen2.5-abliterate:1.5b](https://ollama.com/huihui_ai/qwen2.5-abliterate:1.5b) directly, 
```

ollama run huihui_ai/qwen2.5-abliterate:1.5b

```

## Usage
You can use this model in your applications by loading it with Hugging Face's `transformers` library:


```python

from transformers import AutoModelForCausalLM, AutoTokenizer



# Load the model and tokenizer

model_name = "huihui-ai/Qwen2.5-1.5B-Instruct-abliterated"

model = AutoModelForCausalLM.from_pretrained(

    model_name,

    torch_dtype="auto",

    device_map="auto"

)

tokenizer = AutoTokenizer.from_pretrained(model_name)



# Initialize conversation context

initial_messages = [

    {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."}

]

messages = initial_messages.copy()  # Copy the initial conversation context



# Enter conversation loop

while True:

    # Get user input

    user_input = input("User: ").strip()  # Strip leading and trailing spaces



    # If the user types '/exit', end the conversation

    if user_input.lower() == "/exit":

        print("Exiting chat.")

        break



    # If the user types '/clean', reset the conversation context

    if user_input.lower() == "/clean":

        messages = initial_messages.copy()  # Reset conversation context

        print("Chat history cleared. Starting a new conversation.")

        continue



    # If input is empty, prompt the user and continue

    if not user_input:

        print("Input cannot be empty. Please enter something.")

        continue



    # Add user input to the conversation

    messages.append({"role": "user", "content": user_input})



    # Build the chat template

    text = tokenizer.apply_chat_template(

        messages,

        tokenize=False,

        add_generation_prompt=True

    )



    # Tokenize input and prepare it for the model

    model_inputs = tokenizer([text], return_tensors="pt").to(model.device)



    # Generate a response from the model

    generated_ids = model.generate(

        **model_inputs,

        max_new_tokens=8192

    )



    # Extract model output, removing special tokens

    generated_ids = [

        output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)

    ]

    response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]



    # Add the model's response to the conversation

    messages.append({"role": "assistant", "content": response})



    # Print the model's response

    print(f"Qwen: {response}")



```