Upload folder using huggingface_hub
Browse files- .ipynb_checkpoints/README-checkpoint.md +202 -0
- README.md +202 -3
- config.json +68 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
.ipynb_checkpoints/README-checkpoint.md
ADDED
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- domain-names
|
7 |
+
- reformer
|
8 |
+
- character-level
|
9 |
+
datasets:
|
10 |
+
- custom
|
11 |
+
metrics:
|
12 |
+
- loss
|
13 |
+
model-index:
|
14 |
+
- name: domain-generator-reformer
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: text-generation
|
18 |
+
name: Domain Name Generation
|
19 |
+
metrics:
|
20 |
+
- type: loss
|
21 |
+
value: 0.9716
|
22 |
+
name: Validation Loss
|
23 |
+
---
|
24 |
+
|
25 |
+
# Domain Name Generator - Reformer Character-Level Model
|
26 |
+
|
27 |
+
A character-level Reformer model trained to generate domain names based on descriptive tags. The model takes a set of content and style tags as input and generates appropriate, creative domain names.
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
This model is a fine-tuned version of `google/reformer-enwik8` specifically adapted for domain name generation. It uses a pure tag-based approach where both content descriptors (e.g., "tech", "health") and style descriptors (e.g., "modern", "minimal") are treated as equal tags.
|
32 |
+
|
33 |
+
### Key Features
|
34 |
+
- **Character-level generation**: Generates domains character by character for maximum flexibility
|
35 |
+
- **Tag-based prompting**: Uses 3-4 descriptive tags to guide generation
|
36 |
+
- **Style-aware**: Understands style tags like "modern", "minimal", "playful"
|
37 |
+
- **Position-independent**: Tag order doesn't matter due to training-time shuffling
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
|
41 |
+
- **Architecture**: Reformer with LSH attention
|
42 |
+
- **Base Model**: google/reformer-enwik8
|
43 |
+
- **Model Size**: ~597M parameters
|
44 |
+
- **Vocabulary Size**: 258 (byte-level encoding)
|
45 |
+
- **Max Sequence Length**: 256 characters
|
46 |
+
- **Hidden Size**: 1024
|
47 |
+
- **Layers**: 12
|
48 |
+
- **Attention Heads**: 8
|
49 |
+
|
50 |
+
## Training Details
|
51 |
+
|
52 |
+
### Training Data
|
53 |
+
- **Primary Dataset**: 250k real domains from BrandBucket
|
54 |
+
- **Synthetic Dataset**: 1.75M AI-generated domains
|
55 |
+
- **Total Examples**: ~2M domains
|
56 |
+
- **Data Split**: 80% synthetic, 20% real
|
57 |
+
|
58 |
+
### Training Configuration
|
59 |
+
- **Epochs**: 5
|
60 |
+
- **Batch Size**: 256 (128 × 2 gradient accumulation)
|
61 |
+
- **Learning Rate**: 5e-05
|
62 |
+
- **Tag Dropout**: 10%
|
63 |
+
- **Style Tag Probability**: 30%
|
64 |
+
- **Hardware**: NVIDIA H100 GPU
|
65 |
+
- **Training Time**: 17.6 hours
|
66 |
+
|
67 |
+
### Training Results
|
68 |
+
- **Final Training Loss**: 1.1113
|
69 |
+
- **Best Validation Loss**: 0.9716
|
70 |
+
- **Loss Reduction**: 75%
|
71 |
+
- **Training Stability**: std=0.0014 (very stable)
|
72 |
+
|
73 |
+
## Intended Use
|
74 |
+
|
75 |
+
### Primary Use Cases
|
76 |
+
- Generate domain names for startups and businesses
|
77 |
+
- Brainstorm creative domain ideas based on keywords
|
78 |
+
- Explore domain variations with different styles
|
79 |
+
|
80 |
+
### Input Format
|
81 |
+
```
|
82 |
+
tags: tag1;tag2;tag3 domain:
|
83 |
+
```
|
84 |
+
|
85 |
+
### Supported Tags
|
86 |
+
|
87 |
+
**Content Tags** (examples):
|
88 |
+
- `tech`, `ai`, `startup`, `app`, `software`
|
89 |
+
- `health`, `wellness`, `fitness`, `medical`
|
90 |
+
- `eco`, `green`, `sustainable`, `organic`
|
91 |
+
- `fashion`, `beauty`, `style`, `boutique`
|
92 |
+
- `food`, `restaurant`, `cafe`, `delivery`
|
93 |
+
|
94 |
+
**Style Tags**:
|
95 |
+
- `modern` - Clean, contemporary
|
96 |
+
- `classic` - Traditional, timeless
|
97 |
+
- `playful` - Fun, casual
|
98 |
+
- `bold` - Strong, impactful
|
99 |
+
- `elegant` - Sophisticated, refined
|
100 |
+
- `techy` - Technical, digital
|
101 |
+
- `eco` - Environmental, green
|
102 |
+
- `luxury` - Premium, high-end
|
103 |
+
- `minimal` - Simple, short
|
104 |
+
- `creative` - Artistic, unique
|
105 |
+
- `professional` - Business-oriented
|
106 |
+
- `casual` - Relaxed, informal
|
107 |
+
- `trendy` - Current, fashionable
|
108 |
+
- `simple` - Straightforward
|
109 |
+
- `unique` - Distinctive
|
110 |
+
|
111 |
+
## Usage
|
112 |
+
|
113 |
+
### With Transformers Library
|
114 |
+
|
115 |
+
```python
|
116 |
+
from transformers import ReformerModelWithLMHead, AutoTokenizer
|
117 |
+
import torch
|
118 |
+
|
119 |
+
# Load model
|
120 |
+
model = ReformerModelWithLMHead.from_pretrained("path/to/domain-generator")
|
121 |
+
model.eval()
|
122 |
+
|
123 |
+
# Character encoding (Reformer standard)
|
124 |
+
def encode_text(text):
|
125 |
+
return [c + 2 for c in text.encode('utf-8')]
|
126 |
+
|
127 |
+
def decode_ids(ids):
|
128 |
+
return bytes([max(0, id - 2) for id in ids if id > 2]).decode('utf-8', errors='ignore')
|
129 |
+
|
130 |
+
# Generate domain
|
131 |
+
prompt = "tags: tech;startup;modern domain:"
|
132 |
+
input_ids = torch.tensor([encode_text(prompt)])
|
133 |
+
|
134 |
+
with torch.no_grad():
|
135 |
+
output = model.generate(
|
136 |
+
input_ids,
|
137 |
+
max_new_tokens=50,
|
138 |
+
temperature=1.2,
|
139 |
+
top_p=0.95,
|
140 |
+
do_sample=True,
|
141 |
+
pad_token_id=0,
|
142 |
+
eos_token_id=2
|
143 |
+
)
|
144 |
+
|
145 |
+
generated = decode_ids(output[0].tolist())
|
146 |
+
domain = generated.split("domain:")[-1].strip()
|
147 |
+
print(f"Generated: {domain}")
|
148 |
+
```
|
149 |
+
|
150 |
+
### Generation Parameters
|
151 |
+
- **Temperature**: 1.2 (recommended for creativity)
|
152 |
+
- **Top-p**: 0.95
|
153 |
+
- **Max Length**: 50 tokens after prompt
|
154 |
+
|
155 |
+
## Examples
|
156 |
+
|
157 |
+
### Input → Output Examples
|
158 |
+
|
159 |
+
```
|
160 |
+
tags: tech;startup;ai → techflow.ai
|
161 |
+
tags: eco;sustainable;modern → greenleaf.eco
|
162 |
+
tags: health;wellness;minimal → purelife.health
|
163 |
+
tags: fashion;luxury;elegant → velvetrose.com
|
164 |
+
tags: food;delivery;playful → snackdash.io
|
165 |
+
```
|
166 |
+
|
167 |
+
## Limitations
|
168 |
+
|
169 |
+
- Best results with 3-4 tags (trained range)
|
170 |
+
- May occasionally generate non-standard TLDs
|
171 |
+
- Domain availability not guaranteed
|
172 |
+
- Works best with English keywords
|
173 |
+
|
174 |
+
## Ethical Considerations
|
175 |
+
|
176 |
+
- Generated domains should be checked for trademark conflicts
|
177 |
+
- May reflect biases present in training data
|
178 |
+
- Should not be used to generate misleading or deceptive domains
|
179 |
+
|
180 |
+
## Model Card Contact
|
181 |
+
|
182 |
+
For questions or issues, please open an issue in the repository.
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
If you use this model, please cite:
|
187 |
+
|
188 |
+
```bibtex
|
189 |
+
@software{domain_generator_reformer,
|
190 |
+
title = {Domain Generator - Character-Level Reformer},
|
191 |
+
year = {2024},
|
192 |
+
publisher = {HuggingFace},
|
193 |
+
url = {https://huggingface.co/your-username/domain-generator-reformer}
|
194 |
+
}
|
195 |
+
```
|
196 |
+
|
197 |
+
## Changelog
|
198 |
+
|
199 |
+
- **v1.0** (2024-01): Initial release
|
200 |
+
- 5 epochs training on combined dataset
|
201 |
+
- 0.9716 validation loss
|
202 |
+
- Stable generation quality
|
README.md
CHANGED
@@ -1,3 +1,202 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
license: apache-2.0
|
4 |
+
tags:
|
5 |
+
- text-generation
|
6 |
+
- domain-names
|
7 |
+
- reformer
|
8 |
+
- character-level
|
9 |
+
datasets:
|
10 |
+
- custom
|
11 |
+
metrics:
|
12 |
+
- loss
|
13 |
+
model-index:
|
14 |
+
- name: reformer-character-domain-generator
|
15 |
+
results:
|
16 |
+
- task:
|
17 |
+
type: text-generation
|
18 |
+
name: Domain Name Generation
|
19 |
+
metrics:
|
20 |
+
- type: loss
|
21 |
+
value: 0.9716
|
22 |
+
name: Validation Loss
|
23 |
+
---
|
24 |
+
|
25 |
+
# Domain Name Generator - Reformer Character-Level Model
|
26 |
+
|
27 |
+
A character-level Reformer model trained to generate domain names based on descriptive tags. The model takes a set of content and style tags as input and generates appropriate, creative domain names.
|
28 |
+
|
29 |
+
## Model Description
|
30 |
+
|
31 |
+
This model is a fine-tuned version of `google/reformer-enwik8` specifically adapted for domain name generation. It uses a pure tag-based approach where both content descriptors (e.g., "tech", "health") and style descriptors (e.g., "modern", "minimal") are treated as equal tags.
|
32 |
+
|
33 |
+
### Key Features
|
34 |
+
- **Character-level generation**: Generates domains character by character for maximum flexibility
|
35 |
+
- **Tag-based prompting**: Uses 3-4 descriptive tags to guide generation
|
36 |
+
- **Style-aware**: Understands style tags like "modern", "minimal", "playful"
|
37 |
+
- **Position-independent**: Tag order doesn't matter due to training-time shuffling
|
38 |
+
|
39 |
+
## Model Details
|
40 |
+
|
41 |
+
- **Architecture**: Reformer with LSH attention
|
42 |
+
- **Base Model**: google/reformer-enwik8
|
43 |
+
- **Model Size**: ~597M parameters
|
44 |
+
- **Vocabulary Size**: 258 (byte-level encoding)
|
45 |
+
- **Max Sequence Length**: 256 characters
|
46 |
+
- **Hidden Size**: 1024
|
47 |
+
- **Layers**: 12
|
48 |
+
- **Attention Heads**: 8
|
49 |
+
|
50 |
+
## Training Details
|
51 |
+
|
52 |
+
### Training Data
|
53 |
+
- **Primary Dataset**: 250k real domains from BrandBucket
|
54 |
+
- **Synthetic Dataset**: 1.75M AI-generated domains
|
55 |
+
- **Total Examples**: ~2M domains
|
56 |
+
- **Data Split**: 80% synthetic, 20% real
|
57 |
+
|
58 |
+
### Training Configuration
|
59 |
+
- **Epochs**: 5
|
60 |
+
- **Batch Size**: 256 (128 × 2 gradient accumulation)
|
61 |
+
- **Learning Rate**: 5e-05
|
62 |
+
- **Tag Dropout**: 10%
|
63 |
+
- **Style Tag Probability**: 30%
|
64 |
+
- **Hardware**: NVIDIA H100 GPU
|
65 |
+
- **Training Time**: 17.6 hours
|
66 |
+
|
67 |
+
### Training Results
|
68 |
+
- **Final Training Loss**: 1.1113
|
69 |
+
- **Best Validation Loss**: 0.9716
|
70 |
+
- **Loss Reduction**: 75%
|
71 |
+
- **Training Stability**: std=0.0014 (very stable)
|
72 |
+
|
73 |
+
## Intended Use
|
74 |
+
|
75 |
+
### Primary Use Cases
|
76 |
+
- Generate domain names for startups and businesses
|
77 |
+
- Brainstorm creative domain ideas based on keywords
|
78 |
+
- Explore domain variations with different styles
|
79 |
+
|
80 |
+
### Input Format
|
81 |
+
```
|
82 |
+
tags: tag1;tag2;tag3 domain:
|
83 |
+
```
|
84 |
+
|
85 |
+
### Supported Tags
|
86 |
+
|
87 |
+
**Content Tags** (examples):
|
88 |
+
- `tech`, `ai`, `startup`, `app`, `software`
|
89 |
+
- `health`, `wellness`, `fitness`, `medical`
|
90 |
+
- `eco`, `green`, `sustainable`, `organic`
|
91 |
+
- `fashion`, `beauty`, `style`, `boutique`
|
92 |
+
- `food`, `restaurant`, `cafe`, `delivery`
|
93 |
+
|
94 |
+
**Style Tags**:
|
95 |
+
- `modern` - Clean, contemporary
|
96 |
+
- `classic` - Traditional, timeless
|
97 |
+
- `playful` - Fun, casual
|
98 |
+
- `bold` - Strong, impactful
|
99 |
+
- `elegant` - Sophisticated, refined
|
100 |
+
- `techy` - Technical, digital
|
101 |
+
- `eco` - Environmental, green
|
102 |
+
- `luxury` - Premium, high-end
|
103 |
+
- `minimal` - Simple, short
|
104 |
+
- `creative` - Artistic, unique
|
105 |
+
- `professional` - Business-oriented
|
106 |
+
- `casual` - Relaxed, informal
|
107 |
+
- `trendy` - Current, fashionable
|
108 |
+
- `simple` - Straightforward
|
109 |
+
- `unique` - Distinctive
|
110 |
+
|
111 |
+
## Usage
|
112 |
+
|
113 |
+
### With Transformers Library
|
114 |
+
|
115 |
+
```python
|
116 |
+
from transformers import ReformerModelWithLMHead, AutoTokenizer
|
117 |
+
import torch
|
118 |
+
|
119 |
+
# Load model
|
120 |
+
model = ReformerModelWithLMHead.from_pretrained("humbleworth/reformer-character-domain-generator")
|
121 |
+
model.eval()
|
122 |
+
|
123 |
+
# Character encoding (Reformer standard)
|
124 |
+
def encode_text(text):
|
125 |
+
return [c + 2 for c in text.encode('utf-8')]
|
126 |
+
|
127 |
+
def decode_ids(ids):
|
128 |
+
return bytes([max(0, id - 2) for id in ids if id > 2]).decode('utf-8', errors='ignore')
|
129 |
+
|
130 |
+
# Generate domain
|
131 |
+
prompt = "tags: tech;startup;modern domain:"
|
132 |
+
input_ids = torch.tensor([encode_text(prompt)])
|
133 |
+
|
134 |
+
with torch.no_grad():
|
135 |
+
output = model.generate(
|
136 |
+
input_ids,
|
137 |
+
max_new_tokens=50,
|
138 |
+
temperature=1.2,
|
139 |
+
top_p=0.95,
|
140 |
+
do_sample=True,
|
141 |
+
pad_token_id=0,
|
142 |
+
eos_token_id=2
|
143 |
+
)
|
144 |
+
|
145 |
+
generated = decode_ids(output[0].tolist())
|
146 |
+
domain = generated.split("domain:")[-1].strip()
|
147 |
+
print(f"Generated: {domain}")
|
148 |
+
```
|
149 |
+
|
150 |
+
### Generation Parameters
|
151 |
+
- **Temperature**: 1.2 (recommended for creativity)
|
152 |
+
- **Top-p**: 0.95
|
153 |
+
- **Max Length**: 50 tokens after prompt
|
154 |
+
|
155 |
+
## Examples
|
156 |
+
|
157 |
+
### Input → Output Examples
|
158 |
+
|
159 |
+
```
|
160 |
+
tags: tech;startup;ai → techflow.ai
|
161 |
+
tags: eco;sustainable;modern → greenleaf.eco
|
162 |
+
tags: health;wellness;minimal → purelife.health
|
163 |
+
tags: fashion;luxury;elegant → velvetrose.com
|
164 |
+
tags: food;delivery;playful → snackdash.io
|
165 |
+
```
|
166 |
+
|
167 |
+
## Limitations
|
168 |
+
|
169 |
+
- Best results with 3-4 tags (trained range)
|
170 |
+
- May occasionally generate non-standard TLDs
|
171 |
+
- Domain availability not guaranteed
|
172 |
+
- Works best with English keywords
|
173 |
+
|
174 |
+
## Ethical Considerations
|
175 |
+
|
176 |
+
- Generated domains should be checked for trademark conflicts
|
177 |
+
- May reflect biases present in training data
|
178 |
+
- Should not be used to generate misleading or deceptive domains
|
179 |
+
|
180 |
+
## Model Card Contact
|
181 |
+
|
182 |
+
For questions or issues, please open an issue in the repository.
|
183 |
+
|
184 |
+
## Citation
|
185 |
+
|
186 |
+
If you use this model, please cite:
|
187 |
+
|
188 |
+
```bibtex
|
189 |
+
@software{domain_generator_reformer,
|
190 |
+
title = {Domain Generator - Character-Level Reformer},
|
191 |
+
year = {2025},
|
192 |
+
publisher = {HuggingFace},
|
193 |
+
url = {https://huggingface.co/humbleworth/reformer-character-domain-generator}
|
194 |
+
}
|
195 |
+
```
|
196 |
+
|
197 |
+
## Changelog
|
198 |
+
|
199 |
+
- **v1.0** (2024-01): Initial release
|
200 |
+
- 5 epochs training on combined dataset
|
201 |
+
- 0.9716 validation loss
|
202 |
+
- Stable generation quality
|
config.json
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"ReformerModelWithLMHead"
|
4 |
+
],
|
5 |
+
"attention_head_size": 128,
|
6 |
+
"attn_layers": [
|
7 |
+
"local",
|
8 |
+
"local",
|
9 |
+
"lsh",
|
10 |
+
"local",
|
11 |
+
"local",
|
12 |
+
"local",
|
13 |
+
"lsh",
|
14 |
+
"local",
|
15 |
+
"local",
|
16 |
+
"local",
|
17 |
+
"lsh",
|
18 |
+
"local"
|
19 |
+
],
|
20 |
+
"axial_norm_std": 1.0,
|
21 |
+
"axial_pos_embds": true,
|
22 |
+
"axial_pos_embds_dim": [
|
23 |
+
256,
|
24 |
+
768
|
25 |
+
],
|
26 |
+
"axial_pos_shape": [
|
27 |
+
16,
|
28 |
+
16
|
29 |
+
],
|
30 |
+
"chunk_size_lm_head": 0,
|
31 |
+
"classifier_dropout": null,
|
32 |
+
"eos_token_id": 2,
|
33 |
+
"feed_forward_size": 4096,
|
34 |
+
"hash_seed": null,
|
35 |
+
"hidden_act": "relu",
|
36 |
+
"hidden_dropout_prob": 0.2,
|
37 |
+
"hidden_size": 1024,
|
38 |
+
"initializer_range": 0.02,
|
39 |
+
"is_decoder": true,
|
40 |
+
"layer_norm_eps": 1e-12,
|
41 |
+
"local_attention_probs_dropout_prob": 0.2,
|
42 |
+
"local_attn_chunk_length": 128,
|
43 |
+
"local_num_chunks_after": 0,
|
44 |
+
"local_num_chunks_before": 1,
|
45 |
+
"lsh_attention_probs_dropout_prob": 0.1,
|
46 |
+
"lsh_attn_chunk_length": 256,
|
47 |
+
"lsh_num_chunks_after": 0,
|
48 |
+
"lsh_num_chunks_before": 1,
|
49 |
+
"max_position_embeddings": 256,
|
50 |
+
"model_type": "reformer",
|
51 |
+
"num_attention_heads": 8,
|
52 |
+
"num_buckets": 512,
|
53 |
+
"num_hashes": 4,
|
54 |
+
"num_hidden_layers": 12,
|
55 |
+
"output_past": true,
|
56 |
+
"pad_token_id": 0,
|
57 |
+
"task_specific_params": {
|
58 |
+
"text-generation": {
|
59 |
+
"do_sample": true,
|
60 |
+
"max_length": 100
|
61 |
+
}
|
62 |
+
},
|
63 |
+
"tie_word_embeddings": false,
|
64 |
+
"torch_dtype": "float32",
|
65 |
+
"transformers_version": "4.53.1",
|
66 |
+
"use_cache": true,
|
67 |
+
"vocab_size": 258
|
68 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"eos_token_id": 2,
|
4 |
+
"pad_token_id": 0,
|
5 |
+
"transformers_version": "4.53.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:00b73d5dfd3169de30acef09570180e4d5116696b265a93e22dffd1bf3098f21
|
3 |
+
size 595111584
|