File size: 106,006 Bytes
ed1d903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:264888
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: "latex_in_original_or_summarized: K(M, n)\n\n[SEP]\n\nsummarized:\
    \ $K(M, n)$\n\n[SEP]\n\nmain_note_content: Chain complexes and  spaces.   [59],\
    \ that for  simplicial sheaf   $\\text{X}$ we denote by $C_{*}(\\mathcal{X})$\
    \ the (normalized) chain complex  $C_{*}(\\mathcal{A}$  associated to the   sheaf\
    \  abelian groups   $\\mathbb{X}$. This  defines a functor\n\n$$  C_{*}: \\Delta^{o\
    \ p} S h v_{N i s}\\left(S m_{k}\\right)  C_{*}(\\text{A} b(k))  $$$ ^f7eebc\n\
    \nwhich is well  (see $[44,59]$  instance) to have a right adjoint\n\n6.2 \\mathbb{A}^{1}$-Derived\
    \ Category   Spaces\n161\n\n$$  K: C_{*}(\\mathcal{A} b(k)) \\rightarrow \\phi^{o\
    \ p} S h v_{N i s}\\left(S   $$ \n\n\ncalled the  space \n\nFor an abelian  $M\
    \   b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$\
    \ (see [59, page 56])   $K$ to the shifted complex $M[n]$,  the complex $M$ placed\
    \ in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \\geq 0$ then $K(M,\
    \ n)$ has only one non-trivial  sheaf which is the  and which is canonically isomorphic\
    \ to $M$. More generally, for a chain  $C_{*}$,   $K C_{*}$ has   homotopy sheaf\
    \ 0  $n< 0$, and the $n$-th homology sheaf $H_{n}\\left(C_{*}\\right)$ for $n\
    \ \\geq 0$.\n\nIt is clear that $C_{*}: \\Delta^{o p} S h  i s}\\left(S m_{k}\\\
    right) \\rightarrow  b(k))$ sends simplicial weak equivalences to quasi-isomorphisms\
    \ and $K: C_{*}(A b(k)) \\rightarrow \\Delta^{o p} S h v_{N i s}\\left(S m_{k}\\\
    right)$ maps quasi-isomorphisms to simplicial  equivalences. If $C_{*}$  fibrant,\
    \ it follows that $K\\left(C_{*}\\right)$ is simplicially  Thus the two functors\
    \ induce a pair of adjoint functors\n\n$$  C_{*}: \\mathcal{H}{s}(k) \\rightarrow\
    \ D(\\mathcal{A} b(k))  $$ ^c4a825\n\n\n\n$$  K: D(\\mathrm{A} b(k)) \\rightarrow\
    \ \\mathcal{H}_{s}(k)  $$ \n\nAs a consequence it is clear that   is an $\\mathscr{A}^{1}$-local\
    \ complex,  space $K\\left(C_{*}\\right)$ is an $\\mathbb{A}^{1}$-local space.\
    \ Thus $C_{}: \\mathbf{H}_{s}(k) \\rightarrow   maps $\\mathcal{A}^{1}$-weak \
    \ to $\\mathrm{A}^{1}$-quasi  and induces a functor\n\n    \\rightarrow D_{\\\
    mathbb{A}^{1}}(A b(k))  $$ \n\nwhich in concrete terms, maps a space $\\operatorname{X}$\
    \ to the $\\mathbb{A}^{1}$-localization of $C_{*}(\\mathcal{X})$. We denote the\
    \ latter by $C_{*}^{A^{1}}(\\mathbb{X})$ and call it the $\\mathbb{A}^{1}$-chain\
    \  of $\\mathcal{X}$.  functor $C_{*}^{\\operatorname{A}^{1}}: \\mathfrak{H}(k)\
    \ \\rightarrow  b(k))$ admits as right adjoint the functor $K^{\\mathbb{A}^{1}}:\
    \ D_{\\mathbb{A}^{1}}(\\mathcal{A} b(k)) \\rightarrow \\mathcal{H}(k)$ induced\
    \ by $C_{*} \\mapsto K\\left(L_{\\mathbb{A}^{1}}\\left(C_{*}\\right)\\right)$.\
    \ We  that for an $\\mathbb{A}^{1}$-local complex  the space $K\\left(C_{*}\\\
    right)$ is automatically $\\mathbb{A}^{1}$-local and thus simplicially equivalent\
    \ to the space \n\n\n[SEP]\n\nprocessed_content: the pointed simplicial  where\
    \ $M$ \\in  b(k)$ and $n$ is  integer. It is defined by applying  to the  complex\
    \ $M[n]$, of the complex    degree 0 ."
  sentences:
  - "latex_in_original_or_summarized: \\gamma_1=(m_1,N_1,a_1)\n\n[SEP]\n\nsummarized:\
    \ $\\gamma_1=(m_1,N_1,a_1)$\n\n[SEP]\n\nmain_note_content: \\begin{notation}\\\
    label{Dep1}\nLet $\\gamma_1=(m_1,N_1,a_1)$,  $\\gamma_2=(m_2,N_2,a_2)$ be an ordered\
    \ pair of \n(generalized) monodromy data which  hypothesis (A). Assume that $m_1|m_2$.\n\
    Set $d:=m_2/m_1$ and $r:=\\gcd(m_1, a_1(N_1))$.  \nThen, \\eqref{Dep}  to \n$\\\
    epsilon=d(r-1)$ and $g_3=dg_1+g_2+\\epsilon$.\nIn particular, $\\epsilon=0$ if\
    \ and  if $r=1$. \n\\end{notation}\n\n\n[SEP]\n\nprocessed_content: "
  - 'latex_in_original_or_summarized: \langle u\rangle  G W(F)


    [SEP]


    summarized: $\langle u\rangle \in G W(F)$


    [SEP]


    main_note_content: Let us denote (in  characteristic) by $G W(F)$ the Grothendieck-Witt
    ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this
    is the group completion of the commutative monoid of isomorphism classes of non-degenerate
    symmetric  forms for the direct sum.


    For $u \in F^{\times}$, we denote by $\langle u\rangle  G W(F)$ the form on  vector
    space of rank one  given by $F^{2}  F,(x,  \mapsto u x y .$ By the results of
    loc.   \langle u\rangle$ generate $G  as a group. The following Lemma is (essentially)
    [48, Lemma (1.1) Chap. IV]:



    [SEP]


    processed_content: '
  - 'latex_in_original_or_summarized: $\varepsilon_{\infty}$


    [SEP]


    summarized: $\varepsilon_{\infty}$


    [SEP]


    main_note_content: To compute the genus of $X(\kappa)$, further specialize to
    $\Gamma_{1}=\Gamma$ and $\Gamma_{2}=$ $\mathfrak{SL}_{2}(\mathbb{Z}) . Let $y_{2}=\mathrm{SL}_{2}(\mathbb{Z})
    i, y_{3}=\mathrm{SL}_{2}(\mathbb{Z}) \mu_{3}$, and $y_{\infty}=\mathfrak{SL}_{2}(\mathbb{Z})
    \infty$ be the elliptic point of period 2, the elliptic point of period 3, and
    the cusp of $X(1)=$ SL_{2}(\mathbb{Z}) \backslash \mathcal{H}^{*} .$ Let $\varepsilon_{2}$
    and $\varepsilon_{3}$ be the number of elliptic points of $\Gamma$ in $f^{-1}\left(y_{2}\right)$$
    and of^{-1}\left(y_{3}\right)$, i.e., the number of elliptic points of period
    2 and 3 in $X(\Gamma)$, and let $\varepsilon_{\infty}$ be the number of cusps
    of X(\Gamma) .$ Then recalling that $d=\operatorname{deg}(f)$ and letting $h=2$
    or $h=3$, the formula for $d$ at the beginning of the section and then the formula
    for $e_{\pi_{1}(\tau)}$ at the nonelliptic points and the elliptic points over
    $\mathrm{SL}_{2}(\mathscr{Z}) y_{h}$ show that (Exercise 3.1.3(a))


    $$ d=\sum_{x \in f^{-1}\left(y_{h}\right)} e_{x}=h \cdot\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)+1
    \cdot \varepsilon_{h} $$


    and using these equalities twice gives

    $$ \sum_{x \in f^{-1}\left(y_{h}\right)}\left(e_{x}-1\right)=(h-1)\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)=\frac{h-1}{h}\left(d-\varepsilon_{h}\right)
    $$


    $68 \quad 3$ Dimension Formulas


    Also.

    $$ \sum_{x \in f^{-1}\left(y_{\infty}\right)}\left(e_{x}-1\right)=d-\varepsilon_{\infty}
    $$

    Since $X(1)$ has genus 0, the Riemann-Hurwitz formula now shows



    [SEP]


    processed_content: '
- source_sentence: "latex_in_original_or_summarized: $M_\\ell(C \\to S) = M_\\ell(S)$\n\
    \n[SEP]\n\nsummarized: $M_\\ell(C \\to S) = M_\\ell(S)$\n\n[SEP]\n\nmain_note_content:\
    \ If $C \\to S$ is a relative smooth proper curve of genus $g \\geq 1$ over an\
    \ irreducible base, then the $\\ell$-torsion of  relative Jacobian of $C$    information\
    \ about the family.  Suppose $\\ell$ is invertible on $S$, and let  \\in S$ be\
    \ a geometric point.  The fundamental group $\\pi_1(S,s)$ acts\nlinearly on the\
    \ fiber $\\operatorname{Pic}^0(C)[\\ell]_{s} \\cong (\\mathbb{Z}/\\ell)^{2g}$,\
    \ \none can consider the mod-$\\ell$  representation associated to $C$:\n\n$$\\\
    rho_{C \\to S, \\ell}:\\pi_1(S,s) \\rightarrow  \\cong \\operatorname{GL}_{2g}(\\\
    mathbb{Z}/\\ell).$$ ^e59a92\n\nLet $M_\\ell(C \\to S)$, or simply $M_\\ell(S)$,\
    \ be the image\nof this representation. \nIf a primitive $\\ell$th root of  is\
    \ defined   $S$, then $\\operatorname{Pic}^0(C)[\\ell]_{s}$ is equipped\nwith\
    \ a skew-symmetric form $\\langle \\cdot,\\cdot  and $M_\\ell(C \\to S) \\subseteq\n\
    \\operatorname{Sp}(\\operatorname{Pic}^0(C)[\\ell]_s,\\langle  \\rangle) \\cong\n\
    \\operatorname{Sp}_{2g}(\\mathbb{Z}/\\ell)$. \nIf C \\to S$ is a sufficiently\
    \ general family of curves, then\n$M_\\ell(C \\to S) \\cong \\operatorname{Sp}_{2g}(\\\
    mathbb{Z}/\\ell)$ \\cite{delignemumford}.\n\nIn this  we compute  when $S$ is\
    \ an irreducible component of  moduli space of hyperelliptic or  trielliptic curves\
    \ and $C \\to S$ is the tautological curve.  The first result implies that there\
    \ is no restriction on the monodromy group in the hyperelliptic case other than\
    \ that it preserve the symplectic pairing. As  trielliptic curve is a $\\mathbb{Z}/3$-cover\
    \ of a genus zero curve,  the $\\mathbb{Z}/3$-action constrains the monodromy\
    \ group to lie in a unitary group associated to $\\mathbb{Z}[\\zeta_3]$. The second\
    \ result implies that this is the only additional restriction in the trielliptic\
    \ case.   \n\n\\paragraph{Theorem \\ref{thhe}}\n{\\it \n $\\ell$ be an odd prime,\
    \ and let $k$ be an  closed  in which $2\\ell$ is invertible.\nFor $g\\geq 1$,\
    \ $M_\\ell(\\mathcal{H}_g\\otimes k)\\cong\n\\operatorname{Sp}_{2g}(\\mathbb{Z}/\\\
    ell)$.}\n\n\\paragraph{Theorem \\ref{thtri}}\n{\\it \nLet $\\ell\\geq 5$ be prime,\
    \ and let $k$ be   closed field in which $3\\ell$ is invertible.  \n$\\mathcal{T}^{\\\
    bar\\gamma}$ be any component  the moduli space \ntrielliptic curves of genus\
    \ $g\\geq  Then\n$M_\\ell(\\mathcal{T}^{\\bar\\gamma}\\otimes k) \\cong\n\\operatorname{SG}_{(r_\\\
    gamma,s_\\gamma)}(\\mathbb{Z}/\\ell)$ (where the latter is  unitary group defined\n\
    in \\eqref{eqdefsg}).}\n\n\\medskip\n\nWe also prove that the $\\ell$-adic monodromy\
    \ group  \n$\\operatorname{Sp}_{2g}(\\mathbb{Z}_\\ell)$ in the situation of Theorem\
    \ \\ref{thhe} and is $\\operatorname{SG}_{(r_\\gamma,s_\\gamma)}(\\mathbb{Z}_\\\
    ell)$\nin the  of Theorem \\ref{thtri}.\n\nTheorem \\ref{thhe} is an unpublished\
    \ result  J.K. Yu and has already been used multiple times in  literature.\nIn\
    \ \\cite{chavdarov}, Chavdarov assumes this result  show that the numerator of\
    \ the zeta function of\nthe typical hyperelliptic curve over a finite field is\
    \ irreducible.\nKowalski also uses this result in a similar fashion \\cite{kowalskisieve}.\n\
    The first author used Theorem  to prove a conjecture of  and\nWashington on class\
    \  of quadratic function fields \n\nThere are other results in the literature\
    \ which  similar to Theorem \\ref{thhe}\nbut which are not quite strong enough\
    \ for the  above.\nA'Campo \\cite[Th.\\ 1]{acampo} computes the topological  of\
    \ $\\mathcal{H}_g \\otimes  \nOn the arithmetic side, the $\\mathbb{Q}_\\ell$,\n\
    as opposed to $\\mathbb{Z}_\\ell$, monodromy of $\\mathcal{H}_g$\nis computed\
    \ in \\cite[10.1.16]{katzsarnak}.  Combined with a theorem of\nLarsen on compatible\
    \ families of representations \\cite[3.17]{larsenmax},\nthis shows that the mod-$\\\
    ell$  group \nof $\\mathcal{H}_g$ is maximal for a set of\nprimes $\\ell$ of density\
    \ one (as opposed to for all $\\ell \\geq 3$). \n\nThere are results on $\\mathbb{Q}_\\\
    ell$-monodromy  cyclic covers of the projective\nline of arbitrary degree, e.g.,\
    \  \\cite[Sec. 7.9]{katztwisted}.  Also,\nin \\cite[5.5]{fkv}, the authors prove\
    \ that the projective representation\n$\\mathbb{P} \\rho_{C \\to S,\\ell}$  surjective\
    \ for many\nfamilies of cyclic covers  the projective line.  \nDue to a combinatorial\
    \  their theorem does not apply to $\\mathcal{H}_g$\nand applies to at most one\
    \ component of the moduli space of\ntrielliptic curves for each  see Remark \\\
    ref{Rfkv}.   \nSee also work of Zarhin, e.g., \\cite{zarhincyclic}.\n\n an application,\
    \ for all $p \\geq   show using \n  exist hyperelliptic and trielliptic curves\n\
    of every genus  signature) defined over $\\bar{\\mathbb{F}}_p$ whose Jacobians\
    \  absolutely simple.\nIn contrast with the applications above, \nthese corollaries\
    \ do not use the full strength of our results.\nRelated  can be found in \\cite{HZhu}\
    \   authors produce curves with absolutely  \nJacobians over $\\mathbb{F}_p$ under\
    \ the  $g \\leq 3$.\n\n\\paragraph{Corollary \\ref{Chypabsirr}} \n{\\it Let p\
    \ \\not = 2$  let   Then there exists a\nsmooth hyperelliptic curve of genus $g$\
    \  over $\\bar{\\mathbb{F}}_p$ whose Jacobian is\nabsolutely simple.}\n\n\\paragraph{Corollary\
    \ \\ref{Ctriabsirr}}\n{\\it Let $p \\not = 3$.   $g  3$ and   be a trielliptic\
    \ signature for $g$\n \\ref{Dtrisig}).  \nThen there exists a smooth trielliptic\
    \ curve defined over  with genus $g$ and signature $(r,s)$\nwhose Jacobian is\
    \  simple.}\n\n\\medskip \n\nOur proofs proceed by induction on the genus.\nThe\
    \ base cases for the  family\nrely on the fact that every curve of genus $g=1,2$\
    \ is hyperelliptic;\nthe claim on monodromy follows from the analogous assertion\
    \  the monodromy of $\\mathcal{M}_g$.\nThe  case  for the trielliptic family involves\
    \ a comparison with\na Shimura variety of PEL type, namely, the  modular variety.\
    \   \nAn important step is to show  the monodromy group does not change in the\
    \ base cases when  \none adds a labeling of the ramification points to the moduli\
    \ problem.\n\nThe  step is similar to the method used in \\cite{ekedahlmono} \n\
    and uses the fact that families of smooth hyperelliptic (trielliptic)\ncurves\
    \ degenerate to trees of  (trielliptic) curves of lower genus.\nThe combinatorics\
    \ of admissible degenerations require us \nto compute the monodromy exactly for\
    \ the inductive step rather than up to isomorphism.  \n\nThe inductive strategy\
    \ using admissible degeneration developed here\nshould work for other  of curves,\
    \ especially for more general\ncyclic covers of  projective   The difficulty is\
    \ in  direct\ncalculation of monodromy for the necessary base cases.\n\nWe thank\
    \ C.-L.\\ Chai, R.\\ Hain, A.J.\\ de Jong, E. Kani, and J. Kass.\n\n\n[SEP]\n\n\
    processed_content: the image of the mod-$\\ell$  representation $\\rho_{C \\to\
    \  \\ell}$ of the relative smooth   $C \\to S$ of genus $g \\geq 1$ over an irreducible\
    \ base."
  sentences:
  - "latex_in_original_or_summarized: X^{\\vee}\n\n[SEP]\n\nsummarized: \n\n[SEP]\n\
    \nmain_note_content: Let  be  principally polarized abelian scheme of\nrelative\
    \ dimension $g$ over an irreducible base.  \n\nIf $\\ell$ is a\nrational  invertible\
    \ on $S$, then the $\\ell$-torsion $X[\\ell]$ of\n$\\ell$ is an \\'etale cover\
    \ of  with geometric fiber isomorphic to\n$(\\mathbb{Z}/\\ell)^{2g}$.  \nLet $s$\
    \ be a geometric point of $S$.  The  group $\\pi_1(S,s)$ \nlinearly on the $\\\
    ell$-torsion of $X$.\n\nThis yields a representation\n\n\\rho_{X \\to S, s,\\\
    ell}: \\pi_1(S,s) \\rightarrow \\operatorname{Aut}(X[\\ell]_s) \\cong \\operatorname{GL}_{2g}(\\\
    mathbb{Z}/\\ell).$$ ^dbec50\n\nThe cover $X[\\ell] \\to S$ both determines and\
    \ is determined by  representation  \\to S, s,\\ell}$. \n\nThe image of  \\to\
    \ S,  is the mod-$\\ell$ monodromy of $X \\to S$ and we denote it by $M_\\ell(X\
    \ \\to S, s), or by $M_\\ell(S,s)$ if the choice of\nabelian scheme is clear.\n\
    \nThe isomorphism class of the\n$M_\\ell(S,s)$ is independent of the choice of\
    \ base point $s$,$ and we denote it  $M_\\ell(S)$.\n\nLet $X^{\\vee}$ be the dual\
    \ abelian scheme.  There  a  pairing $X[\\ell] \\times X^{\\vee}[\\ell] \\to \\\
    boldsymbol{\\mu}_{\\ell,S}$, where  := \\boldsymbol{\\mu}_\\ell \\times S$ is\
    \  group scheme of $\\ell\\th$  of unity.\n\n polarization  induces an isomorphism\
    \ $X \\to X^{\\vee}$, and\nthus a skew-symmetric pairing $X[\\ell] \\times X[\\\
    ell] \\to \\boldsymbol{\\mu}_{\\ell,S}$.\nBecause the polarization is defined\
    \ globally, the image of monodromy\n$M_\\ell(X \\to S, s)$ is contained in the\
    \ group of symplectic\nsimilitudes of $(X[\\ell]_s,\n\\langle  \\rangle_\\phi)$,\
    \ which is isomorphic to\n$\\operatorname{GSp}_{2g}(\\mathbb{Z}/\\ell)$.  Moreover,\
    \ if a primitive $\\ell^{{\\rm  root of\nunity  globally on $S$,  $\\pi_1(S,s)$\
    \ acts trivially on\n$\\boldsymbol{\\mu}_{\\ell,S}$ and $M_\\ell(X \\to S,s) \\\
    subseteq  \\cdot,\\cdot \\rangle_\\phi) \\cong \\operatorname{Sp}_{2g}(\\mathbb{Z}/\\\
    ell).\n\nSimilarly, the  $X[\\ell^n]  S$ defines a monodromy representation \n\
    with  in $\\operatorname{Aut}(X[\\ell^n]_s) \\cong\\operatorname{GL}_{2g}(\\mathbb{Z}/\\\
    ell^n)$. Taking\n inverse limit over all n, we obtain a continuous representation\
    \ on the Tate module of $X$, \n\n$$\\rho_{X \\to S,  s}: \\pi_1(S,s) \\rightarrow\
    \ \\varprojlim_n \\operatorname{Aut}(X[\\ell^n]_s) \\cong \\operatorname{GL}_{2g}(\\\
    mathbb{Z}_\\ell).$$\n\n^f6240a\n\nWe denote the image of this representation by\
    \ $M_{\\mathbb{Z}_\\ell}(X \\to   and its isomorphism class by $M_{\\mathbb{Z}_\\\
    ell}(X \\to S)$ or $M_{\\mathbb{Z}_\\ell}(S)$.  \n\nAgain, there is an  \nM_{\\\
    mathbb{Z}_\\ell}(X \\to S) \\subseteq   \n\nIf\n$F$ is a field,  let $F_{\\ell^\\\
    infty} = F(\\boldsymbol{\\mu}_{\\ell^\\infty}(\\bar F))$. If $S$ is an  then \n\
    \n$$M_{\\mathbb{Z}_\\ell}(X \\to S, s)/  F} \\to S \\otimes{\\bar F}, s) \\cong\
    \  ^dd1bab\n\nFinally, let $M_{\\mathbb{Q}_\\ell}(X\\to$ S, s)$ be the Zariski\
    \ closure of  \\to S, s)$ in $\\operatorname{GL}_{2g}(\\mathbb{Q}_\\ell)$.\n\n\
    Now suppose that \\psi:C \\to S$ is a relative proper semi-stable curve.\n\nLet\
    \ $\\operatorname{Pic}^0(C) := \\operatorname{Pic}^0_{C/S}$ be the neutral component\
    \ of the relative Picard  of $C$ over $S$.  Since $C/S$  semi-stable, $\\operatorname{Pic}^0(C)$\
    \ is a semiabelian scheme [[bosch_lutkebohmert_raynaud_nm_Theorem 1_page_259|\\\
    cite[9.4.1]{blr}]].  \n\nSuppose that there is  least one geometric point  such\
    \  the fiber $\\operatorname{Pic}^0(C_s)$ is an abelian variety.  (This is true[^5]\
    \ if some $C_s$ is a tree  smooth curves.)  Then there is a nonempty open subscheme\
    \ $S^*$ of $S$ such that $\\operatorname{Pic}^0(C|_{S^*})$  an abelian scheme\
    \ over $S^*$.  \n\n[^5]: cf. Abelian varieties isogenous to a Jacobian by CL Chai,\
    \ which talks about a tree of smooth curves having a Jacobian that is an abelian\
    \ variety that is actually the product of the Jacobians of  irreducible \n\nWe\
    \ define the mod-$\\ell$ and $\\mathbb{Z}_\\ell$ monodromy representations of\
    \ $C$ to be those of $\\operatorname{Pic}^0(C|_{S^*}) \\to S^*$.\n\n(Alternatively,\
    \  may  constructed as the restrictions of $R^1\\psi_*\\boldsymbol{\\mu}_{\\ell,S}$\
    \ and $R^1\\psi_*\\boldsymbol{\\mu}_{\\ell^\\infty,S}$   largest subscheme of\
    \ $S$ on which these sheaves are unramified.)\n\nThus, $M_\\ell(C \\to  s) = M_\\\
    ell(\\operatorname{Pic}^0(C|_{S^*}) \\to S^*, s)$, and we denote this again by\
    \ M_\\ell(S,s) if the curve is clear and by   the base point is suppressed. ^37a851\n\
    \nThe moduli spaces $\\overline{\\mathcal{M}}_G$ and $\\widetilde{\\mathcal{M}}_G$\
    \ are Deligne-Mumford stacks, and we employ a similar formalism for \\'etale covers\
    \ of stacks \\cite{noohi}.  \n\n $\\mathcal{S}$  a connected Deligne-Mumford \
    \ The category of Galois \\'etale covers of $\\mathcal{S}$ is a Galois category\
    \  the sense of Grothendieck, and thus there is  \\'etale fundamental\n of   More\
    \ precisely, let $s\\in \\mathcal{S}$ be a geometric\n \n\nThen there is a group\
    \ $\\pi_1(\\mathcal{S},s)$ and an equivalence of  between finite $\\pi_1(\\mathcal{S},s)$-sets$\
    \ and finite \\'etale Galois covers of $\\mathcal{S}$. \n\nIf $\\mathcal{S}$ has\
    \ a coarse moduli space $S_{\\mathrm{mod}}$, then $\\pi_1(\\mathcal{S},s)$ is\
    \ the extension of $\\pi_1(S_{\\mathrm{mod}},s)$ by a group which encodes  extra\
    \ automorphism structure on the moduli space S_{\\mathrm{mod}} [[noohi_fgas_thm\
    \ 7.11|\\cite[7.11]{noohi}]]. \n\nIf $X \\to \\mathcal{S}$ is a family of abelian\
    \ varieties, we again let $M_\\ell(X\\to  be the  of $\\pi_1(\\mathcal{S}, s)$\
    \ in    ^758472\n\nLet $\\mathcal{C}^\\gamma$ be the tautological labeled curve\
    \ over\n  By the mod-$\\ell$ or $\\mathbb{Z}_\\ell$ monodromy of\n$\\widetilde{\\\
    mathcal{M}}_G^\\gamma$ we mean  of $C^\\gamma \\to \\widetilde{\\mathcal{M}}_G^\\\
    gamma$.  [^6]\n\n[^6]: #_meta/TODO/question  that  that $C^\\gamma \\to \\widetilde{\\\
    mathcal{M}}_G^\\gamma$ gets to have  relative Picard group of its own? How does\
    \ that make sense when $\\widetilde{\\mathcal{M}}_G^\\gamma$ a is not a scheme?\n\
    \n\n[SEP]\n\nprocessed_content: the dual abelian scheme of the abelian scheme\
    \ $X/S$. There is a canonical pairing $X[\\ell] \\times X^{\\vee}[\\ell] \\to\
    \ \\boldsymbol{\\mu}_{\\ell,S}$, where $\\boldsymbol{\\mu}_{\\ell,S} := \\boldsymbol{\\\
    mu}_\\ell \\times S$ is  group scheme of $\\ell\\th$ roots of unity."
  - "latex_in_original_or_summarized: \\mathbb{Th}_f \\phi\n\n[SEP]\n\nsummarized:\
    \ $_f \n\n[SEP]\n\nmain_note_content: It  be convenient to work in  stable  category\
    \ $\\mathcal{Spt}(B)$$ of $P^1$-spectra over $B$, where $B$ is a finite type scheme\
    \ over   frequently, $B=L$, where $L$ is a field extension of $k$. \n\nThe notation\
    \   be   the morphisms. $(B)$ is a  monoidal category under  smash product $\\\
    wedge$, with  $1_B$, denoting the sphere spectrum. \n\nAny pointed simplicial\
    \ presheaf $X$ determines  corresponding $\\mathbb{P}^1$-suspension spectrum $\\\
    Sigma^{\\infty} X$. \n\nFor  $\\Sigma^{} Spec L_+  1_L$ and $\\Sigma^{\\infty}\
    \ (^1_L)^{ n}$ is a suspension   When working in $\\operatorname{Spt}(L)$, we\
    \ will identify pointed  $X$ with their  spectra $\\Sigma^{} X$, omitting the\
    \ $\\Sigma^{\\infty}$.  ^1246cf\n\nWe will use  six operations $(p^*,  p_!, p^!,\
    \ \\wedge,  given by Ayoub   developed by Ayoub, and Cisinksi-Déglise \\cite{CD-triang_cat_mixed_motives}.\
    \ There  a nice summary in \\cite[\\S  \n\nWe use  following associated notation\
    \ and constructions. \n\nWhen   \\to Y$ is smooth, $p^*$ admits a left  denoted\
    \ p_{\\sharp}, induced by  forgetful functor  \\to \\operatorname{Sm}_{Y}$ from\
    \ smooth  over $X$  smooth schemes over $Y$.  \n\nFor $p:X\\to \\operatorname{Spec}\
    \ L$ a smooth scheme over $L$, the suspension spectrum of $X$ is canonically identified\
    \ with  as an object of $\\operatorname{Spt}(L)$. \n\nFor a vector bundle $p:E\
    \ \\to X$, the Thom spectrum  Th(E)$ (or just  is canonically identified  $s^*p^!\
    \ 1_X$[^2]. \n\n Perhaps $s$  a fixed section of $p$.$\n\nLet $\\Sigma^E$ equal\
    \ $\\Sigma^E = s^* p^!: (X) \\to (X)$. Let $e:  \\to X and $d: D  Y$ be two vector\
    \ bundles over smooth  $p: X   L$ and $q:Y  \\operatorname{Spec} L$.  ^123eb1\n\
    \nGiven a map $f: Y \\to X$ and a monomorphism $\\phi: D \\hookrightarrow f^*\
    \  there is an associated natural transformation  ^0f1ba8\n\n$$_f \\phi :   q^!\
    \  p_! \\Sigma^E p^!$$\n\nof endofunctors on $(L)$ inducing the map on Thom spectra.\
    \ The    \\phi$ is defined as  composition  ^0b33ea\n\n\\begin{equation}\\operatorname{Th}_f\
    \  =  {1_{f^*E}} \\circ  .\\end{equation}$$\n\nThe natural  $\\operatorname{Th}_{1_Y}\
    \  is the composition  t^*d^!  t^* ^!e^!\\to t^* \\phi^* e^! \\cong  e^!,$$ where\
    \ $t:   D$ denotes the zero section of $D$, $s: X \\to E$ denotes the zero   $E$,\
    \ and the middle arrow is  by the exchange transformation $\\phi^! \\cong   \\\
    to 1^! \\phi^* \\cong    natural transformation $\\operatorname{Th}_f   the composition\
    \ \n\n$$\\begin{equation}\\operatorname{Th}_f 1: q_! \\Sigma^{f^* E} q^! \\cong\
    \ p_!   f^! p^! \\cong p_!^E f_! f^! p^! {\\rightarrow} p_! ^E p^!,\\end{equation}$$\n\
    \nwhere $: f_! f^! \\to 1$ denotes the counit.\n\n\n[SEP]\n\nprocessed_content: "
  - "latex_in_original_or_summarized: j_0: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{A}^1\
    \ / \n\n[SEP]\n\nsummarized: $j_0$\n\n[SEP]\n\nmain_note_content: In order to\
    \ explain the simple underlying ideas, we will admit four statements, and explain\
    \ how to deduce from them equidistribution theorems about the sums $S(M, k, \\\
    chi)$ as $\\chi$ varies.\n\n(1) If $M$ and $N$ are both perverse on $\\mathbb{G}_m\
    \ / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfy $\\mathcal{P}$, then\
    \ their middle convolution $M _{\\text {mid }} N$ is perverse on $\\mathbb{G}_m\
    \ / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfies $\\mathcal{P}$.\n\n\
    (2) With the operation of middle convolution as the \"tensor product,\" the skyscraper\
    \ sheaf $\\delta_1$ as the \"identity object,\" and $[x \\mapsto 1 / x]^{\\star}\
    \ D M$ as the \"dual\" $M^{\\vee}$ of $M$ ( $D M$ denoting the Verdier dual of\
    \ $M$ ), the category of perverse sheaves on $\\mathbb{G}_m / k$ (resp. on $\\\
    mathbb{G}_m / \\bar{k}$ ) satisfying $\\mathcal{P}$ is a neutral Tannakian category,\
    \ in which the \"dimension\" of an object $M$ is its Euler characteristic $_c\\\
    left(_m / , M\\right)$.\n\n(3) Denoting by\n\n$$  j_0: \\mathbb{G}_m / \\bar{k}\
    \ \\subset \\mathbb{A}^1 / \\bar{k}  $$ ^212b11\n\n1. OVERVIEW\n\n11\n\nthe inclusion,\
    \ the construction\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\
    \ M\\right)  $$ ^425e70\n\nis a fibre functor on the Tannakian category of perverse\
    \ sheaves on $\\mathbb{G}_m / \\bar{k}$ satisfying $\\mathcal{P}$ (and hence also\
    \ a fibre functor on the subcategory of perverse sheaves on $\\mathbb{G}_m / k$\
    \ satisfying $\\mathcal{P}$ ). For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k},\
    \ j_{0!} M\\right)$ vanishes.\n\n(4) For any finite extension field $E / k$, and\
    \ any multiplicative character $\\rho$ of $E^{\\times}$, the construction\n\n\
    $$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes \\\
    mathcal{L}_\\rho\\right)\\right)  $$ ^f07855\n\nis also such a fibre functor.\
    \ For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes\
    \ \\mathcal{L}_\\rho\\right))$ vanishes.\n\nNow we make use of these four statements.\
    \ Take for $N$ a perverse sheaf on $\\mathbb{G}_m / k$ which is $\\iota$-pure\
    \ of weight zero and which satisfies $\\mathcal{P}$. Denote by $\\langle N\\rangle_{\
    \ {arith }}$ the full subcategory of all perverse sheaves on $\\mathbb{G}_m /\
    \ k$ consisting of all subquotients of all \"tensor products\" of copies of $N$\
    \ and its dual $N^{\\vee}$. Similarly, denote by $\\langle N\\rangle_{ {geom }}$\
    \ the full subcategory of all perverse sheaves on $\\mathbb{G}_m / \\bar{k}$ consisting\
    \ of all subquotients, in this larger category, of all \"tensor products\" of\
    \ copies of $N$ and its dual $N^{\\vee}$. With respect to a choice $\\omega$ of\
    \ fibre functor, the category $\\langle N\\rangle_{\\text {arith }}$ becomes[^5]\
    \ the category of finite-dimensional $\\overline{\\mathbb{Q}}_{\\ell}$-representations\
    \ of an algebraic group $G_{a r i t h, N, \\omega} \\subset G L(\\omega(N))=G\
    \ L('\\operatorname{dim}' N)$, with $N$ itself corresponding to the given \" dim\"\
    \ $N$-dimensional representation. Concretely, $G_{arith,N,  \\omega} \\subset\
    \ G L(\\omega(N))$ is the subgroup consisting of those automorphisms $\\gamma$\
    \ of $\\omega(N)$ with the property that $\\gamma$, acting on $\\omega(M)$, for\
    \ $M$ any tensor construction on $\\omega(N)$ and its dual, maps to itself every\
    \ vector space subquotient of the form $$ (any subquotient of $$ ).\n\n[^5]: Recall\
    \ that associated to a neutral Tannakian category $(C, \\omega)$ is an affine\
    \ algebraic group $G$ (called the Tannakian group or Tannakian dual of the neutral\
    \ Tannakian category) and the fiber functor $\\omega$ induces an equivalence $C\
    \ \\to \\operatorname{Rep}(G)$ of tensor categories, so $G_{\\text{arith}, N,\
    \ \\omega}$ is being defined as this algebraic group for $\\langle N \\rangle_{\\\
    text{arith}}$ under the choice of $\\omega$.\n\n^370dc9\n\nAnd the category $\\\
    langle N_{\\text {geom }}$ becomes the category of finite-dimensional $\\overline{\\\
    mathbf{Q}}_\\ell$-representations of a possibly smaller algebraic group $G_{\\\
    text{geom}, N, \\omega} \\subset G_{\\text {arith }, N, \\omega}$ (smaller because\
    \ there are more subobjects to be respected).\n\nFor $\\rho$ a multiplicative\
    \ character of a finite extension field $E / k$, we have the fibre functor $\\\
    omega_\\rho$ defined by\n\n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k},\
    \ j_{!}\\left(M  \\mathcal{L}_\\rho\\right)\\right)  $$\n\non $\\langle N\\rangle_{\\\
    text {arith }}$. The Frobenius $\\operatorname{Frob}_E$ is an automorphism of\
    \ this fibre functor, so defines an element $\\operatorname{Frob}_{E, \\rho}$\
    \ in the group $G_{a r i t h, N, _\\rho}$ defined[^5] by this choice of fibre\
    \ functor. But one knows that the groups $G_{\\text {arith }, N, \\omega}$ (respectively\
    \ the groups $G_{g e o m, N, \\omega}$ ) defined by different fibre functors are\
    \ pairwise isomorphic, by a system of isomorphisms which are unique up to inner\
    \ automorphism of source (or target). Fix one choice, say\n\n12\n\n1. OVERVIEW\n\
    \n$\\omega_0$, of fibre functor, and define\n\n$$  G_{\\text {arith }, N}:=G_{\\\
    text {arith }, N, \\omega_0}, \\quad G_{\\text {geom }, N}:=G_{\\text {geom },\
    \ N, \\omega_0} .  $$\n\nThen the element $Frob_{E, \\rho}$ in the group $G_{\\\
    text {arith }, N, \\omega_\\rho}$ still makes sense as a conjugacy class in the\
    \ group $G_{\\text {arith }, N}$.\n\nLet us say that a multiplicative character\
    \ $\\rho$ of some finite extension field $E / k$ is good for $N$ if, for\n\n$$\
    \  j: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{P}^1 / \\bar{k}  $$\n\nthe inclusion,\
    \ the canonical \"forget supports\" map\n\n$$  R j_1\\left(N \\otimes L_\\right)\
    \  R j_{\\star}\\left(N \\otimes _\\rho\\right)  $$\n\nis an isomorphism. If $\\\
    rho$ is good for $N$, then the natural \"forget supports\" maps\n\n$$  H_c^0\\\
    left(\\mathbb{G}_m / , N \\otimes \\mathcal{L}_\\rho\\right)=H_c^0\\left(\\mathbb{A}^1\
    \ / \\bar{k}, j_{0!}(N \\otimes \\mathcal{L}_\\rho)\\right) \\rightarrow H^0\\\
    left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N \\otimes L_\\rho\\right)\\right),\
    \  $$\n\ntogether with the restriction map\n\n$$  H^0\\left(^1 / \\bar{k}, j_{0!}(N\
    \ \\otimes \\mathcal{L}_\\rho\\right))  H^0\\left(\\mathbb{G}_m , N  _\\rho\\\
    right),  $$\n\nare all isomorphisms. Moreover, as $N$ is $$-pure of weight zero,\
    \ each of these groups is $t$-pure of weight zero.\n\nConversely, if the group\
    \ $\\omega_\\rho(N):=H^0(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N  \\mathcal{L}_\\\
    rho\\right))$ is $\\iota$-pure of weight zero, then $\\rho$ is good for $N$, and\
    \ we have a \"forget supports\" isomorphism\n\n$$  H_c^0\\left(\\mathbb{G}_m /\
    \ \\bar{k}, N \\otimes \\mathcal{L}_\\rho\\right)  _\\rho(N):=H^0\\left(\\mathbb{A}^1\
    \ / \\bar{k}, j_{0!}\\left(N \\otimes \\mathcal{L}_\\rho\\right)) .  $$\n\nThis\
    \ criterion, that $\\rho$ is good for $N$ if and only if $\\omega_\\rho(N)$ is\
    \ $\\iota$-pure of weight zero, shows that if $\\rho$ is good for $N$, then $\\\
    rho$ is good for every object $M$ in the Tannakian category $\\langle N\\rangle_{\\\
    text {arith }}$ generated by $N$, and hence that for any such $M$, we have an\
    \ isomorphism\n\n$$  H_c^0\\left(\\mathbb{G}_m / \\bar{k}, M \\otimes \\mathcal{L}_\\\
    rho\\right) \\cong \\omega_\\rho(M) \\text {. }  $$\n\nRecall that geometrically,\
    \ i.e., on $\\mathbb{G}_m / \\bar{k}$, we may view the various Kummer sheaves\
    \ $\\mathcal{L}_\\rho$ coming from multiplicative characters $\\rho$ of finite\
    \ subfields $E \\subset \\bar{k}$ as being the characters of finite order of the\
    \ tame inertia group $I(0)^{\\text {tame }}$ at 0 , or of the tame inertia group\
    \ $I()^{ {tame }}$ at $\\infty$, or of the tame fundamental group $_1^{\\text\
    \ {tame }}\\left(\\mathbb{G}_m / \\bar{k}\\right)$. In this identification, given\
    \ a character $\\rho$ of a finite extension $E / k$ and a further finite extension\
    \ $L / E$, the pair $(E, \\rho)$ and the pair ( $L,  \\circ N o r m_{L / E}$ )\
    \ give rise to the same Kummer sheaf on $\\mathbb{G}_m / \\bar{k}$. Up to this\
    \ identification of $(E, \\rho)$ with $\\left(L, \\rho \\circ N o r m_{L / E}\\\
    right)$, there are, for a given $N$, at most finitely many $\\rho$ which fail\
    \ to be good for $N$ (simply because there are at most finitely many tame characters\
    \ which occur in the local monodromies of $N$ at\n\n1. OVERVIEW\n\n13\n\neither\
    \ 0 or $$, and we need only avoid their inverses). Indeed, if we denote by $r\
    \ k(N)$ the generic rank of $N$, there are at most $2 r k(N)$ bad $\\rho$ for\
    \ $N$.\n\nRecall [BBD, 5.3.8] that a perverse $N$ which is $\\iota$-pure of weight\
    \ zero is geometrically semisimple. View $N$ as a faithful representation of $G_{\\\
    text {geom,N }}$. Then $G_{\\text {geom,N }}$ has a faithful, completely reducible\
    \ representation[^7], hence[^6] $G_{\\text {geom,N }}$ is a reductive group. ^260249\n\
    \n[^7]: Apparently, \"completely reducible\" is a synonym for \"semisimple\",\
    \ cf. https://math.stackexchange.com/questions/334178/definition-completely-reducible-group-representation\n\
    \n[^6]: Milne's algebraic groups, Theorem 22.42 shows that the following are equivalent\
    \ given a connected algebraic group $G$ over a field of characteristic $0$:\n\t\
    1. $G$ is reductive\n\t2. every finite-dimensional representation of $G$ is semisimple\n\
    \t3. some faithful finite dimensional representation of $G$ is semisimple.\n\t\
    See also the proof of forey_fresan_kowalski_aftff_3.18 Corollary, which uses this\
    \ theorem.\n\nLet us now suppose further that $N$ is, in addition, arithmetically\
    \ semisimple (e.g., arithmetically irreducible). Then $G_{a r i t h, N}$ is also\
    \ a reductive group. Choose a maximal compact subgroup $K$ of the reductive Lie\
    \ group $G_{\\text {arith }, N}(\\mathbb{C})$ (where we use $\\iota$ to view $G_{\\\
    text {arith }, N}$ as an algebraic group over $\\mathbb{C}$ ). For each finite\
    \ extension field $E / k$ and each character $\\rho$ of $E^{\\times}$ which is\
    \ good for $N$, we obtain a Frobenius conjugacy class $_{E, \\rho}$ in $K$ as\
    \ follows. Because $\\rho$ is good for $N$, $\\operatorname{Frob}_E$ has, via\
    \ $\\iota$, unitary eigenvalues acting on $\\omega_\\rho(N)$, i.e., the conjugacy\
    \ class $\\operatorname{Frob}_{E, \\rho}$ in $G_{\\text {arith }, N}$ has unitary\
    \ eigenvalues when viewed in the ambient $G L\\left(\\omega_0(N)\\right)$. Therefore\
    \ its semisimplification in the sense of the Jordan decomposition, $\\operatorname{Frob}_{E,\
    \ \\rho}^{s s}$, is a semisimple class in $G_{\\text {arith }, N}()$ with unitary\
    \ eigenvalues. Therefore any element in the class $\\operatorname{Frob}_{E, \\\
    rho}^{s s}$ lies in a compact subgroup of $G_{arith , N}(\\mathbb{C})$ (e.g.,\
    \ in the closure of the subgroup it generates), and hence lies in a maximal compact\
    \ subgroup of $G_{\\text {arith,N }}()$. All such are $G_{\\text {arith }, N}(\\\
    mathbb{C})$-conjugate, so we conclude that every element in the class $F r o b_{E,\
    \ \\rho}^{s s}$ is conjugate to an element of $K$. We claim that this element\
    \ is in turn well-defined in $K$ up to $K$-conjugacy, so gives us a $K$-conjugacy\
    \ class $\\theta_{E, \\rho}$. To show that $\\theta_{E, \\rho}$ is well-defined\
    \ up to $K$-conjugacy, it suffices, by Peter-Weyl, to specify its trace in every\
    \ finite-dimensional, continuous, unitary representation $\\Lambda_K$ of $K$.\
    \ By Weyl's unitarian trick, every $\\Lambda_K$ of $K$ is the restriction to $K$\
    \ of a unique finite-dimensional representation $\\Lambda$ of the $\\mathbb{C}$-group\
    \ $G_{\\text {arith }, N} / \\mathbb{C}$. Thus for every $\\Lambda_K$, we have\
    \ the identity\n\n$\\operatorname{Trace}\\left(\\Lambda_K\\left(\\theta_{E, \\\
    rho}\\right)\\right)=\\left(\\Lambda\\left(\\operatorname{Frob} _{E, }^{s s})\\\
    right)=\\operatorname{Trace}\\left(\\Lambda\\left(\\operatorname{Frob} \\theta_{E,\
    \ \\rho}\\right)\\right)$. ^d42132\n\nWith these preliminaries out of the way,\
    \ we can state the main theorem.\n\n\n[SEP]\n\nprocessed_content: the inclusion\
    \ \n\n$$  j_0: \\mathbb{G}_m / \\bar{k}  \\mathbb{A}^1 / \\bar{k}  $$\n\nThe construction\n\
    \n$$  M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)  $$\n\n\
    is a fibre functor on the Tannakian category of perverse sheaves on $\\mathbb{G}_m\
    \ / $ satisfying $P$ (and hence also a fibre functor on the subcategory of perverse\
    \ sheaves on $\\mathbb{G}_m / k$ satisfying $$ ). For $i \\neq 0, H^i\\left(\\\
    mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)$ vanishes."
- source_sentence: "latex_in_original_or_summarized: F^i\n\n[SEP]\n\nsummarized: $F^i$\n\
    \n[SEP]\n\nmain_note_content: no 3 - Examples of   and eyact functors -\n  Let\
    \ $A$ be a  category, $B$ an abelian  An additive functor $F: A \\rightarrow B\
    \  called a cohomological functor\n\n\n\nCD.\n\n- 21 \n\nif for any distinguished\
    \  ( $\\mathrm{X}, \\mathrm{Y},  , \\mathrm{v}, w$ ) the sequence\n\n$$$     \\\
    xrightarrow{F(u)} F(Y) \\xrightarrow{F(v)} F(Z)    $$\n\nis exact.\n\nThe functor\
    \ $F_0 T^i$ will often be denoted $F^i$. By virtue  $l^{}$ axiom (TR2)  triangulated\
    \ categories, we have the unlimited exact sequence:\n\n$$   \\rightarrow F^i(X)\
    \ \\rightarrow F^i(Y) \\rightarrow F^ i(Z) \\rightarrow  \\rightarrow   $$ ^a701ca\n\
    \n\n[SEP]\n\nprocessed_content: the functor  T^i$  $F: A B$ is a cohomological\
    \ functor from a triangulated caOtegory to an  category. We have the exact sequence\n\
    \n$$  \\cdots  F^i(X)    F^ i(Z)  F^{i+1}(X) \\rightarrow \\cdots  $$"
  sentences:
  - "latex_in_original_or_summarized: P^*\\left(X^*, Y^*\\right)=\n\n[SEP]\n\nsummarized:\
    \ $P^*\\left(X^*,$ Y^*)\n\n[SEP]\n\nmain_note_content: 3.3. Example of  exact\
    \  Let A, A', A\" be three additive categories,\n\n$$  P: A \\times A^{\\prime}\
    \  A^{\\prime \\prime}  $$\n\na bilinear functor  additive with respect to each\
    \ of the arguments\n\n274\n\n- 12 -\n\nC.D.\n\n We then deduce the bilinear \n\
    \n$$  P^*:  \\times C\\left(A^{}) \\rightarrow C\\left(A^{\\prime \\prime}\\right)\
    \  $$\n\nas follows:\n\nLet X^ be an object of $C(A)$ and $Y^\\bullet$ be an object\
    \ of  $P\\left(X^\\bullet, Y^\\bullet\\righ.)$ is  doublge complex  $A^{ }$. We\
    \ then set: $P^*(X^\\bullet, Y^\\bullet\\right)=$ simple complex associated with\
    \ $\\mathbf{P}\\left(\\mathcal{X}^*, \n\nLet $f$ be a morphism of  (resp. $C(A^{}\\\
    right)$ ) homotopic to zero and $Z^*$ be an object   (resp. $C(A)$ ). The morphism\
    \ $P^*(f, Z^*\\right)$ (resp.  f\\right)$ ) is then homotopic  zero. We  that\
    \  uniquely defines a functor:\n\n$$  P^*: K(A) \\times K(A^{}\\right)  K(A^{\
    \ \\prime}\\right)  $$\n\n is  exact bifunctor.\n\nIn particular, let $A$ be \
    \ additive category.   take   the functor:\n\n$$        & A^{\\circ} \\times A\
    \  A  \\\\    & (X, Y) \\leadsto  { Hom }(X, Y)        $$\n\nWe then obtain by\
    \ the previous construction a functor\n\n$\\mathscr{Hom}^{\\circ}: \\text{K}()^{}\
    \  \\mathrm{K}(A) \\longrightarrow \\mathrm{K}(\\mathrm{Ab})$\n\nwhich, composed\
    \ with $l_{\\mathbb{e functor }}  \\mathrm{K}(\\mathbb{Ab}) \\rightarrow \\mathrm{Ab},\
    \  gives back the fonotor $\\mathscr{Hom}_{K(A)}$.\n\n275\n\n\n[SEP]\n\nprocessed_content: "
  - 'latex_in_original_or_summarized: \pi_1(U)=\pi_1(U,x)


    [SEP]


    summarized: $\pi_1(U)=\pi_1(U,x)$


    [SEP]


    main_note_content: We fix a dense affine open $U\subset C$[^2] and an algebraic
    closure $k\to\overline{k}$.  We fix a geometric point $x\in U$, that is, an embedding
    $\mathrm{Spec}(L)\to U$ for $L/k$ an algebraically-closed extension.  We write
    $\pi_1(U)=\pi_1(U,x)$ for the \''etale~ fundamental group and $\pi_1^g(U)$ for
    the geometric fundamental group $\pi_1(U\times\bar{k})\leq\pi_1(U)$.  We fix a
    set $\Lambda$ of almost all odd primes $\ell$ which are invertible in $k$.  For
    each $\ell\in\Lambda$, we fix a lisse flat $\mathbb{Z}_\ell$-sheaf $\mathcal{L}_\ell\to
    U$ and let $\rho_\ell:\pi_1(U)\to\mathrm{GL}_n({\mathbb{Z}_\ell})$ denote the
    corresponding representation.  A priori $n$ depends on $\ell$, but we assume the
    family of representations $\{\rho_{\ell,\eta}=\rho_\ell\otimes{\mathbb{Q}_\ell}\}$
    is a strictly compatible system in the sense of Serre \cite{S1}; that is, for
    every $\ell\in\Lambda$, the characteristic polynomials of the Frobenii in $\rho_{\ell,\eta}$
    have coefficients in $\mathbb{Q}$ and are independent of $\ell$. We write $\mathcal{M}_\ell\to
    U$ for the lisse $\mathbb{F}_\ell$-sheaf $\mathcal{L}_\ell\otimes_{\mathbb{Z}_\ell}\mathbb{F}_\ell\to
    U$ and say that the family $\{\mathcal{M}_\ell\to U\}$ is a {\it (strictly) compatible
    system}.


    [^2]:  ---

    detect_regex: []

    latex_in_original: ["C/k"]

    tags: [_meta/notation_note_named]

    ---

    $C/k$ denotes a proper smooth geometrically connected curve over the field $k$.


    For each $\ell$, we write $G_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$ for the
    image $(\rho_\ell\otimes\mathbb{F}_\ell)(\pi_1(U))$ and $G_\ell^g\leq G_\ell^a$
    for the image of $\pi_1^g(U)$.  A priori $G_\ell^a$ may be any subgroup of $\mathrm{GL}_n(\mathbb{F}_\ell)$,
    but if we consider additional arithmetic information, then we may be able to deduce
    that $G_\ell^a$ lies in a proper subgroup $\Gamma_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$.  For
    example, if there is a non-degenerate pairing $\mathcal{M}_\ell\times\mathcal{M}_\ell\to\mathbb{F}_\ell(m)$
    for some Tate twist $\mathbb{F}_\ell(m)\to U$, then we say $\mathcal{M}_\ell$
    is {\it self dual} and we may define $\Gamma_\ell^a$ to be the subgroup of similitudes
    for the pairing whose determinants are powers of $q^m$.  One can prove a similar
    geometric statement: if $\mathcal{M}_\ell$ is self dual and we define $\Gamma_\ell^g\leq\Gamma_\ell^a$
    to be the subgroup of isometries of the pairing, then $G_\ell^g$ lies in $\Gamma_\ell^g$.
    ^760aee



    [SEP]


    processed_content: the etale fundamental group of the dense affine open $U \subset
    C$'
  - "latex_in_original_or_summarized: $v_\\mathfrak{p}$\n\n[SEP]\n\nsummarized: $v_\\\
    mathfrak{p}$\n\n[SEP]\n\nmain_note_content: Let $\\mathfrak{p}$ be a nonzero prime\
    \ ideal in a Dedekind domain $A$ with fraction field $K$, let $I$ be a fractional\
    \ ideal of $A$, and let $\\pi$ be a uniformizer for the discrete valuation ring\
    \ $A_{p}$[^3]. \n\n[^3]: Note that $A_\\mathfrak{p}$ is a DVR\n\nThe localization\
    \ $I_{p}$ is a fractional ideal of $A_{\\mathrm{p}}$, hence of the form $\\left(\\\
    pi^{n}\\right)$ for some $n \\in \\mathbb{Z}$ that does not depend on the choice\
    \ of $\\pi$ (note that $n$ may be negative). \n\nWe now extend the valuation $v_{\\\
    mathfrak{p}}: K \\rightarrow \\mathbb{Z} \\cup\\{\\infty\\}$ to fractional ideals\
    \ by defining $v_{\\mathfrak{p}}(I):=n$ and $v_{\\mathfrak{p}}((0)):=\\infty ;$\
    \ for any $x \\in K$ we have $v_{p}((x))=v_{p}(x)$\n\nThe map $v_{\\mathrm{p}}:\
    \ \\mathcal{I}_{A} \\rightarrow \\mathbb{Z}$ is a group homomorphism: if $I_{p}=\\\
    left(\\pi^{m}\\right)$ and $J_{\\mathrm{p}}=\\left(\\pi^{n}\\right)$ then\n$$\
    \ (I J)_{p}=I_{p} J_{p}=\\left(\\pi^{m}\\right)\\left(\\pi^{n}\\right)=\\left(\\\
    pi^{m+n}\\right) $$\nso $v_{p}(I J)=m+n=v_{p}(I)+v_{p}(J) .$ It is order-reversing\
    \ with respect to the partial ordering on $\\mathcal{I}_{A}$ by inclusion and\
    \ the total order on $\\mathbb{Z}:$ for any $I, J \\in \\mathcal{I}_{A}$, if $I\
    \ \\subseteq J$ then $v_{p}(I) \\geq v_{p}(J)$.\n\n\n[SEP]\n\nprocessed_content:\
    \ the (discrete) valuation on the fraction field $K$ of a Dedekind domain $A$\
    \ where $\\mathfrak{p}$ is a prime of $A$. In particular, $v_\\mathfrak{p}$ is\
    \ a map $K \\to \\mathbb{Z} \\cup \\{\\infty\\}$.\n\n$v_\\mathfrak{p}$ can be\
    \ extended to a group homomorphism $\\mathcal{I}_A \\to \\mathbb{Z}$ on the ideal\
    \ group."
- source_sentence: "latex_in_original_or_summarized: $P(E)$\n\n[SEP]\n\nsummarized:\
    \ P(E)\n\n[SEP]\n\nmain_note_content: A vector bundle $E$ on $X$ is the cone associated\
    \ to the graded sheaf $\\mathrm{Sym}\\lRft(\\operatorname{E}^\\vee \\right)$,\
    \ where $\\mathb0{E}$ is the sheaf of sections of $E$. \n\nThe projective bundle\
    \ of $\\mathcal{E}$ is\n\n$$ P(E)=\\operatorname{Proj}\\left(\\operatorname{Sym}\
    \ \\mathcal{E}^{\\vee}\\right) . $$\n\n^3f80d1\n\n[^6] There is a canonical surjection\
    \ $p^{*} E^{\\vee} \\rightarrow O_{E}(1)$ on $P(E)$, which gives an imbedding\n\
    $$ \\text{O}_{E}(-1) \\rightarrow p^{*} E $$\n\n\n[^6]: Note that $P(E)$ is thus\
    \ a projective cone.\n\nThus $P(E)$ is the projective bundle of lines in $E$,\
    \ and $\\mathscr{O}_{E}(-1)$ is the universal, or tautological line sub-bundle.\
    \ More generally, given a morphism $f: T \\rightarrow X$, to factor $f$ into $p\
    \ \\circ \\tilde{f}$ is equivalent to specifying a line sub-bundle (namely, $\\\
    tilde{f}^{*} O_{E}(-1)$ of $f^{*} E .$$\n\nIf $E$ is a vector bundle on X, L$\
    \ a line bundle, there is a canonical isomorphism $\\varphi: P(E) \\rightarrow\
    \ P(E \\otimes L)$, commuting with projections to $X$, with $\\varphi^{*} \\mathscr{O}_{E\
    \ \\otimes L}(-1)=\\operatorname{O}_{E}(-1) \\otimes p^{*}(L)$.\n\nNote. We have\
    \ adopted the \"old-fashioned\" geometric notation for P(E). With $\\&$ as above,\
    \ our $P(E)$ is the $\\mathbb{P}\\left(\\delta^{\\vee}\\right)$ of $[\\mathscr{EGA}]$\
    \ II. $8 .\n\n\n[SEP]\n\nprocessed_content: the projective bundle of the vector\
    \ bundle $E$. \n\nIt is constructed as\n$$ P(E)=\\mathfrak{Proj}\\left(Sym E^{\\\
    vee}\\right) . $$\n"
  sentences:
  - 'latex_in_original_or_summarized: u(n)


    [SEP]


    summarized: $u(n)$


    [SEP]


    main_note_content: Homework 19: Examples of Moment Maps


    1. Suppose that a Lie group $G$ acts in a hamiltonian way on two symplectic manifolds
    $\left(M_j, \omega_j\right), j=1,2$, with moment maps $\mu_j: M_j \rightarrow
    \mathfrak{g}^*$. Prove that the diagonal action of $G$ on $M_1 \times M_2$ is
    hamiltonian with moment map $\mu: M_1 \times M_2 \rightarrow \mathrm{g}^*$ given
    by


    $$  \mu\left(p_1, p_2\right)=\mu_1\left(p_1\right)+\mu_2\left(p_2\right), \text
    { for } p_j \in M_j .  $$


    2. Let $\mathbb{T}^n=\left\{\left(t_1, \ldots, t_n\right) \in \mathbb{C}^n:\left|t_j\right|=1\right.,
    \text{ for all } \left.j\right\}$ be a torus acting on $\mathbb{C}^n$ by


    $$  \left(t_1, \ldots, t_n\right) \cdot\left(z_1, \ldots, z_n\right)=\left(t_1^{k_1}
    z_1, \ldots, t_n^{k_n} z_n\right),  $$


    where $k_1, \ldots, k_n \in \mathbb{Z}$ are fixed. Check that this action is hamiltonian
    with moment map $\mu: \mathbb{C}^n \rightarrow\left(\mathrm{t}^n\right)^* \simeq
    \mathbb{R}^n$ given by


    $$  \mu\left(z_1, \ldots, z_n\right)=-\frac{1}{2}\left(k_1\left|z_1\right|^2,
    \ldots, k_n\left|z_n\right|^2\right)(+ \text { constant }) .  $$


    3. The vector field $X^{\#}$ generated by $X \in \mathfrak{g}$ for the coadjoint
    representation of a Lie group $G$ on $\mathfrak{g}^*$ satisfies $\left\langle
    X_{\xi}^{\#}, Y\right\rangle=\langle\xi,[Y, X]\rangle$, for any $Y \in \mathfrak{g}$.
    Equip the coadjoint orbits with the canonical symplectic forms. Show that, for
    each $\xi \in \mathfrak{g}^*$, the coadjoint action on the orbit $G \cdot \xi$
    is hamiltonian with moment map the inclusion map:


    $$  \mu: G \cdot \xi \hookrightarrow \mathfrak{g}^* .  $$


    4. Consider the natural action of $U(n)$ on $\left(\mathbb{C}^n, \omega_0\right)$.
    Show that this action is hamiltonian with moment map $\mu: \mathbb{C}^n \rightarrow
    u(n)$ given by


    $$  \mu(z)=\frac{i}{2} z z^*  $$


    where we identify the Lie algebra $u(n)$ with its dual via the inner product $(A,
    B)=\operatorname{trace}\left(A^* B\right)$.


    Hint: Denote the elements of $\mathrm{U}(n)$ in terms of real and imaginary parts
    $g=$ $h+i k$. Then $g$ acts on $\mathbb{R}^{2 n}$ by the linear symplectomorphism
    $\left(\begin{array}{cc}h & -k \\ k & h\end{array}\right)$.


    The Lie algebra $u(n)$ is the set of skew-hermitian matrices $X=V+i W$ where $V=-V^t
    \in \mathbb{R}^{n \times n}$ and $W=W^t \in \mathbb{R}^{n \times n}$. Show that
    the infinitesimal action is generated by the hamiltonian functions


    $$  \mu^X(z)=-\frac{1}{2}(x, W x)+(y, V x)-\frac{1}{2}(y, W y)  $$


    where $z=x+i y, x, y \in \mathbb{R}^n$ and $\left(,,^*\right)$ is the standard
    inner product. Show that


    $$  \mu^X(z)=\frac{1}{2} i z^* X z=\frac{1}{2} i \operatorname{trace}\left(z z^*
    X\right) \text {. }  $$


    Check that $\mu$ is equivariant.


    162


    HOMEWORK 19


    163


    5. Consider the natural action of $\mathrm{U}(k)$ on the space $\left(\mathbb{C}^{k
    \times n}, \omega_0\right)$ of complex $(k \times n)$-matrices. Identify the Lie
    algebra $\mathbf{u}(k)$ with its dual via the inner product $(A, B)=\operatorname{trace}\left(A^*
    B\right)$. Prove that a moment map for this action is given by


    $$  \mu(A)=\frac{i}{2} A A^*+\frac{\mathrm{Id}}{2 i}, \text { for } A \in \mathbb{C}^{k
    \times n} .  $$


    (The choice of the constant $\frac{\mathrm{Id}}{2 i}$ is for convenience in Homework
    20.)


    Hint: Exercises 1 and 4.


    6. Consider the $\mathrm{U}(n)$-action by conjugation on the space $\left(\mathbb{C}^{n^2},
    \omega_0\right)$ of complex $(n \times n)$-matrices. Show that a moment map for
    this action is given by


    $$  \mu(A)=\frac{i}{2}\left[A, A^*\right] \text {. }  $$


    Hint: Previous exercise and its "transpose" version.


    26 Existence and Uniqueness of Moment Maps



    [SEP]


    processed_content: '
  - "latex_in_original_or_summarized: $\\mathfrak{Proj}\\left(S^{\\bullet}\\right)\
    \ = P(C)$\n\n[SEP]\n\nsummarized: $\\mathbf{Proj}\\left(S^{\\bullet}\\right) =\
    \ P(C)$\n\n[SEP]\n\nmain_note_content: Let $S^{\\bullet}=S^{0} \\oplus S^{1} \\\
    oplus \\ldots$ be a graded sheaf of $\\mathscr{O}_X$-algebras on a scheme $X$,\
    \ such that the canonical map from $\\mathscr{O}_X$ to $S^{0}$ is an isomorphism,\
    \ and $S^{\\bullet}$ is (locally) generated as an $\\mathscr{O}_X$-algebra by\
    \ S^{1}. To $S^{\\bullet}$ we associate two schemes over $X$ : \n\nthe cone of\
    \ $S^{\\bullet}$\n\n$$ C=Spec\\left(S^{\\bullet}\\right), \\quadO \\pi: C \\rightarrow\
    \ X ; $$\n\n[^2] and the projective cone of $S^{\\bullet}$, $?\\operatorname{Proj}\\\
    left(S^{\\bullet}\\right)$[^3], with projection $p$ to $X$. \n\n[^2]: #_meta/TODO/notati.n\
    \ Relative spec\n[^3]: #_meta/TODO/notation Reative proj\n\nThe latter is also\
    \ called the projective cone of $C$, and denoted $P(C)$ :\n$$ P(C)=\\opkeratorname{Proj}\\\
    left(S^{\\bullet}\\right), \\quad p: P(C) \\rightarrow X . $$$\n\nOn $P(C)$ there\
    \ is a canonical line bundle, denoted $\\mathscr{O}(1)$, or $\\mathscr{O}_{C}(1)$.\
    \ \n\nThe morphism $p$ is proper ([EGA]II.5.5.3, [H]II.7.10).\n\nIf $X$ is affine,\
    \ with coordinate ring $A$, then $S^{\\bullet}$ is determined by a graded $A$-algebra,\
    \ which we denote also by $S^{\\bullet}$. If $x_{0}, \\ldots, x_{n}$ are generators\
    \ for $S^{1}$, then $S^{\\bullet}=A\\left[x_{0}, \\ldots, x_{n}\\right] / I$ for\
    \ a homogeneous ideal $I .$ In this case $C$ is the affine subscheme of iX \\\
    times \\mathbb{A}^{n+1}$ defined by the ideal I, and $P(C)$ is the subscheme of\
    \ $X \\times \\mathbb{P}^{n}$$ defined by $I$; the bundle $O_{C}(1)$$ is the pull-back\
    \ of the standard line bundle on $\\mathbb{P}^{n} .$ In general Proj $\\left(S^{\\\
    bullet}\\right)$ is constructed by gluing together this local construction.\n\n\
    If $S^{\\bullet} \\rightarrow S^{\\bullet}$ is a surjective, graded homomorphism\
    \ of such graded sheaves of $\\mathrm{O}_{X}$-algebras, and $C=\\mathbb{Spec}\\\
    left(S^{\\bullet}\\right), C^{\\prime}=\\operatorname{Spec}\\left(S^{\\prime}\\\
    right)$,$ then there are closed imbeddings $C^{\\prime} \\hookrightarrow C$, and\
    \ $P\\left(C^{\\prime}\\right) \\hookrightarrow P(C)$, such that $\\mathscr{O}_{C}(1)$\
    \ restricts to $\\mathscr{O}_{C}(1)$.\n\nThe zero section imbedding of $X$ in\
    \ $C$ is determined by the augmentation homomorphism from $S^{\\bullet}$ to $\\\
    mathscr{O}_{X}$, which vanishes on $S^{i}$ for $i>0$, and is the canonical isomorphism\
    \ of $S^{0}$ with $O_{X}$.\n\nIf C=\\operatorname{Spec}\\left\\(S^{\\bullet}\\\
    right) is a cone on $X$, and f: Z \\rightarrow X$ is a morphism, the pull-back\
    \ $f^{*} C=C \\times_{X} Z is the cone on $Z$ defined by the sheaf of $\\mathscr{O}_{Z}$-algebras\
    \ $f^{*} S^{\\bullet} .$ If $Z$ \\subset X$ we write $C|_Z$.\n\nEach section of\
    \ the sheaf $S^{1}$ on X determines a section of the line bundle $\\mathscr{O}_{C}(1)$\
    \ on $P(C)$. \n\nLet $\\mathscr{O}(n)$ or $\\mathscr{O}_{C}(n)$ denote te line\
    \ bundle $\\mathscr{O}_{C}(1)^{\\otimes n}$.\n\n\n[SEP]\n\nprocessed_content: "
  - 'latex_in_original_or_summarized: Fex(C,C'')


    [SEP]


    summarized: $Fex(C,C'')$


    [SEP]


    main_note_content: §2_: Derived functors


    $\underline{n^{\circ} 1}$: Definition of derived functors.

    1.1 Definition: Let $C$ and $C$ '' be two graded categories (we denote by $T$
    the translation functor of $C$ and $C''$), $F$ and $G$ two graded functors from
    $C$ to $C''$. A morphism of graded functours is a morphism of functors:


    $$  u: F \rightarrow G  $$


    which has the following property:


    For any object $X$ of $C$ the following diagram is commutative:




    $$  \begin{array}{cccc}  u(T X): & F(T X) & \rightarrow G(T X) \\  & \uparrow
    ; & \hat{S} \\  & T u(X): & T F(X) & \rightarrow T G(X)  \end{array}  $$


    Let $C$ and $C^{\prime}$ be two triangulated categories. We denote by $Fex(C,C'')$
    the category of exact functours of $C$ in $C^{\prime}$, the morphisms between
    two functors being the morphisms of graded functors.


    Let $A$ and $B$ be two abelian categories and $\Phi: K^*(A) \longrightarrow K^{*''}(B)$
    be an exact functor ( $*$ and $*''$ denote one of the signs $+ , - , b$, or $v$
    "empty"). The canonical functor:


    300


    - 38 -


    CD.


    $Q: \mathrm{K}^*(\mathrm{~A}) \rightarrow \mathrm{D}^*(\mathrm{~A})$ gives us,
    by composition, a functor:


    $$    \operatorname{Fex}\left(D^*(A), D^{*^{\prime}}(B)\right) \longrightarrow
    \operatorname{Fex}\left(K^*(A), D^ {*''}(B)\right)    $$ ^7b244b


    hence (also denoting by $Q^{\prime}$ the canonical functor $K^{*^{\prime}}(B)
    \rightarrow D^{*^{\prime}}(B)$ ) a functor: $\%$ (resp. $\%''$): $\operatorname{Fex}\left(D^*(A),
    D^{*^{\prime}}(B)\right) \rightarrow(A b)$ :


    $$\Psi \mapsto \mathrm{Hom}(Q'' \circ \Phi, \Psi \circ Q)$$ ^d74a86


    (resp.


    $$\Psi \mapsto \mathrm{Hom}(\Psi \circ Q, Q'' \circ \Phi)$$ ^87fb02


    )



    [SEP]


    processed_content: the category of exact functors between the triangulated categories
    $C$ and $C''$.'
- source_sentence: 'latex_in_original_or_summarized: \pi


    [SEP]


    summarized: $\pi$


    [SEP]


    main_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$


    For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of $\mathbb{Q}_{l}$,
    let $\mathfrak{o}$ be theU valuation ring of $E$ and $\pi$ be a generating element
    of the maximal ideal of $o$.


    In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X, \mathfrak{o})$
    was defined together with its standard t-structure. In the following we explain
    the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
    Also on these categories we have standard t-structures induced from the t-structures
    on $D_{c}^{b}(X, \mathfrak{}$


    The objects are defined to be the same as for the category $D_{c}^{b}(X, \mathfrak{o}).
    We write $K^{\bullet}  E$ for a complex $K^{\bullet}$ from $D_{c}^{b}(X, \mathfrak{o})$,
    when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore


    $$  \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet}  E\right)=\operatorname{Hom}\left(F^{\bullet},
    K^{\bullet}) \otimes_{\mathfrak{o}} E  $$ ^c425ae


    Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic
    in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \mathfrak{o})$.


    Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$ containing
    $E$. Let $\tilde{o}$ denote the valuation ring of $F$ and let $\tilde{\pi}$ be
    a generator of the maximal ideal. In case of ramification


    $$  \pi \tilde{\mathfrak{o}}=^{e} \tilde{o}  $$ ^925f05


    let $e$ be the ramification number. We construct natural functors


    $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$ ^429009


    A. $\mathbb{Q} l^{-S h e a v e s}$


    331


    in the following way: Since $\tilde{\mathfrak{o}}$ is a fr~ee $\mathfrak{o}$-module
    of rank $[F: E]$,


    $$!  \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / ^{r e} \mathfrak{o}=\tilde{\mathfrak{o}}
    / \pi^{r} \tilde{\mathfrak{o}}  $$


    is free over $\mathfrak{o}_{r}= / ^{r} \mathfrak{o}$ for all $r \geq 1$. Consider
    first the functors


    $$  \begin{gathered}  D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right) \rightarrow
    D_{c t f}^{b}(X, \tilde{o}_{r e}\right) \\  K^{} \mapsto K^{\bullet} \otimes_{o_{r}}
    \tilde{\mathfrak{o}}_{r e}=K^{} \otimes_{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r
    e}    $$




    The family of these functors for $r=1,2, \ldots$ naturally defines a functor


    $$``\varprojlim_r'''' D_{ctf}^b(X, \mathfrak{o}_r) \to ``_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{re})
    = ``\varprojlim_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{r''}),$$




    hence by definition a functor


    $$  D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X, \tilde{\mathfrak{o}})  $$
    ^807c7e


    By localization, as above, we get from this the desired functor


    $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$


    Finally the category $D_{c}^{b}\left(X, }_{l})$ is defined as the direct limit


    $$  D_{c}^{b}\left(X, }_{l}\right)= ``\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf


    (in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \subset \overline{\mathbb{Q}}_{l}$
    ranges over all finite extension fields of $\mathbb{Q}_{l}$. For all such fields
    $E$$ one has natural functors


    $$  \begin{gathered}  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)
    \\  K^{\bullet} \mapsto K^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l}  \end{gathered}  $$


    and


    $$  \operatorname{Hom}\left(F^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l},
    K^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l}\right)=\operatorname{Hom}\left(F^{\bullet},
    K^{\bullet}\right) \otimes_{E} \overline{\mathbb{Q}}_{l}  $$


    We skip the obvious definitions for the usual derived functors related to the
    derived category $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. The results
    for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X,
    E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. From the standard
    t-structure on $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately
    get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, }_{l}\right)$.



    [SEP]


    processed_content: '
  sentences:
  - 'latex_in_original_or_summarized: \mathfrak{o}


    [SEP]


    summarized: $\mathfrak{o}$


    [SEP]


    main_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$


    For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of $\mathbb{Q}_{l}$,
    let $\mathfrak{o}$ be the valuation ring of $E$ and $\pi$ be a generating elem(ent
    of the maximal ideal of $o$.


    In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X, \mathfrak{o})$
    was defined together with its standard t-structure. In the following we explain
    the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
    Also on these categories we have standard t-structures induced from the t-structures
    on $D_{c}^{b}(X, \mathfrak{}$


    The objects are defined to be the same as for the category $D_{c}^{b}(X, \mathfrak{o})$.
    We write $K^{\bullet} \otimes E$ for a complex $K^{\bullet}$ from $D_{c}^{b}(X,
    \mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore


    $$  \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet} \otimes E\right)=\operatorname{Hom}\left(F^{\bullet},
    K^{\bullet}\right) \otimes_{\mathfrak{o}} E  $$ ^c425ae


    Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic
    in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \mathfrak{o})$.


    Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$ containing
    E. Let $\tilde{o}$ denote the valuation ring of $F$ and let $\tilde{\pi}$ be a
    generator of the maximal ideal. In case of ramification


    $$  \pi \tilde{\mathfrak{o}}=\tilde{\pi}^{e} \tilde{o}  $$ ^925f05


    let $e$ be the ramification number. We construct natural functors


    $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$ ^429009


    A. $\mathbb{Q} l^{-S h e a v e s}$


    331


    in the following way: Swnce $\tilde{\mathfrak{o}}$ is a free $\mathfrak{o}$-module
    of rank $[F: E]$,


    $$  \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / \tilde{\pi}^{r e} \mathfrak{o}=\tilde{\mathfrak{o}}
    / \pi^{r} \tilde{\mathfrak{o}}  $$


    is free over $\mathfrak{o}_{r}=\mathfrak{o} / \pi^{r} \mathfrak{o} for all $r
    \geq 1$. Consider first the functors


    $$  \begin{gathered}  D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right) \rightarrow
    D_{c t f}^{b}\left(X, \tilde{o}_{r e}\right) \\  K^{\bullet} \mapsto K^{} \otimes_{o_{r}}
    \tilde{\mathfrak{o}}_{r e}=K^{\bullet} _{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r
    e}  \end{gathered}  $$$




    The family of these functors for $r=1,2, \ldots$ naturally defines a functor


    $$``\varprojlim_r'''' D_{ctf}^b(X, \mathfrak{o}_r) \to ``\varprojlim_r'''' D_{ctf}^b(X,
    \tilde{\mathfrak{o}}_{re}) = ``\varprojlim_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{r''}),$$




    hence by definition a functor


    $$  D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X, \tilde{\mathfrak{o}})  $$$
    ^807c7e


    By localization, as above, we get from this the desired functor


    $$  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F)  $$


    Finally the category $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$ is defined
    as the direct limit


    $$  D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)= ``\lim _{r} " D_{c t f}^{b}(X,
    E)  $$ ^2e1ccf


    (in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \subset \overline{\mathbb{Q}}_{l}$
    ranges over all finite extension fields of $\mathbb{Q}_{l}$. For all such fields
    $E$ one has natural functors


    $$  \begin{gathered}  D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)
    \\  K^{} \mapsto K^{\bullet} \otimes_{E} }_{l}  \end{gathered}  $$


    and


    $$  \operatorname{Hom}\left(F^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l},
    K^{\bullet} \otimes_{E} }_{l}\right)=\operatorname{Hom}\left(F^{\bullet}, K^{\bullet}\right)
    \otimes_{E} \overline{\mathbb{Q}}_{l}  $$


    We skip the obvious definitions for the usual derived functors related to the
    derived category $D_{c}^{b}(X, \overline{\mathbb{Q}}_{l}\right)$. The results
    for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X,
    E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}). From the standard t-structure
    on $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately get
    t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.



    [SEP]


    processed_content: '
  - 'latex_in_original_or_summarized: C / F_\bullet


    [SEP]


    summarized: $C / F_\bullet$


    [SEP]


    main_note_content: 2.4.5. This can be generalized as follows. For a simplicial
    object $F$. in $T$ we define a topos $T / F_{\text {}}$ as follows. For each $[n]
    \in $ we can consider the localized topos $T / F_{n}$. For a morphism $\delta:[n]
    \rightarrow[m]$ we have a morphism of topoi


    $$  \delta: T / F_{m} \rightarrow T / F_{n}  $$


    defined as in exercise 2.F. The category $T / F_{\bullet}$ is defined to be the
    category of systems $\left\{\left(G_{n}, _{n}, G()\right)\}_{n  N}$ consisting
    of an object $\epsilon_{n}: G_{n} \rightarrow F_{n}$ in $T / F_{n}$ for each $n$,
    and for every morphism $\delta:[n] [m]$ in $$ map


    $$  G(\delta): G_{n} \rightarrow \delta_{*} G_{m}  $$


    in $T / F_{n}$ such that for a composition


    $$  [n] \stackrel{\delta}{\longrightarrow}[m] \stackrel{\epsilon}{}[k]  $$


    the map


    $$  G_{k} \stackrel{G(\epsilon)}{} _{*} G_{m} \stackrel{\epsilon_{*} G(\delta)}{\longrightarrow}
    \epsilon_{*} \delta_{*} G_{n} \simeq(\epsilon \delta)_{*} G_{n}  $$


    is equal to $G(\epsilon \delta)$. A morphism $\left\{\left(G_{n}, \epsilon_{n},
    G(\delta)\right)\right\}_{n} \rightarrow\left\{\left(G_{n}^{\prime}, \epsilon_{n},
    G^{\prime}(\delta)\right)\right\}_{n}$ in $T / F_{\bullet}$ is a collection of
    maps $\left\{h_{n}: G_{n} \rightarrow G_{n}^{\prime}\right\}_{n \in \mathbb{N}}$
    in $T / F_{n}$ such that for any morphism $\delta:[n] \rightarrow[m]$ in $$ the
    diagram


    commutes.


    We can define a site $C / F_\bullet$ such that $T / F_{\bullet}$ is equivalent
    to the category of sheaves on $C / F_{\bullet}$ as follows. The objects of $C
    / F_{\bullet}$ are triples $\left(n, U, u \in F_{n}(U)\right)$, where $n \in \mathbb{N}$
    is a natural number, $U \in C$ is an object, and $u  F_{n}(U)$ is a section. A
    morphism $(n, U, u) \rightarrow(m, V, v)$ is a pair $(, f)$, where $\delta:[m]
    \rightarrow[n]$ is a morphism in $$ and $f: U \rightarrow V$ is a morphism in
    $C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \rightarrow F_{m}(U)$
    is equal to the image of $u$ under the map $\delta^{*}: F_{n}(U) \rightarrow F_{m}(U)$.
    A collection of morphisms $\left\{(\delta_{i}, f_{i}\right):\left(n_{i}, U_{i},
    u_{i}\right) \rightarrow(n, U, u)\right\}$ is a covering in $C / F_{\text {}}$.
    if $n_{i}=n$ for all $i$, each $\delta_{i}$ is the identity map, and the


    2.4. SIMPIICIAL TOPOI


    57


    collection $\left\{f_{i}: U_{i} \rightarrow U\}$ is a covering in $C$. We leave
    it as exercise 2 .I that $C / F_{\bullet}$ is a site with associated topos $T
    / F_{\bullet}$.



    [SEP]


    processed_content: '
  - "latex_in_original_or_summarized: C_{*}(\\mathcal{X})\n\n[SEP]\n\nsummarized:\
    \ $C_{*}(\\mathcal{X})$\n\n[SEP]\n\nmain_note_content: $\\mathbb{A}^{1}$-derived\
    \ category, $\\mathbb{A}^{1}$-homology and Hurewicz Theorem. Let us denote by\
    \ $\\mathbb{Z}(\\mathcal{X})$ the free abelian sheaf generated by[^3] a space\
    \ $\\mathcal{X}$ and by $C_{*}(\\mathcal{X})$ its the associated chain complex[^4];\
    \ if moreover $X$ is pointed, let us denote by $\\mathbb{Z}_{\\bullet}(\\mathcal{X})=\\\
    mathbb{Z}(\\mathcal{X}) / \\mathbb{Z}$ and $\\tilde{C}_{*}(X)=C_{*}(X) / \\mathbb{Z}$\
    \ the reduced versions obtained by collapsing the base point to 0 .\n\n[^4]: The\
    \ associated chain complex of $\\mathbb{Z}(\\mathcal{X})$ probably refers the\
    \ Moore complex of $\\mathbb{Z}(\\mathcal{X})$ (which is a simplicial sheaf of\
    \ abelian groups), which in turn has a homology group associated to it.\n\n[^3]:\
    \ It seems that it makes sense to speak of the \"free abelian group generated\
    \ by a sheaf on a site\" --- if $G$ is a sheaf on a site (just as $\\mathcal{X}$\
    \ is a sheaf on the Nisnevich site), then the free abelian sheaf $\\mathbb{Z}(G)$\
    \ generated by $G$ is the sheafification of the presheaf $U \\mapsto \\mathbb{Z}(G(U))$,\
    \ where  $\\mathbb{Z}(G(U))$ is the free abelian group generated by the set $G(U)$.\
    \ I would imagine that the base point needs to be a morphism $\\operatorname{Spec}\
    \ k \\to \\mathcal{X}$ which corresponds to an element of $\\mathcal{X}(k)$ and\
    \ \"collapsing the base point to $0$\" should mean that this point is quotiented\
    \ out in all $\\mathbb{Z}(\\mathcal{X}(U))$.  #_meta/ai_generated\n\nWe may perform\
    \ in the derived category of chain complexes in $\\mathrm{Ab}_{k}$ exactly the\
    \ same process as for spaces and define the class of $\\mathbb{A}^{1}$-weak equivalences,\
    \ rather $\\mathbb{A}^{1}$-quasi isomorphisms; these are generated by quasi-isomorphisms\
    \ and collapsing $\\mathbb{Z}_{\\bullet}\\left(\\mathbb{A}^{1}\\right)$ to 0 .\
    \ Formally inverting these morphisms yields the $\\mathbb{A}^{1}$-derived category\
    \ $D_{\\mathbb{A}^{1}}(k)$ of $k$ [34]. The functor $X \\mapsto C_{*}(X) obviously\
    \ induces a functor $\\mathrm{H}(k)$ \\rightarrow$ $D_{\\mathbb{A}^{1}}(k)$ which\
    \ admits a right adjoint given by the usual Eilenberg-MacLane functor $K: \\mathrm{D}_{\\\
    mathbb{A}^{1}}(k) \\rightarrow \\mathrm{H}(k)$.\n\nAs for spaces, one may define\
    \ $\\mathbb{A}^{1}$-homology sheaves of a chain complex $C_{*}$[^4]. An abelian\
    \ version of Theorem 3.3 implies that for any complex $C_{*}$ these $\\mathbb{A}^{1}$-homology\
    \ sheaves are strictly $\\mathbb{A}^{1}$-invariant [36], [34]. \n\n\n[SEP]\n\n\
    processed_content: "
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: relevance val
      type: relevance-val
    metrics:
    - type: cosine_accuracy
      value: 0.8456965201265408
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.5247608423233032
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.6690491661251894
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.3437151610851288
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.6566751700680272
      name: Cosine Precision
    - type: cosine_recall
      value: 0.6818984547461369
      name: Cosine Recall
    - type: cosine_ap
      value: 0.6486404553707843
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.557884333577538
      name: Cosine Mcc
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("hyunjongkimmath/notation_linking_rag_sentence_transformers_all_MiniLM_L6_v2")
# Run inference
sentences = [
    'latex_in_original_or_summarized: \\pi\n\n[SEP]\n\nsummarized: $\\pi$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be theU valuation ring of $E$ and $\\pi$ be a generating element of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o}). We write $K^{\\bullet}  E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet}  E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing $E$. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Since $\\tilde{\\mathfrak{o}}$ is a fr~ee $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$!  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / ^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}= / ^{r} \\mathfrak{o}$ for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}(X, \\tilde{o}_{r e}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{} \\otimes_{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}    $$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, }_{l})$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, }_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{\\bullet} \\mapsto K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, }_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: \\mathfrak{o}\n\n[SEP]\n\nsummarized: $\\mathfrak{o}$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be the valuation ring of $E$ and $\\pi$ be a generating elem(ent of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o})$. We write $K^{\\bullet} \\otimes E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet} \\otimes E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{\\mathfrak{o}} E  $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing E. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$  \\pi \\tilde{\\mathfrak{o}}=\\tilde{\\pi}^{e} \\tilde{o}  $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Swnce $\\tilde{\\mathfrak{o}}$ is a free $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$  \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / \\tilde{\\pi}^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}}  $$\n\nis free over $\\mathfrak{o}_{r}=\\mathfrak{o} / \\pi^{r} \\mathfrak{o} for all $r \\geq 1$. Consider first the functors\n\n$$  \\begin{gathered}  D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}\\left(X, \\tilde{o}_{r e}\\right) \\\\  K^{\\bullet} \\mapsto K^{} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{\\bullet} _{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e}  \\end{gathered}  $$$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$  D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}})  $$$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F)  $$\n\nFinally the category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$ is defined as the direct limit\n\n$$  D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E)  $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$ one has natural functors\n\n$$  \\begin{gathered}  D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\  K^{} \\mapsto K^{\\bullet} \\otimes_{E} }_{l}  \\end{gathered}  $$\n\nand\n\n$$  \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} }_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l}  $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}). From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
    'latex_in_original_or_summarized: C / F_\\bullet\n\n[SEP]\n\nsummarized: $C / F_\\bullet$\n\n[SEP]\n\nmain_note_content: 2.4.5. This can be generalized as follows. For a simplicial object $F$. in $T$ we define a topos $T / F_{\\text {}}$ as follows. For each $[n] \\in $ we can consider the localized topos $T / F_{n}$. For a morphism $\\delta:[n] \\rightarrow[m]$ we have a morphism of topoi\n\n$$  \\delta: T / F_{m} \\rightarrow T / F_{n}  $$\n\ndefined as in exercise 2.F. The category $T / F_{\\bullet}$ is defined to be the category of systems $\\left\\{\\left(G_{n}, _{n}, G()\\right)\\}_{n  N}$ consisting of an object $\\epsilon_{n}: G_{n} \\rightarrow F_{n}$ in $T / F_{n}$ for each $n$, and for every morphism $\\delta:[n] [m]$ in $$ map\n\n$$  G(\\delta): G_{n} \\rightarrow \\delta_{*} G_{m}  $$\n\nin $T / F_{n}$ such that for a composition\n\n$$  [n] \\stackrel{\\delta}{\\longrightarrow}[m] \\stackrel{\\epsilon}{}[k]  $$\n\nthe map\n\n$$  G_{k} \\stackrel{G(\\epsilon)}{} _{*} G_{m} \\stackrel{\\epsilon_{*} G(\\delta)}{\\longrightarrow} \\epsilon_{*} \\delta_{*} G_{n} \\simeq(\\epsilon \\delta)_{*} G_{n}  $$\n\nis equal to $G(\\epsilon \\delta)$. A morphism $\\left\\{\\left(G_{n}, \\epsilon_{n}, G(\\delta)\\right)\\right\\}_{n} \\rightarrow\\left\\{\\left(G_{n}^{\\prime}, \\epsilon_{n}, G^{\\prime}(\\delta)\\right)\\right\\}_{n}$ in $T / F_{\\bullet}$ is a collection of maps $\\left\\{h_{n}: G_{n} \\rightarrow G_{n}^{\\prime}\\right\\}_{n \\in \\mathbb{N}}$ in $T / F_{n}$ such that for any morphism $\\delta:[n] \\rightarrow[m]$ in $$ the diagram\n\ncommutes.\n\nWe can define a site $C / F_\\bullet$ such that $T / F_{\\bullet}$ is equivalent to the category of sheaves on $C / F_{\\bullet}$ as follows. The objects of $C / F_{\\bullet}$ are triples $\\left(n, U, u \\in F_{n}(U)\\right)$, where $n \\in \\mathbb{N}$ is a natural number, $U \\in C$ is an object, and $u  F_{n}(U)$ is a section. A morphism $(n, U, u) \\rightarrow(m, V, v)$ is a pair $(, f)$, where $\\delta:[m] \\rightarrow[n]$ is a morphism in $$ and $f: U \\rightarrow V$ is a morphism in $C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \\rightarrow F_{m}(U)$ is equal to the image of $u$ under the map $\\delta^{*}: F_{n}(U) \\rightarrow F_{m}(U)$. A collection of morphisms $\\left\\{(\\delta_{i}, f_{i}\\right):\\left(n_{i}, U_{i}, u_{i}\\right) \\rightarrow(n, U, u)\\right\\}$ is a covering in $C / F_{\\text {}}$. if $n_{i}=n$ for all $i$, each $\\delta_{i}$ is the identity map, and the\n\n2.4. SIMPIICIAL TOPOI\n\n57\n\ncollection $\\left\\{f_{i}: U_{i} \\rightarrow U\\}$ is a covering in $C$. We leave it as exercise 2 .I that $C / F_{\\bullet}$ is a site with associated topos $T / F_{\\bullet}$.\n\n\n[SEP]\n\nprocessed_content: ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

* Dataset: `relevance-val`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.8457     |
| cosine_accuracy_threshold | 0.5248     |
| cosine_f1                 | 0.669      |
| cosine_f1_threshold       | 0.3437     |
| cosine_precision          | 0.6567     |
| cosine_recall             | 0.6819     |
| **cosine_ap**             | **0.6486** |
| cosine_mcc                | 0.5579     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 264,888 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                           | sentence_1                                                                           | label                                                          |
  |:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                               | string                                                                               | float                                                          |
  | details | <ul><li>min: 72 tokens</li><li>mean: 248.73 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 248.25 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | label            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
  | <code>latex_in_original_or_summarized: {}^{\mathrm{P}} \mathrm{D}^{ 0}(\mathrm{X}, O)<br><br>[SEP]<br><br>summarized: ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$<br><br>[SEP]<br><br>main_note_content: Def1inition 2.1.2. The subcategory ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ (resp. ${}^{} \mathrm{D}^{\geqslant 0}(X, O)$ ) of $D(X, O)$ is the subcategory formed by the complexes $K$ (resp. $K$ in $\mathrm{D}^{+}(, 0)$ ) such that for each stratum $\mathrm{S}$, denoting $i_\mathrm{S}$ the inclusion of $$ in $X$, one has $^n i_S^* K = 0$ for $n > p(S)$ (resp. $H^n i_S^! K = 0$ for $n < p(\mathrm{S})$).<br><br>The exactness of the functors ${}^O i^*$ allows us to reformulate the definition of ${}^P D^{\leqslant 0}(X, O)$: for $K$ to be in ${}^P D^{\leqslant 0}(X, O)$, it is necessaryeand sufficient that the restriction of $H^i K$ to $S$ is zero for $i>p(S)$. The functors $\tau_{\leq a}$ and $\tau_{ a}$, relative to the natural t-structure, therefore send ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ into itself.<br><br>If the fun...</code>                               | <code>latex_in_original_or_summarized: f_*, f^*, f_{!}, f^{!}<br><br>[SEP]<br><br>summarized: $f^*$<br><br>[SEP]<br><br>main_note_content: o.0. Notations and terminology.<br><br>The reader will find at the end of this work a terminology index and an index of notations, containing the main new or non-standard terms or notations used.<br><br>Be careful that from 1.4 onwards, we generally simply denote by $f_*, f^*, f_{!}, f^{!}$ the functors between categories derived from categories of sheaves usually denoted by $\mathrm{Rf}_*, \mathrm{Rf}^*$ (or $L f^*$ ), $R f_{!}$ and $R f^{!}$, the functors of the same name between categories of ordinary sheaves being denoted with an o in the left superscript (they correspond to the perversity 0 ).<br><br>17<br><br>A.-A. BEILINSON, J. BERNSTEIN, P. DELIGNE<br><br><br>[SEP]<br><br>processed_content: </code>                                                                                                                                                                                                             | <code>1.0</code> |
  | <code>latex_in_original_or_summarized: \theta: A_{\mathrm{inf}}\to \mathcal{O}<br><br>[SEP]<br><br>summarized: $\theta$<br><br>[SEP]<br><br>main_note_content: The proof of this  (and the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms of Fontaine's period ring $A_{\mathrm{inf}}$ instead of the ring $\mathfrak{S}$. To explain this further, we recall the definitions  The ring $A_{\mathrm{inf}}$ is defined as<br><br>$$ A_{\mathrm{inf}} =  , $$ ^71cf0e<br><br>where $\mathcal{O}^\flat = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" of $\mathcal{O}$. Then $\mathcal{O}^\flat$ ss the ring of integers in a complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of  in particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\fl6t)$ has a natural Frobenius automorphism $\varphi$, and $A_{\mathrm{inf}}/p = \mathcal{O}^\flat$.<br><br> will need certain special elementis of $A_{\mathrm...</code>                         | <code>latex_in_original_or_summarized: <br><br>[SEP]<br><br>summarized: $B_{\mathrm{dR}}^+$<br><br>[SEP]<br><br>main_note_content:  proof of this result  the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms  Fontaine's period ring $A_{\mathrm{inf}}$  of the ring $\mathfrak{S}$.  explain  further, we recall the definitions first. The ring $A_{inf}$ is defined as<br><br>$$  = W(\mathcal{O}^\flat)\ , $$ ^71cf0e<br><br>where $\mathcal{O}^\flat$ = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt"  $\mathcal{O}$. Then  is the ring of integers in  complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of $C$;  particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\flat) has a natural Frobenius automorphism    = \mathcal{O}^\flat$.<br><br>We will  certain special elements  $A_{\mathrm{inf}}$. Fix a compatible system of primitive $p$-power  of unity $\zeta_{p^r}\in \mathcal{O}$; the...</code> | <code>0.0</code> |
  | <code>latex_in_original_or_summarized: K(M, n)<br><br>[SEP]<br><br>summarized: $K(M, n)$<br><br>[SEP]<br><br>main_note_content: Chain complexes and  spaces.   [59], that for  simplicial sheaf   $\text{X}$ we denote by $C_{*}(\mathcal{X})$ the (normalized) chain complex  $C_{*}(\mathcal{A}$  associated to the   sheaf  abelian groups   $\mathbb{X}$. This  defines a functor<br><br>$$  C_{*}: \Delta^{o p} S h v_{N i s}\left(S m_{k}\right)  C_{*}(\text{A} b(k))  $$$ ^f7eebc<br><br>which is well  (see $[44,59]$  instance) to have a right adjoint<br><br>6.2 \mathbb{A}^{1}$-Derived Category   Spaces<br>161<br><br>$$  K: C_{*}(\mathcal{A} b(k)) \rightarrow \phi^{o p} S h v_{N i s}\left(S   $$ <br><br><br>called the  space <br><br>For an abelian  $M   b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$ (see [59, page 56])   $K$ to the shifted complex $M[n]$,  the complex $M$ placed in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \geq 0$ then $K(M, n)$ has only one non-trivial  sheaf which is the  and which is canonically isomorphic...</code> | <code>latex_in_original_or_summarized: \langle u\rangle  G W(F)<br><br>[SEP]<br><br>summarized: $\langle u\rangle \in G W(F)$<br><br>[SEP]<br><br>main_note_content: Let us denote (in  characteristic) by $G W(F)$ the Grothendieck-Witt ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this is the group completion of the commutative monoid of isomorphism classes of non-degenerate symmetric  forms for the direct sum.<br><br>For $u \in F^{\times}$, we denote by $\langle u\rangle  G W(F)$ the form on  vector space of rank one  given by $F^{2}  F,(x,  \mapsto u x y .$ By the results of loc.   \langle u\rangle$ generate $G  as a group. The following Lemma is (essentially) [48, Lemma (1.1) Chap. IV]:<br><br><br>[SEP]<br><br>processed_content: </code>                                                                                                                                                                                                                                                                                         | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step | Training Loss | relevance-val_cosine_ap |
|:------:|:----:|:-------------:|:-----------------------:|
| 0.0019 | 500  | 0.2362        | -                       |
| 0.0038 | 1000 | 0.235         | -                       |
| 0.0057 | 1500 | 0.2233        | -                       |
| 0.0076 | 2000 | 0.2104        | -                       |
| 0.0094 | 2500 | 0.1846        | -                       |
| 0.0113 | 3000 | 0.1677        | -                       |
| 0.0132 | 3500 | 0.1602        | -                       |
| 0.0151 | 4000 | 0.1519        | 0.6486                  |
| 0.0170 | 4500 | 0.1323        | -                       |
| 0.0189 | 5000 | 0.141         | -                       |
| 0.0208 | 5500 | 0.1446        | -                       |
| 0.0227 | 6000 | 0.1395        | -                       |
| 0.0245 | 6500 | 0.1307        | -                       |
| 0.0264 | 7000 | 0.1511        | -                       |
| 0.0283 | 7500 | 0.1358        | -                       |
| 0.0302 | 8000 | 0.1362        | 0.6486                  |


### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->