File size: 106,006 Bytes
ed1d903 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:264888
- loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: "latex_in_original_or_summarized: K(M, n)\n\n[SEP]\n\nsummarized:\
\ $K(M, n)$\n\n[SEP]\n\nmain_note_content: Chain complexes and spaces. [59],\
\ that for simplicial sheaf $\\text{X}$ we denote by $C_{*}(\\mathcal{X})$\
\ the (normalized) chain complex $C_{*}(\\mathcal{A}$ associated to the sheaf\
\ abelian groups $\\mathbb{X}$. This defines a functor\n\n$$ C_{*}: \\Delta^{o\
\ p} S h v_{N i s}\\left(S m_{k}\\right) C_{*}(\\text{A} b(k)) $$$ ^f7eebc\n\
\nwhich is well (see $[44,59]$ instance) to have a right adjoint\n\n6.2 \\mathbb{A}^{1}$-Derived\
\ Category Spaces\n161\n\n$$ K: C_{*}(\\mathcal{A} b(k)) \\rightarrow \\phi^{o\
\ p} S h v_{N i s}\\left(S $$ \n\n\ncalled the space \n\nFor an abelian $M\
\ b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$\
\ (see [59, page 56]) $K$ to the shifted complex $M[n]$, the complex $M$ placed\
\ in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \\geq 0$ then $K(M,\
\ n)$ has only one non-trivial sheaf which is the and which is canonically isomorphic\
\ to $M$. More generally, for a chain $C_{*}$, $K C_{*}$ has homotopy sheaf\
\ 0 $n< 0$, and the $n$-th homology sheaf $H_{n}\\left(C_{*}\\right)$ for $n\
\ \\geq 0$.\n\nIt is clear that $C_{*}: \\Delta^{o p} S h i s}\\left(S m_{k}\\\
right) \\rightarrow b(k))$ sends simplicial weak equivalences to quasi-isomorphisms\
\ and $K: C_{*}(A b(k)) \\rightarrow \\Delta^{o p} S h v_{N i s}\\left(S m_{k}\\\
right)$ maps quasi-isomorphisms to simplicial equivalences. If $C_{*}$ fibrant,\
\ it follows that $K\\left(C_{*}\\right)$ is simplicially Thus the two functors\
\ induce a pair of adjoint functors\n\n$$ C_{*}: \\mathcal{H}{s}(k) \\rightarrow\
\ D(\\mathcal{A} b(k)) $$ ^c4a825\n\n\n\n$$ K: D(\\mathrm{A} b(k)) \\rightarrow\
\ \\mathcal{H}_{s}(k) $$ \n\nAs a consequence it is clear that is an $\\mathscr{A}^{1}$-local\
\ complex, space $K\\left(C_{*}\\right)$ is an $\\mathbb{A}^{1}$-local space.\
\ Thus $C_{}: \\mathbf{H}_{s}(k) \\rightarrow maps $\\mathcal{A}^{1}$-weak \
\ to $\\mathrm{A}^{1}$-quasi and induces a functor\n\n \\rightarrow D_{\\\
mathbb{A}^{1}}(A b(k)) $$ \n\nwhich in concrete terms, maps a space $\\operatorname{X}$\
\ to the $\\mathbb{A}^{1}$-localization of $C_{*}(\\mathcal{X})$. We denote the\
\ latter by $C_{*}^{A^{1}}(\\mathbb{X})$ and call it the $\\mathbb{A}^{1}$-chain\
\ of $\\mathcal{X}$. functor $C_{*}^{\\operatorname{A}^{1}}: \\mathfrak{H}(k)\
\ \\rightarrow b(k))$ admits as right adjoint the functor $K^{\\mathbb{A}^{1}}:\
\ D_{\\mathbb{A}^{1}}(\\mathcal{A} b(k)) \\rightarrow \\mathcal{H}(k)$ induced\
\ by $C_{*} \\mapsto K\\left(L_{\\mathbb{A}^{1}}\\left(C_{*}\\right)\\right)$.\
\ We that for an $\\mathbb{A}^{1}$-local complex the space $K\\left(C_{*}\\\
right)$ is automatically $\\mathbb{A}^{1}$-local and thus simplicially equivalent\
\ to the space \n\n\n[SEP]\n\nprocessed_content: the pointed simplicial where\
\ $M$ \\in b(k)$ and $n$ is integer. It is defined by applying to the complex\
\ $M[n]$, of the complex degree 0 ."
sentences:
- "latex_in_original_or_summarized: \\gamma_1=(m_1,N_1,a_1)\n\n[SEP]\n\nsummarized:\
\ $\\gamma_1=(m_1,N_1,a_1)$\n\n[SEP]\n\nmain_note_content: \\begin{notation}\\\
label{Dep1}\nLet $\\gamma_1=(m_1,N_1,a_1)$, $\\gamma_2=(m_2,N_2,a_2)$ be an ordered\
\ pair of \n(generalized) monodromy data which hypothesis (A). Assume that $m_1|m_2$.\n\
Set $d:=m_2/m_1$ and $r:=\\gcd(m_1, a_1(N_1))$. \nThen, \\eqref{Dep} to \n$\\\
epsilon=d(r-1)$ and $g_3=dg_1+g_2+\\epsilon$.\nIn particular, $\\epsilon=0$ if\
\ and if $r=1$. \n\\end{notation}\n\n\n[SEP]\n\nprocessed_content: "
- 'latex_in_original_or_summarized: \langle u\rangle G W(F)
[SEP]
summarized: $\langle u\rangle \in G W(F)$
[SEP]
main_note_content: Let us denote (in characteristic) by $G W(F)$ the Grothendieck-Witt
ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this
is the group completion of the commutative monoid of isomorphism classes of non-degenerate
symmetric forms for the direct sum.
For $u \in F^{\times}$, we denote by $\langle u\rangle G W(F)$ the form on vector
space of rank one given by $F^{2} F,(x, \mapsto u x y .$ By the results of
loc. \langle u\rangle$ generate $G as a group. The following Lemma is (essentially)
[48, Lemma (1.1) Chap. IV]:
[SEP]
processed_content: '
- 'latex_in_original_or_summarized: $\varepsilon_{\infty}$
[SEP]
summarized: $\varepsilon_{\infty}$
[SEP]
main_note_content: To compute the genus of $X(\kappa)$, further specialize to
$\Gamma_{1}=\Gamma$ and $\Gamma_{2}=$ $\mathfrak{SL}_{2}(\mathbb{Z}) . Let $y_{2}=\mathrm{SL}_{2}(\mathbb{Z})
i, y_{3}=\mathrm{SL}_{2}(\mathbb{Z}) \mu_{3}$, and $y_{\infty}=\mathfrak{SL}_{2}(\mathbb{Z})
\infty$ be the elliptic point of period 2, the elliptic point of period 3, and
the cusp of $X(1)=$ SL_{2}(\mathbb{Z}) \backslash \mathcal{H}^{*} .$ Let $\varepsilon_{2}$
and $\varepsilon_{3}$ be the number of elliptic points of $\Gamma$ in $f^{-1}\left(y_{2}\right)$$
and of^{-1}\left(y_{3}\right)$, i.e., the number of elliptic points of period
2 and 3 in $X(\Gamma)$, and let $\varepsilon_{\infty}$ be the number of cusps
of X(\Gamma) .$ Then recalling that $d=\operatorname{deg}(f)$ and letting $h=2$
or $h=3$, the formula for $d$ at the beginning of the section and then the formula
for $e_{\pi_{1}(\tau)}$ at the nonelliptic points and the elliptic points over
$\mathrm{SL}_{2}(\mathscr{Z}) y_{h}$ show that (Exercise 3.1.3(a))
$$ d=\sum_{x \in f^{-1}\left(y_{h}\right)} e_{x}=h \cdot\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)+1
\cdot \varepsilon_{h} $$
and using these equalities twice gives
$$ \sum_{x \in f^{-1}\left(y_{h}\right)}\left(e_{x}-1\right)=(h-1)\left(\left|f^{-1}\left(y_{h}\right)\right|-\varepsilon_{h}\right)=\frac{h-1}{h}\left(d-\varepsilon_{h}\right)
$$
$68 \quad 3$ Dimension Formulas
Also.
$$ \sum_{x \in f^{-1}\left(y_{\infty}\right)}\left(e_{x}-1\right)=d-\varepsilon_{\infty}
$$
Since $X(1)$ has genus 0, the Riemann-Hurwitz formula now shows
[SEP]
processed_content: '
- source_sentence: "latex_in_original_or_summarized: $M_\\ell(C \\to S) = M_\\ell(S)$\n\
\n[SEP]\n\nsummarized: $M_\\ell(C \\to S) = M_\\ell(S)$\n\n[SEP]\n\nmain_note_content:\
\ If $C \\to S$ is a relative smooth proper curve of genus $g \\geq 1$ over an\
\ irreducible base, then the $\\ell$-torsion of relative Jacobian of $C$ information\
\ about the family. Suppose $\\ell$ is invertible on $S$, and let \\in S$ be\
\ a geometric point. The fundamental group $\\pi_1(S,s)$ acts\nlinearly on the\
\ fiber $\\operatorname{Pic}^0(C)[\\ell]_{s} \\cong (\\mathbb{Z}/\\ell)^{2g}$,\
\ \none can consider the mod-$\\ell$ representation associated to $C$:\n\n$$\\\
rho_{C \\to S, \\ell}:\\pi_1(S,s) \\rightarrow \\cong \\operatorname{GL}_{2g}(\\\
mathbb{Z}/\\ell).$$ ^e59a92\n\nLet $M_\\ell(C \\to S)$, or simply $M_\\ell(S)$,\
\ be the image\nof this representation. \nIf a primitive $\\ell$th root of is\
\ defined $S$, then $\\operatorname{Pic}^0(C)[\\ell]_{s}$ is equipped\nwith\
\ a skew-symmetric form $\\langle \\cdot,\\cdot and $M_\\ell(C \\to S) \\subseteq\n\
\\operatorname{Sp}(\\operatorname{Pic}^0(C)[\\ell]_s,\\langle \\rangle) \\cong\n\
\\operatorname{Sp}_{2g}(\\mathbb{Z}/\\ell)$. \nIf C \\to S$ is a sufficiently\
\ general family of curves, then\n$M_\\ell(C \\to S) \\cong \\operatorname{Sp}_{2g}(\\\
mathbb{Z}/\\ell)$ \\cite{delignemumford}.\n\nIn this we compute when $S$ is\
\ an irreducible component of moduli space of hyperelliptic or trielliptic curves\
\ and $C \\to S$ is the tautological curve. The first result implies that there\
\ is no restriction on the monodromy group in the hyperelliptic case other than\
\ that it preserve the symplectic pairing. As trielliptic curve is a $\\mathbb{Z}/3$-cover\
\ of a genus zero curve, the $\\mathbb{Z}/3$-action constrains the monodromy\
\ group to lie in a unitary group associated to $\\mathbb{Z}[\\zeta_3]$. The second\
\ result implies that this is the only additional restriction in the trielliptic\
\ case. \n\n\\paragraph{Theorem \\ref{thhe}}\n{\\it \n $\\ell$ be an odd prime,\
\ and let $k$ be an closed in which $2\\ell$ is invertible.\nFor $g\\geq 1$,\
\ $M_\\ell(\\mathcal{H}_g\\otimes k)\\cong\n\\operatorname{Sp}_{2g}(\\mathbb{Z}/\\\
ell)$.}\n\n\\paragraph{Theorem \\ref{thtri}}\n{\\it \nLet $\\ell\\geq 5$ be prime,\
\ and let $k$ be closed field in which $3\\ell$ is invertible. \n$\\mathcal{T}^{\\\
bar\\gamma}$ be any component the moduli space \ntrielliptic curves of genus\
\ $g\\geq Then\n$M_\\ell(\\mathcal{T}^{\\bar\\gamma}\\otimes k) \\cong\n\\operatorname{SG}_{(r_\\\
gamma,s_\\gamma)}(\\mathbb{Z}/\\ell)$ (where the latter is unitary group defined\n\
in \\eqref{eqdefsg}).}\n\n\\medskip\n\nWe also prove that the $\\ell$-adic monodromy\
\ group \n$\\operatorname{Sp}_{2g}(\\mathbb{Z}_\\ell)$ in the situation of Theorem\
\ \\ref{thhe} and is $\\operatorname{SG}_{(r_\\gamma,s_\\gamma)}(\\mathbb{Z}_\\\
ell)$\nin the of Theorem \\ref{thtri}.\n\nTheorem \\ref{thhe} is an unpublished\
\ result J.K. Yu and has already been used multiple times in literature.\nIn\
\ \\cite{chavdarov}, Chavdarov assumes this result show that the numerator of\
\ the zeta function of\nthe typical hyperelliptic curve over a finite field is\
\ irreducible.\nKowalski also uses this result in a similar fashion \\cite{kowalskisieve}.\n\
The first author used Theorem to prove a conjecture of and\nWashington on class\
\ of quadratic function fields \n\nThere are other results in the literature\
\ which similar to Theorem \\ref{thhe}\nbut which are not quite strong enough\
\ for the above.\nA'Campo \\cite[Th.\\ 1]{acampo} computes the topological of\
\ $\\mathcal{H}_g \\otimes \nOn the arithmetic side, the $\\mathbb{Q}_\\ell$,\n\
as opposed to $\\mathbb{Z}_\\ell$, monodromy of $\\mathcal{H}_g$\nis computed\
\ in \\cite[10.1.16]{katzsarnak}. Combined with a theorem of\nLarsen on compatible\
\ families of representations \\cite[3.17]{larsenmax},\nthis shows that the mod-$\\\
ell$ group \nof $\\mathcal{H}_g$ is maximal for a set of\nprimes $\\ell$ of density\
\ one (as opposed to for all $\\ell \\geq 3$). \n\nThere are results on $\\mathbb{Q}_\\\
ell$-monodromy cyclic covers of the projective\nline of arbitrary degree, e.g.,\
\ \\cite[Sec. 7.9]{katztwisted}. Also,\nin \\cite[5.5]{fkv}, the authors prove\
\ that the projective representation\n$\\mathbb{P} \\rho_{C \\to S,\\ell}$ surjective\
\ for many\nfamilies of cyclic covers the projective line. \nDue to a combinatorial\
\ their theorem does not apply to $\\mathcal{H}_g$\nand applies to at most one\
\ component of the moduli space of\ntrielliptic curves for each see Remark \\\
ref{Rfkv}. \nSee also work of Zarhin, e.g., \\cite{zarhincyclic}.\n\n an application,\
\ for all $p \\geq show using \n exist hyperelliptic and trielliptic curves\n\
of every genus signature) defined over $\\bar{\\mathbb{F}}_p$ whose Jacobians\
\ absolutely simple.\nIn contrast with the applications above, \nthese corollaries\
\ do not use the full strength of our results.\nRelated can be found in \\cite{HZhu}\
\ authors produce curves with absolutely \nJacobians over $\\mathbb{F}_p$ under\
\ the $g \\leq 3$.\n\n\\paragraph{Corollary \\ref{Chypabsirr}} \n{\\it Let p\
\ \\not = 2$ let Then there exists a\nsmooth hyperelliptic curve of genus $g$\
\ over $\\bar{\\mathbb{F}}_p$ whose Jacobian is\nabsolutely simple.}\n\n\\paragraph{Corollary\
\ \\ref{Ctriabsirr}}\n{\\it Let $p \\not = 3$. $g 3$ and be a trielliptic\
\ signature for $g$\n \\ref{Dtrisig}). \nThen there exists a smooth trielliptic\
\ curve defined over with genus $g$ and signature $(r,s)$\nwhose Jacobian is\
\ simple.}\n\n\\medskip \n\nOur proofs proceed by induction on the genus.\nThe\
\ base cases for the family\nrely on the fact that every curve of genus $g=1,2$\
\ is hyperelliptic;\nthe claim on monodromy follows from the analogous assertion\
\ the monodromy of $\\mathcal{M}_g$.\nThe case for the trielliptic family involves\
\ a comparison with\na Shimura variety of PEL type, namely, the modular variety.\
\ \nAn important step is to show the monodromy group does not change in the\
\ base cases when \none adds a labeling of the ramification points to the moduli\
\ problem.\n\nThe step is similar to the method used in \\cite{ekedahlmono} \n\
and uses the fact that families of smooth hyperelliptic (trielliptic)\ncurves\
\ degenerate to trees of (trielliptic) curves of lower genus.\nThe combinatorics\
\ of admissible degenerations require us \nto compute the monodromy exactly for\
\ the inductive step rather than up to isomorphism. \n\nThe inductive strategy\
\ using admissible degeneration developed here\nshould work for other of curves,\
\ especially for more general\ncyclic covers of projective The difficulty is\
\ in direct\ncalculation of monodromy for the necessary base cases.\n\nWe thank\
\ C.-L.\\ Chai, R.\\ Hain, A.J.\\ de Jong, E. Kani, and J. Kass.\n\n\n[SEP]\n\n\
processed_content: the image of the mod-$\\ell$ representation $\\rho_{C \\to\
\ \\ell}$ of the relative smooth $C \\to S$ of genus $g \\geq 1$ over an irreducible\
\ base."
sentences:
- "latex_in_original_or_summarized: X^{\\vee}\n\n[SEP]\n\nsummarized: \n\n[SEP]\n\
\nmain_note_content: Let be principally polarized abelian scheme of\nrelative\
\ dimension $g$ over an irreducible base. \n\nIf $\\ell$ is a\nrational invertible\
\ on $S$, then the $\\ell$-torsion $X[\\ell]$ of\n$\\ell$ is an \\'etale cover\
\ of with geometric fiber isomorphic to\n$(\\mathbb{Z}/\\ell)^{2g}$. \nLet $s$\
\ be a geometric point of $S$. The group $\\pi_1(S,s)$ \nlinearly on the $\\\
ell$-torsion of $X$.\n\nThis yields a representation\n\n\\rho_{X \\to S, s,\\\
ell}: \\pi_1(S,s) \\rightarrow \\operatorname{Aut}(X[\\ell]_s) \\cong \\operatorname{GL}_{2g}(\\\
mathbb{Z}/\\ell).$$ ^dbec50\n\nThe cover $X[\\ell] \\to S$ both determines and\
\ is determined by representation \\to S, s,\\ell}$. \n\nThe image of \\to\
\ S, is the mod-$\\ell$ monodromy of $X \\to S$ and we denote it by $M_\\ell(X\
\ \\to S, s), or by $M_\\ell(S,s)$ if the choice of\nabelian scheme is clear.\n\
\nThe isomorphism class of the\n$M_\\ell(S,s)$ is independent of the choice of\
\ base point $s$,$ and we denote it $M_\\ell(S)$.\n\nLet $X^{\\vee}$ be the dual\
\ abelian scheme. There a pairing $X[\\ell] \\times X^{\\vee}[\\ell] \\to \\\
boldsymbol{\\mu}_{\\ell,S}$, where := \\boldsymbol{\\mu}_\\ell \\times S$ is\
\ group scheme of $\\ell\\th$ of unity.\n\n polarization induces an isomorphism\
\ $X \\to X^{\\vee}$, and\nthus a skew-symmetric pairing $X[\\ell] \\times X[\\\
ell] \\to \\boldsymbol{\\mu}_{\\ell,S}$.\nBecause the polarization is defined\
\ globally, the image of monodromy\n$M_\\ell(X \\to S, s)$ is contained in the\
\ group of symplectic\nsimilitudes of $(X[\\ell]_s,\n\\langle \\rangle_\\phi)$,\
\ which is isomorphic to\n$\\operatorname{GSp}_{2g}(\\mathbb{Z}/\\ell)$. Moreover,\
\ if a primitive $\\ell^{{\\rm root of\nunity globally on $S$, $\\pi_1(S,s)$\
\ acts trivially on\n$\\boldsymbol{\\mu}_{\\ell,S}$ and $M_\\ell(X \\to S,s) \\\
subseteq \\cdot,\\cdot \\rangle_\\phi) \\cong \\operatorname{Sp}_{2g}(\\mathbb{Z}/\\\
ell).\n\nSimilarly, the $X[\\ell^n] S$ defines a monodromy representation \n\
with in $\\operatorname{Aut}(X[\\ell^n]_s) \\cong\\operatorname{GL}_{2g}(\\mathbb{Z}/\\\
ell^n)$. Taking\n inverse limit over all n, we obtain a continuous representation\
\ on the Tate module of $X$, \n\n$$\\rho_{X \\to S, s}: \\pi_1(S,s) \\rightarrow\
\ \\varprojlim_n \\operatorname{Aut}(X[\\ell^n]_s) \\cong \\operatorname{GL}_{2g}(\\\
mathbb{Z}_\\ell).$$\n\n^f6240a\n\nWe denote the image of this representation by\
\ $M_{\\mathbb{Z}_\\ell}(X \\to and its isomorphism class by $M_{\\mathbb{Z}_\\\
ell}(X \\to S)$ or $M_{\\mathbb{Z}_\\ell}(S)$. \n\nAgain, there is an \nM_{\\\
mathbb{Z}_\\ell}(X \\to S) \\subseteq \n\nIf\n$F$ is a field, let $F_{\\ell^\\\
infty} = F(\\boldsymbol{\\mu}_{\\ell^\\infty}(\\bar F))$. If $S$ is an then \n\
\n$$M_{\\mathbb{Z}_\\ell}(X \\to S, s)/ F} \\to S \\otimes{\\bar F}, s) \\cong\
\ ^dd1bab\n\nFinally, let $M_{\\mathbb{Q}_\\ell}(X\\to$ S, s)$ be the Zariski\
\ closure of \\to S, s)$ in $\\operatorname{GL}_{2g}(\\mathbb{Q}_\\ell)$.\n\n\
Now suppose that \\psi:C \\to S$ is a relative proper semi-stable curve.\n\nLet\
\ $\\operatorname{Pic}^0(C) := \\operatorname{Pic}^0_{C/S}$ be the neutral component\
\ of the relative Picard of $C$ over $S$. Since $C/S$ semi-stable, $\\operatorname{Pic}^0(C)$\
\ is a semiabelian scheme [[bosch_lutkebohmert_raynaud_nm_Theorem 1_page_259|\\\
cite[9.4.1]{blr}]]. \n\nSuppose that there is least one geometric point such\
\ the fiber $\\operatorname{Pic}^0(C_s)$ is an abelian variety. (This is true[^5]\
\ if some $C_s$ is a tree smooth curves.) Then there is a nonempty open subscheme\
\ $S^*$ of $S$ such that $\\operatorname{Pic}^0(C|_{S^*})$ an abelian scheme\
\ over $S^*$. \n\n[^5]: cf. Abelian varieties isogenous to a Jacobian by CL Chai,\
\ which talks about a tree of smooth curves having a Jacobian that is an abelian\
\ variety that is actually the product of the Jacobians of irreducible \n\nWe\
\ define the mod-$\\ell$ and $\\mathbb{Z}_\\ell$ monodromy representations of\
\ $C$ to be those of $\\operatorname{Pic}^0(C|_{S^*}) \\to S^*$.\n\n(Alternatively,\
\ may constructed as the restrictions of $R^1\\psi_*\\boldsymbol{\\mu}_{\\ell,S}$\
\ and $R^1\\psi_*\\boldsymbol{\\mu}_{\\ell^\\infty,S}$ largest subscheme of\
\ $S$ on which these sheaves are unramified.)\n\nThus, $M_\\ell(C \\to s) = M_\\\
ell(\\operatorname{Pic}^0(C|_{S^*}) \\to S^*, s)$, and we denote this again by\
\ M_\\ell(S,s) if the curve is clear and by the base point is suppressed. ^37a851\n\
\nThe moduli spaces $\\overline{\\mathcal{M}}_G$ and $\\widetilde{\\mathcal{M}}_G$\
\ are Deligne-Mumford stacks, and we employ a similar formalism for \\'etale covers\
\ of stacks \\cite{noohi}. \n\n $\\mathcal{S}$ a connected Deligne-Mumford \
\ The category of Galois \\'etale covers of $\\mathcal{S}$ is a Galois category\
\ the sense of Grothendieck, and thus there is \\'etale fundamental\n of More\
\ precisely, let $s\\in \\mathcal{S}$ be a geometric\n \n\nThen there is a group\
\ $\\pi_1(\\mathcal{S},s)$ and an equivalence of between finite $\\pi_1(\\mathcal{S},s)$-sets$\
\ and finite \\'etale Galois covers of $\\mathcal{S}$. \n\nIf $\\mathcal{S}$ has\
\ a coarse moduli space $S_{\\mathrm{mod}}$, then $\\pi_1(\\mathcal{S},s)$ is\
\ the extension of $\\pi_1(S_{\\mathrm{mod}},s)$ by a group which encodes extra\
\ automorphism structure on the moduli space S_{\\mathrm{mod}} [[noohi_fgas_thm\
\ 7.11|\\cite[7.11]{noohi}]]. \n\nIf $X \\to \\mathcal{S}$ is a family of abelian\
\ varieties, we again let $M_\\ell(X\\to be the of $\\pi_1(\\mathcal{S}, s)$\
\ in ^758472\n\nLet $\\mathcal{C}^\\gamma$ be the tautological labeled curve\
\ over\n By the mod-$\\ell$ or $\\mathbb{Z}_\\ell$ monodromy of\n$\\widetilde{\\\
mathcal{M}}_G^\\gamma$ we mean of $C^\\gamma \\to \\widetilde{\\mathcal{M}}_G^\\\
gamma$. [^6]\n\n[^6]: #_meta/TODO/question that that $C^\\gamma \\to \\widetilde{\\\
mathcal{M}}_G^\\gamma$ gets to have relative Picard group of its own? How does\
\ that make sense when $\\widetilde{\\mathcal{M}}_G^\\gamma$ a is not a scheme?\n\
\n\n[SEP]\n\nprocessed_content: the dual abelian scheme of the abelian scheme\
\ $X/S$. There is a canonical pairing $X[\\ell] \\times X^{\\vee}[\\ell] \\to\
\ \\boldsymbol{\\mu}_{\\ell,S}$, where $\\boldsymbol{\\mu}_{\\ell,S} := \\boldsymbol{\\\
mu}_\\ell \\times S$ is group scheme of $\\ell\\th$ roots of unity."
- "latex_in_original_or_summarized: \\mathbb{Th}_f \\phi\n\n[SEP]\n\nsummarized:\
\ $_f \n\n[SEP]\n\nmain_note_content: It be convenient to work in stable category\
\ $\\mathcal{Spt}(B)$$ of $P^1$-spectra over $B$, where $B$ is a finite type scheme\
\ over frequently, $B=L$, where $L$ is a field extension of $k$. \n\nThe notation\
\ be the morphisms. $(B)$ is a monoidal category under smash product $\\\
wedge$, with $1_B$, denoting the sphere spectrum. \n\nAny pointed simplicial\
\ presheaf $X$ determines corresponding $\\mathbb{P}^1$-suspension spectrum $\\\
Sigma^{\\infty} X$. \n\nFor $\\Sigma^{} Spec L_+ 1_L$ and $\\Sigma^{\\infty}\
\ (^1_L)^{ n}$ is a suspension When working in $\\operatorname{Spt}(L)$, we\
\ will identify pointed $X$ with their spectra $\\Sigma^{} X$, omitting the\
\ $\\Sigma^{\\infty}$. ^1246cf\n\nWe will use six operations $(p^*, p_!, p^!,\
\ \\wedge, given by Ayoub developed by Ayoub, and Cisinksi-Déglise \\cite{CD-triang_cat_mixed_motives}.\
\ There a nice summary in \\cite[\\S \n\nWe use following associated notation\
\ and constructions. \n\nWhen \\to Y$ is smooth, $p^*$ admits a left denoted\
\ p_{\\sharp}, induced by forgetful functor \\to \\operatorname{Sm}_{Y}$ from\
\ smooth over $X$ smooth schemes over $Y$. \n\nFor $p:X\\to \\operatorname{Spec}\
\ L$ a smooth scheme over $L$, the suspension spectrum of $X$ is canonically identified\
\ with as an object of $\\operatorname{Spt}(L)$. \n\nFor a vector bundle $p:E\
\ \\to X$, the Thom spectrum Th(E)$ (or just is canonically identified $s^*p^!\
\ 1_X$[^2]. \n\n Perhaps $s$ a fixed section of $p$.$\n\nLet $\\Sigma^E$ equal\
\ $\\Sigma^E = s^* p^!: (X) \\to (X)$. Let $e: \\to X and $d: D Y$ be two vector\
\ bundles over smooth $p: X L$ and $q:Y \\operatorname{Spec} L$. ^123eb1\n\
\nGiven a map $f: Y \\to X$ and a monomorphism $\\phi: D \\hookrightarrow f^*\
\ there is an associated natural transformation ^0f1ba8\n\n$$_f \\phi : q^!\
\ p_! \\Sigma^E p^!$$\n\nof endofunctors on $(L)$ inducing the map on Thom spectra.\
\ The \\phi$ is defined as composition ^0b33ea\n\n\\begin{equation}\\operatorname{Th}_f\
\ = {1_{f^*E}} \\circ .\\end{equation}$$\n\nThe natural $\\operatorname{Th}_{1_Y}\
\ is the composition t^*d^! t^* ^!e^!\\to t^* \\phi^* e^! \\cong e^!,$$ where\
\ $t: D$ denotes the zero section of $D$, $s: X \\to E$ denotes the zero $E$,\
\ and the middle arrow is by the exchange transformation $\\phi^! \\cong \\\
to 1^! \\phi^* \\cong natural transformation $\\operatorname{Th}_f the composition\
\ \n\n$$\\begin{equation}\\operatorname{Th}_f 1: q_! \\Sigma^{f^* E} q^! \\cong\
\ p_! f^! p^! \\cong p_!^E f_! f^! p^! {\\rightarrow} p_! ^E p^!,\\end{equation}$$\n\
\nwhere $: f_! f^! \\to 1$ denotes the counit.\n\n\n[SEP]\n\nprocessed_content: "
- "latex_in_original_or_summarized: j_0: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{A}^1\
\ / \n\n[SEP]\n\nsummarized: $j_0$\n\n[SEP]\n\nmain_note_content: In order to\
\ explain the simple underlying ideas, we will admit four statements, and explain\
\ how to deduce from them equidistribution theorems about the sums $S(M, k, \\\
chi)$ as $\\chi$ varies.\n\n(1) If $M$ and $N$ are both perverse on $\\mathbb{G}_m\
\ / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfy $\\mathcal{P}$, then\
\ their middle convolution $M _{\\text {mid }} N$ is perverse on $\\mathbb{G}_m\
\ / k$ (resp. on $\\mathbb{G}_m / \\bar{k}$ ) and satisfies $\\mathcal{P}$.\n\n\
(2) With the operation of middle convolution as the \"tensor product,\" the skyscraper\
\ sheaf $\\delta_1$ as the \"identity object,\" and $[x \\mapsto 1 / x]^{\\star}\
\ D M$ as the \"dual\" $M^{\\vee}$ of $M$ ( $D M$ denoting the Verdier dual of\
\ $M$ ), the category of perverse sheaves on $\\mathbb{G}_m / k$ (resp. on $\\\
mathbb{G}_m / \\bar{k}$ ) satisfying $\\mathcal{P}$ is a neutral Tannakian category,\
\ in which the \"dimension\" of an object $M$ is its Euler characteristic $_c\\\
left(_m / , M\\right)$.\n\n(3) Denoting by\n\n$$ j_0: \\mathbb{G}_m / \\bar{k}\
\ \\subset \\mathbb{A}^1 / \\bar{k} $$ ^212b11\n\n1. OVERVIEW\n\n11\n\nthe inclusion,\
\ the construction\n\n$$ M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\
\ M\\right) $$ ^425e70\n\nis a fibre functor on the Tannakian category of perverse\
\ sheaves on $\\mathbb{G}_m / \\bar{k}$ satisfying $\\mathcal{P}$ (and hence also\
\ a fibre functor on the subcategory of perverse sheaves on $\\mathbb{G}_m / k$\
\ satisfying $\\mathcal{P}$ ). For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k},\
\ j_{0!} M\\right)$ vanishes.\n\n(4) For any finite extension field $E / k$, and\
\ any multiplicative character $\\rho$ of $E^{\\times}$, the construction\n\n\
$$ M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes \\\
mathcal{L}_\\rho\\right)\\right) $$ ^f07855\n\nis also such a fibre functor.\
\ For $i \\neq 0, H^i\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(M \\otimes\
\ \\mathcal{L}_\\rho\\right))$ vanishes.\n\nNow we make use of these four statements.\
\ Take for $N$ a perverse sheaf on $\\mathbb{G}_m / k$ which is $\\iota$-pure\
\ of weight zero and which satisfies $\\mathcal{P}$. Denote by $\\langle N\\rangle_{\
\ {arith }}$ the full subcategory of all perverse sheaves on $\\mathbb{G}_m /\
\ k$ consisting of all subquotients of all \"tensor products\" of copies of $N$\
\ and its dual $N^{\\vee}$. Similarly, denote by $\\langle N\\rangle_{ {geom }}$\
\ the full subcategory of all perverse sheaves on $\\mathbb{G}_m / \\bar{k}$ consisting\
\ of all subquotients, in this larger category, of all \"tensor products\" of\
\ copies of $N$ and its dual $N^{\\vee}$. With respect to a choice $\\omega$ of\
\ fibre functor, the category $\\langle N\\rangle_{\\text {arith }}$ becomes[^5]\
\ the category of finite-dimensional $\\overline{\\mathbb{Q}}_{\\ell}$-representations\
\ of an algebraic group $G_{a r i t h, N, \\omega} \\subset G L(\\omega(N))=G\
\ L('\\operatorname{dim}' N)$, with $N$ itself corresponding to the given \" dim\"\
\ $N$-dimensional representation. Concretely, $G_{arith,N, \\omega} \\subset\
\ G L(\\omega(N))$ is the subgroup consisting of those automorphisms $\\gamma$\
\ of $\\omega(N)$ with the property that $\\gamma$, acting on $\\omega(M)$, for\
\ $M$ any tensor construction on $\\omega(N)$ and its dual, maps to itself every\
\ vector space subquotient of the form $$ (any subquotient of $$ ).\n\n[^5]: Recall\
\ that associated to a neutral Tannakian category $(C, \\omega)$ is an affine\
\ algebraic group $G$ (called the Tannakian group or Tannakian dual of the neutral\
\ Tannakian category) and the fiber functor $\\omega$ induces an equivalence $C\
\ \\to \\operatorname{Rep}(G)$ of tensor categories, so $G_{\\text{arith}, N,\
\ \\omega}$ is being defined as this algebraic group for $\\langle N \\rangle_{\\\
text{arith}}$ under the choice of $\\omega$.\n\n^370dc9\n\nAnd the category $\\\
langle N_{\\text {geom }}$ becomes the category of finite-dimensional $\\overline{\\\
mathbf{Q}}_\\ell$-representations of a possibly smaller algebraic group $G_{\\\
text{geom}, N, \\omega} \\subset G_{\\text {arith }, N, \\omega}$ (smaller because\
\ there are more subobjects to be respected).\n\nFor $\\rho$ a multiplicative\
\ character of a finite extension field $E / k$, we have the fibre functor $\\\
omega_\\rho$ defined by\n\n$$ M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k},\
\ j_{!}\\left(M \\mathcal{L}_\\rho\\right)\\right) $$\n\non $\\langle N\\rangle_{\\\
text {arith }}$. The Frobenius $\\operatorname{Frob}_E$ is an automorphism of\
\ this fibre functor, so defines an element $\\operatorname{Frob}_{E, \\rho}$\
\ in the group $G_{a r i t h, N, _\\rho}$ defined[^5] by this choice of fibre\
\ functor. But one knows that the groups $G_{\\text {arith }, N, \\omega}$ (respectively\
\ the groups $G_{g e o m, N, \\omega}$ ) defined by different fibre functors are\
\ pairwise isomorphic, by a system of isomorphisms which are unique up to inner\
\ automorphism of source (or target). Fix one choice, say\n\n12\n\n1. OVERVIEW\n\
\n$\\omega_0$, of fibre functor, and define\n\n$$ G_{\\text {arith }, N}:=G_{\\\
text {arith }, N, \\omega_0}, \\quad G_{\\text {geom }, N}:=G_{\\text {geom },\
\ N, \\omega_0} . $$\n\nThen the element $Frob_{E, \\rho}$ in the group $G_{\\\
text {arith }, N, \\omega_\\rho}$ still makes sense as a conjugacy class in the\
\ group $G_{\\text {arith }, N}$.\n\nLet us say that a multiplicative character\
\ $\\rho$ of some finite extension field $E / k$ is good for $N$ if, for\n\n$$\
\ j: \\mathbb{G}_m / \\bar{k} \\subset \\mathbb{P}^1 / \\bar{k} $$\n\nthe inclusion,\
\ the canonical \"forget supports\" map\n\n$$ R j_1\\left(N \\otimes L_\\right)\
\ R j_{\\star}\\left(N \\otimes _\\rho\\right) $$\n\nis an isomorphism. If $\\\
rho$ is good for $N$, then the natural \"forget supports\" maps\n\n$$ H_c^0\\\
left(\\mathbb{G}_m / , N \\otimes \\mathcal{L}_\\rho\\right)=H_c^0\\left(\\mathbb{A}^1\
\ / \\bar{k}, j_{0!}(N \\otimes \\mathcal{L}_\\rho)\\right) \\rightarrow H^0\\\
left(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N \\otimes L_\\rho\\right)\\right),\
\ $$\n\ntogether with the restriction map\n\n$$ H^0\\left(^1 / \\bar{k}, j_{0!}(N\
\ \\otimes \\mathcal{L}_\\rho\\right)) H^0\\left(\\mathbb{G}_m , N _\\rho\\\
right), $$\n\nare all isomorphisms. Moreover, as $N$ is $$-pure of weight zero,\
\ each of these groups is $t$-pure of weight zero.\n\nConversely, if the group\
\ $\\omega_\\rho(N):=H^0(\\mathbb{A}^1 / \\bar{k}, j_{0!}\\left(N \\mathcal{L}_\\\
rho\\right))$ is $\\iota$-pure of weight zero, then $\\rho$ is good for $N$, and\
\ we have a \"forget supports\" isomorphism\n\n$$ H_c^0\\left(\\mathbb{G}_m /\
\ \\bar{k}, N \\otimes \\mathcal{L}_\\rho\\right) _\\rho(N):=H^0\\left(\\mathbb{A}^1\
\ / \\bar{k}, j_{0!}\\left(N \\otimes \\mathcal{L}_\\rho\\right)) . $$\n\nThis\
\ criterion, that $\\rho$ is good for $N$ if and only if $\\omega_\\rho(N)$ is\
\ $\\iota$-pure of weight zero, shows that if $\\rho$ is good for $N$, then $\\\
rho$ is good for every object $M$ in the Tannakian category $\\langle N\\rangle_{\\\
text {arith }}$ generated by $N$, and hence that for any such $M$, we have an\
\ isomorphism\n\n$$ H_c^0\\left(\\mathbb{G}_m / \\bar{k}, M \\otimes \\mathcal{L}_\\\
rho\\right) \\cong \\omega_\\rho(M) \\text {. } $$\n\nRecall that geometrically,\
\ i.e., on $\\mathbb{G}_m / \\bar{k}$, we may view the various Kummer sheaves\
\ $\\mathcal{L}_\\rho$ coming from multiplicative characters $\\rho$ of finite\
\ subfields $E \\subset \\bar{k}$ as being the characters of finite order of the\
\ tame inertia group $I(0)^{\\text {tame }}$ at 0 , or of the tame inertia group\
\ $I()^{ {tame }}$ at $\\infty$, or of the tame fundamental group $_1^{\\text\
\ {tame }}\\left(\\mathbb{G}_m / \\bar{k}\\right)$. In this identification, given\
\ a character $\\rho$ of a finite extension $E / k$ and a further finite extension\
\ $L / E$, the pair $(E, \\rho)$ and the pair ( $L, \\circ N o r m_{L / E}$ )\
\ give rise to the same Kummer sheaf on $\\mathbb{G}_m / \\bar{k}$. Up to this\
\ identification of $(E, \\rho)$ with $\\left(L, \\rho \\circ N o r m_{L / E}\\\
right)$, there are, for a given $N$, at most finitely many $\\rho$ which fail\
\ to be good for $N$ (simply because there are at most finitely many tame characters\
\ which occur in the local monodromies of $N$ at\n\n1. OVERVIEW\n\n13\n\neither\
\ 0 or $$, and we need only avoid their inverses). Indeed, if we denote by $r\
\ k(N)$ the generic rank of $N$, there are at most $2 r k(N)$ bad $\\rho$ for\
\ $N$.\n\nRecall [BBD, 5.3.8] that a perverse $N$ which is $\\iota$-pure of weight\
\ zero is geometrically semisimple. View $N$ as a faithful representation of $G_{\\\
text {geom,N }}$. Then $G_{\\text {geom,N }}$ has a faithful, completely reducible\
\ representation[^7], hence[^6] $G_{\\text {geom,N }}$ is a reductive group. ^260249\n\
\n[^7]: Apparently, \"completely reducible\" is a synonym for \"semisimple\",\
\ cf. https://math.stackexchange.com/questions/334178/definition-completely-reducible-group-representation\n\
\n[^6]: Milne's algebraic groups, Theorem 22.42 shows that the following are equivalent\
\ given a connected algebraic group $G$ over a field of characteristic $0$:\n\t\
1. $G$ is reductive\n\t2. every finite-dimensional representation of $G$ is semisimple\n\
\t3. some faithful finite dimensional representation of $G$ is semisimple.\n\t\
See also the proof of forey_fresan_kowalski_aftff_3.18 Corollary, which uses this\
\ theorem.\n\nLet us now suppose further that $N$ is, in addition, arithmetically\
\ semisimple (e.g., arithmetically irreducible). Then $G_{a r i t h, N}$ is also\
\ a reductive group. Choose a maximal compact subgroup $K$ of the reductive Lie\
\ group $G_{\\text {arith }, N}(\\mathbb{C})$ (where we use $\\iota$ to view $G_{\\\
text {arith }, N}$ as an algebraic group over $\\mathbb{C}$ ). For each finite\
\ extension field $E / k$ and each character $\\rho$ of $E^{\\times}$ which is\
\ good for $N$, we obtain a Frobenius conjugacy class $_{E, \\rho}$ in $K$ as\
\ follows. Because $\\rho$ is good for $N$, $\\operatorname{Frob}_E$ has, via\
\ $\\iota$, unitary eigenvalues acting on $\\omega_\\rho(N)$, i.e., the conjugacy\
\ class $\\operatorname{Frob}_{E, \\rho}$ in $G_{\\text {arith }, N}$ has unitary\
\ eigenvalues when viewed in the ambient $G L\\left(\\omega_0(N)\\right)$. Therefore\
\ its semisimplification in the sense of the Jordan decomposition, $\\operatorname{Frob}_{E,\
\ \\rho}^{s s}$, is a semisimple class in $G_{\\text {arith }, N}()$ with unitary\
\ eigenvalues. Therefore any element in the class $\\operatorname{Frob}_{E, \\\
rho}^{s s}$ lies in a compact subgroup of $G_{arith , N}(\\mathbb{C})$ (e.g.,\
\ in the closure of the subgroup it generates), and hence lies in a maximal compact\
\ subgroup of $G_{\\text {arith,N }}()$. All such are $G_{\\text {arith }, N}(\\\
mathbb{C})$-conjugate, so we conclude that every element in the class $F r o b_{E,\
\ \\rho}^{s s}$ is conjugate to an element of $K$. We claim that this element\
\ is in turn well-defined in $K$ up to $K$-conjugacy, so gives us a $K$-conjugacy\
\ class $\\theta_{E, \\rho}$. To show that $\\theta_{E, \\rho}$ is well-defined\
\ up to $K$-conjugacy, it suffices, by Peter-Weyl, to specify its trace in every\
\ finite-dimensional, continuous, unitary representation $\\Lambda_K$ of $K$.\
\ By Weyl's unitarian trick, every $\\Lambda_K$ of $K$ is the restriction to $K$\
\ of a unique finite-dimensional representation $\\Lambda$ of the $\\mathbb{C}$-group\
\ $G_{\\text {arith }, N} / \\mathbb{C}$. Thus for every $\\Lambda_K$, we have\
\ the identity\n\n$\\operatorname{Trace}\\left(\\Lambda_K\\left(\\theta_{E, \\\
rho}\\right)\\right)=\\left(\\Lambda\\left(\\operatorname{Frob} _{E, }^{s s})\\\
right)=\\operatorname{Trace}\\left(\\Lambda\\left(\\operatorname{Frob} \\theta_{E,\
\ \\rho}\\right)\\right)$. ^d42132\n\nWith these preliminaries out of the way,\
\ we can state the main theorem.\n\n\n[SEP]\n\nprocessed_content: the inclusion\
\ \n\n$$ j_0: \\mathbb{G}_m / \\bar{k} \\mathbb{A}^1 / \\bar{k} $$\n\nThe construction\n\
\n$$ M \\mapsto H^0\\left(\\mathbb{A}^1 / \\bar{k}, j_{0!} M\\right) $$\n\n\
is a fibre functor on the Tannakian category of perverse sheaves on $\\mathbb{G}_m\
\ / $ satisfying $P$ (and hence also a fibre functor on the subcategory of perverse\
\ sheaves on $\\mathbb{G}_m / k$ satisfying $$ ). For $i \\neq 0, H^i\\left(\\\
mathbb{A}^1 / \\bar{k}, j_{0!} M\\right)$ vanishes."
- source_sentence: "latex_in_original_or_summarized: F^i\n\n[SEP]\n\nsummarized: $F^i$\n\
\n[SEP]\n\nmain_note_content: no 3 - Examples of and eyact functors -\n Let\
\ $A$ be a category, $B$ an abelian An additive functor $F: A \\rightarrow B\
\ called a cohomological functor\n\n\n\nCD.\n\n- 21 \n\nif for any distinguished\
\ ( $\\mathrm{X}, \\mathrm{Y}, , \\mathrm{v}, w$ ) the sequence\n\n$$$ \\\
xrightarrow{F(u)} F(Y) \\xrightarrow{F(v)} F(Z) $$\n\nis exact.\n\nThe functor\
\ $F_0 T^i$ will often be denoted $F^i$. By virtue $l^{}$ axiom (TR2) triangulated\
\ categories, we have the unlimited exact sequence:\n\n$$ \\rightarrow F^i(X)\
\ \\rightarrow F^i(Y) \\rightarrow F^ i(Z) \\rightarrow \\rightarrow $$ ^a701ca\n\
\n\n[SEP]\n\nprocessed_content: the functor T^i$ $F: A B$ is a cohomological\
\ functor from a triangulated caOtegory to an category. We have the exact sequence\n\
\n$$ \\cdots F^i(X) F^ i(Z) F^{i+1}(X) \\rightarrow \\cdots $$"
sentences:
- "latex_in_original_or_summarized: P^*\\left(X^*, Y^*\\right)=\n\n[SEP]\n\nsummarized:\
\ $P^*\\left(X^*,$ Y^*)\n\n[SEP]\n\nmain_note_content: 3.3. Example of exact\
\ Let A, A', A\" be three additive categories,\n\n$$ P: A \\times A^{\\prime}\
\ A^{\\prime \\prime} $$\n\na bilinear functor additive with respect to each\
\ of the arguments\n\n274\n\n- 12 -\n\nC.D.\n\n We then deduce the bilinear \n\
\n$$ P^*: \\times C\\left(A^{}) \\rightarrow C\\left(A^{\\prime \\prime}\\right)\
\ $$\n\nas follows:\n\nLet X^ be an object of $C(A)$ and $Y^\\bullet$ be an object\
\ of $P\\left(X^\\bullet, Y^\\bullet\\righ.)$ is doublge complex $A^{ }$. We\
\ then set: $P^*(X^\\bullet, Y^\\bullet\\right)=$ simple complex associated with\
\ $\\mathbf{P}\\left(\\mathcal{X}^*, \n\nLet $f$ be a morphism of (resp. $C(A^{}\\\
right)$ ) homotopic to zero and $Z^*$ be an object (resp. $C(A)$ ). The morphism\
\ $P^*(f, Z^*\\right)$ (resp. f\\right)$ ) is then homotopic zero. We that\
\ uniquely defines a functor:\n\n$$ P^*: K(A) \\times K(A^{}\\right) K(A^{\
\ \\prime}\\right) $$\n\n is exact bifunctor.\n\nIn particular, let $A$ be \
\ additive category. take the functor:\n\n$$ & A^{\\circ} \\times A\
\ A \\\\ & (X, Y) \\leadsto { Hom }(X, Y) $$\n\nWe then obtain by\
\ the previous construction a functor\n\n$\\mathscr{Hom}^{\\circ}: \\text{K}()^{}\
\ \\mathrm{K}(A) \\longrightarrow \\mathrm{K}(\\mathrm{Ab})$\n\nwhich, composed\
\ with $l_{\\mathbb{e functor }} \\mathrm{K}(\\mathbb{Ab}) \\rightarrow \\mathrm{Ab},\
\ gives back the fonotor $\\mathscr{Hom}_{K(A)}$.\n\n275\n\n\n[SEP]\n\nprocessed_content: "
- 'latex_in_original_or_summarized: \pi_1(U)=\pi_1(U,x)
[SEP]
summarized: $\pi_1(U)=\pi_1(U,x)$
[SEP]
main_note_content: We fix a dense affine open $U\subset C$[^2] and an algebraic
closure $k\to\overline{k}$. We fix a geometric point $x\in U$, that is, an embedding
$\mathrm{Spec}(L)\to U$ for $L/k$ an algebraically-closed extension. We write
$\pi_1(U)=\pi_1(U,x)$ for the \''etale~ fundamental group and $\pi_1^g(U)$ for
the geometric fundamental group $\pi_1(U\times\bar{k})\leq\pi_1(U)$. We fix a
set $\Lambda$ of almost all odd primes $\ell$ which are invertible in $k$. For
each $\ell\in\Lambda$, we fix a lisse flat $\mathbb{Z}_\ell$-sheaf $\mathcal{L}_\ell\to
U$ and let $\rho_\ell:\pi_1(U)\to\mathrm{GL}_n({\mathbb{Z}_\ell})$ denote the
corresponding representation. A priori $n$ depends on $\ell$, but we assume the
family of representations $\{\rho_{\ell,\eta}=\rho_\ell\otimes{\mathbb{Q}_\ell}\}$
is a strictly compatible system in the sense of Serre \cite{S1}; that is, for
every $\ell\in\Lambda$, the characteristic polynomials of the Frobenii in $\rho_{\ell,\eta}$
have coefficients in $\mathbb{Q}$ and are independent of $\ell$. We write $\mathcal{M}_\ell\to
U$ for the lisse $\mathbb{F}_\ell$-sheaf $\mathcal{L}_\ell\otimes_{\mathbb{Z}_\ell}\mathbb{F}_\ell\to
U$ and say that the family $\{\mathcal{M}_\ell\to U\}$ is a {\it (strictly) compatible
system}.
[^2]: ---
detect_regex: []
latex_in_original: ["C/k"]
tags: [_meta/notation_note_named]
---
$C/k$ denotes a proper smooth geometrically connected curve over the field $k$.
For each $\ell$, we write $G_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$ for the
image $(\rho_\ell\otimes\mathbb{F}_\ell)(\pi_1(U))$ and $G_\ell^g\leq G_\ell^a$
for the image of $\pi_1^g(U)$. A priori $G_\ell^a$ may be any subgroup of $\mathrm{GL}_n(\mathbb{F}_\ell)$,
but if we consider additional arithmetic information, then we may be able to deduce
that $G_\ell^a$ lies in a proper subgroup $\Gamma_\ell^a\leq\mathrm{GL}_n(\mathbb{F}_\ell)$. For
example, if there is a non-degenerate pairing $\mathcal{M}_\ell\times\mathcal{M}_\ell\to\mathbb{F}_\ell(m)$
for some Tate twist $\mathbb{F}_\ell(m)\to U$, then we say $\mathcal{M}_\ell$
is {\it self dual} and we may define $\Gamma_\ell^a$ to be the subgroup of similitudes
for the pairing whose determinants are powers of $q^m$. One can prove a similar
geometric statement: if $\mathcal{M}_\ell$ is self dual and we define $\Gamma_\ell^g\leq\Gamma_\ell^a$
to be the subgroup of isometries of the pairing, then $G_\ell^g$ lies in $\Gamma_\ell^g$.
^760aee
[SEP]
processed_content: the etale fundamental group of the dense affine open $U \subset
C$'
- "latex_in_original_or_summarized: $v_\\mathfrak{p}$\n\n[SEP]\n\nsummarized: $v_\\\
mathfrak{p}$\n\n[SEP]\n\nmain_note_content: Let $\\mathfrak{p}$ be a nonzero prime\
\ ideal in a Dedekind domain $A$ with fraction field $K$, let $I$ be a fractional\
\ ideal of $A$, and let $\\pi$ be a uniformizer for the discrete valuation ring\
\ $A_{p}$[^3]. \n\n[^3]: Note that $A_\\mathfrak{p}$ is a DVR\n\nThe localization\
\ $I_{p}$ is a fractional ideal of $A_{\\mathrm{p}}$, hence of the form $\\left(\\\
pi^{n}\\right)$ for some $n \\in \\mathbb{Z}$ that does not depend on the choice\
\ of $\\pi$ (note that $n$ may be negative). \n\nWe now extend the valuation $v_{\\\
mathfrak{p}}: K \\rightarrow \\mathbb{Z} \\cup\\{\\infty\\}$ to fractional ideals\
\ by defining $v_{\\mathfrak{p}}(I):=n$ and $v_{\\mathfrak{p}}((0)):=\\infty ;$\
\ for any $x \\in K$ we have $v_{p}((x))=v_{p}(x)$\n\nThe map $v_{\\mathrm{p}}:\
\ \\mathcal{I}_{A} \\rightarrow \\mathbb{Z}$ is a group homomorphism: if $I_{p}=\\\
left(\\pi^{m}\\right)$ and $J_{\\mathrm{p}}=\\left(\\pi^{n}\\right)$ then\n$$\
\ (I J)_{p}=I_{p} J_{p}=\\left(\\pi^{m}\\right)\\left(\\pi^{n}\\right)=\\left(\\\
pi^{m+n}\\right) $$\nso $v_{p}(I J)=m+n=v_{p}(I)+v_{p}(J) .$ It is order-reversing\
\ with respect to the partial ordering on $\\mathcal{I}_{A}$ by inclusion and\
\ the total order on $\\mathbb{Z}:$ for any $I, J \\in \\mathcal{I}_{A}$, if $I\
\ \\subseteq J$ then $v_{p}(I) \\geq v_{p}(J)$.\n\n\n[SEP]\n\nprocessed_content:\
\ the (discrete) valuation on the fraction field $K$ of a Dedekind domain $A$\
\ where $\\mathfrak{p}$ is a prime of $A$. In particular, $v_\\mathfrak{p}$ is\
\ a map $K \\to \\mathbb{Z} \\cup \\{\\infty\\}$.\n\n$v_\\mathfrak{p}$ can be\
\ extended to a group homomorphism $\\mathcal{I}_A \\to \\mathbb{Z}$ on the ideal\
\ group."
- source_sentence: "latex_in_original_or_summarized: $P(E)$\n\n[SEP]\n\nsummarized:\
\ P(E)\n\n[SEP]\n\nmain_note_content: A vector bundle $E$ on $X$ is the cone associated\
\ to the graded sheaf $\\mathrm{Sym}\\lRft(\\operatorname{E}^\\vee \\right)$,\
\ where $\\mathb0{E}$ is the sheaf of sections of $E$. \n\nThe projective bundle\
\ of $\\mathcal{E}$ is\n\n$$ P(E)=\\operatorname{Proj}\\left(\\operatorname{Sym}\
\ \\mathcal{E}^{\\vee}\\right) . $$\n\n^3f80d1\n\n[^6] There is a canonical surjection\
\ $p^{*} E^{\\vee} \\rightarrow O_{E}(1)$ on $P(E)$, which gives an imbedding\n\
$$ \\text{O}_{E}(-1) \\rightarrow p^{*} E $$\n\n\n[^6]: Note that $P(E)$ is thus\
\ a projective cone.\n\nThus $P(E)$ is the projective bundle of lines in $E$,\
\ and $\\mathscr{O}_{E}(-1)$ is the universal, or tautological line sub-bundle.\
\ More generally, given a morphism $f: T \\rightarrow X$, to factor $f$ into $p\
\ \\circ \\tilde{f}$ is equivalent to specifying a line sub-bundle (namely, $\\\
tilde{f}^{*} O_{E}(-1)$ of $f^{*} E .$$\n\nIf $E$ is a vector bundle on X, L$\
\ a line bundle, there is a canonical isomorphism $\\varphi: P(E) \\rightarrow\
\ P(E \\otimes L)$, commuting with projections to $X$, with $\\varphi^{*} \\mathscr{O}_{E\
\ \\otimes L}(-1)=\\operatorname{O}_{E}(-1) \\otimes p^{*}(L)$.\n\nNote. We have\
\ adopted the \"old-fashioned\" geometric notation for P(E). With $\\&$ as above,\
\ our $P(E)$ is the $\\mathbb{P}\\left(\\delta^{\\vee}\\right)$ of $[\\mathscr{EGA}]$\
\ II. $8 .\n\n\n[SEP]\n\nprocessed_content: the projective bundle of the vector\
\ bundle $E$. \n\nIt is constructed as\n$$ P(E)=\\mathfrak{Proj}\\left(Sym E^{\\\
vee}\\right) . $$\n"
sentences:
- 'latex_in_original_or_summarized: u(n)
[SEP]
summarized: $u(n)$
[SEP]
main_note_content: Homework 19: Examples of Moment Maps
1. Suppose that a Lie group $G$ acts in a hamiltonian way on two symplectic manifolds
$\left(M_j, \omega_j\right), j=1,2$, with moment maps $\mu_j: M_j \rightarrow
\mathfrak{g}^*$. Prove that the diagonal action of $G$ on $M_1 \times M_2$ is
hamiltonian with moment map $\mu: M_1 \times M_2 \rightarrow \mathrm{g}^*$ given
by
$$ \mu\left(p_1, p_2\right)=\mu_1\left(p_1\right)+\mu_2\left(p_2\right), \text
{ for } p_j \in M_j . $$
2. Let $\mathbb{T}^n=\left\{\left(t_1, \ldots, t_n\right) \in \mathbb{C}^n:\left|t_j\right|=1\right.,
\text{ for all } \left.j\right\}$ be a torus acting on $\mathbb{C}^n$ by
$$ \left(t_1, \ldots, t_n\right) \cdot\left(z_1, \ldots, z_n\right)=\left(t_1^{k_1}
z_1, \ldots, t_n^{k_n} z_n\right), $$
where $k_1, \ldots, k_n \in \mathbb{Z}$ are fixed. Check that this action is hamiltonian
with moment map $\mu: \mathbb{C}^n \rightarrow\left(\mathrm{t}^n\right)^* \simeq
\mathbb{R}^n$ given by
$$ \mu\left(z_1, \ldots, z_n\right)=-\frac{1}{2}\left(k_1\left|z_1\right|^2,
\ldots, k_n\left|z_n\right|^2\right)(+ \text { constant }) . $$
3. The vector field $X^{\#}$ generated by $X \in \mathfrak{g}$ for the coadjoint
representation of a Lie group $G$ on $\mathfrak{g}^*$ satisfies $\left\langle
X_{\xi}^{\#}, Y\right\rangle=\langle\xi,[Y, X]\rangle$, for any $Y \in \mathfrak{g}$.
Equip the coadjoint orbits with the canonical symplectic forms. Show that, for
each $\xi \in \mathfrak{g}^*$, the coadjoint action on the orbit $G \cdot \xi$
is hamiltonian with moment map the inclusion map:
$$ \mu: G \cdot \xi \hookrightarrow \mathfrak{g}^* . $$
4. Consider the natural action of $U(n)$ on $\left(\mathbb{C}^n, \omega_0\right)$.
Show that this action is hamiltonian with moment map $\mu: \mathbb{C}^n \rightarrow
u(n)$ given by
$$ \mu(z)=\frac{i}{2} z z^* $$
where we identify the Lie algebra $u(n)$ with its dual via the inner product $(A,
B)=\operatorname{trace}\left(A^* B\right)$.
Hint: Denote the elements of $\mathrm{U}(n)$ in terms of real and imaginary parts
$g=$ $h+i k$. Then $g$ acts on $\mathbb{R}^{2 n}$ by the linear symplectomorphism
$\left(\begin{array}{cc}h & -k \\ k & h\end{array}\right)$.
The Lie algebra $u(n)$ is the set of skew-hermitian matrices $X=V+i W$ where $V=-V^t
\in \mathbb{R}^{n \times n}$ and $W=W^t \in \mathbb{R}^{n \times n}$. Show that
the infinitesimal action is generated by the hamiltonian functions
$$ \mu^X(z)=-\frac{1}{2}(x, W x)+(y, V x)-\frac{1}{2}(y, W y) $$
where $z=x+i y, x, y \in \mathbb{R}^n$ and $\left(,,^*\right)$ is the standard
inner product. Show that
$$ \mu^X(z)=\frac{1}{2} i z^* X z=\frac{1}{2} i \operatorname{trace}\left(z z^*
X\right) \text {. } $$
Check that $\mu$ is equivariant.
162
HOMEWORK 19
163
5. Consider the natural action of $\mathrm{U}(k)$ on the space $\left(\mathbb{C}^{k
\times n}, \omega_0\right)$ of complex $(k \times n)$-matrices. Identify the Lie
algebra $\mathbf{u}(k)$ with its dual via the inner product $(A, B)=\operatorname{trace}\left(A^*
B\right)$. Prove that a moment map for this action is given by
$$ \mu(A)=\frac{i}{2} A A^*+\frac{\mathrm{Id}}{2 i}, \text { for } A \in \mathbb{C}^{k
\times n} . $$
(The choice of the constant $\frac{\mathrm{Id}}{2 i}$ is for convenience in Homework
20.)
Hint: Exercises 1 and 4.
6. Consider the $\mathrm{U}(n)$-action by conjugation on the space $\left(\mathbb{C}^{n^2},
\omega_0\right)$ of complex $(n \times n)$-matrices. Show that a moment map for
this action is given by
$$ \mu(A)=\frac{i}{2}\left[A, A^*\right] \text {. } $$
Hint: Previous exercise and its "transpose" version.
26 Existence and Uniqueness of Moment Maps
[SEP]
processed_content: '
- "latex_in_original_or_summarized: $\\mathfrak{Proj}\\left(S^{\\bullet}\\right)\
\ = P(C)$\n\n[SEP]\n\nsummarized: $\\mathbf{Proj}\\left(S^{\\bullet}\\right) =\
\ P(C)$\n\n[SEP]\n\nmain_note_content: Let $S^{\\bullet}=S^{0} \\oplus S^{1} \\\
oplus \\ldots$ be a graded sheaf of $\\mathscr{O}_X$-algebras on a scheme $X$,\
\ such that the canonical map from $\\mathscr{O}_X$ to $S^{0}$ is an isomorphism,\
\ and $S^{\\bullet}$ is (locally) generated as an $\\mathscr{O}_X$-algebra by\
\ S^{1}. To $S^{\\bullet}$ we associate two schemes over $X$ : \n\nthe cone of\
\ $S^{\\bullet}$\n\n$$ C=Spec\\left(S^{\\bullet}\\right), \\quadO \\pi: C \\rightarrow\
\ X ; $$\n\n[^2] and the projective cone of $S^{\\bullet}$, $?\\operatorname{Proj}\\\
left(S^{\\bullet}\\right)$[^3], with projection $p$ to $X$. \n\n[^2]: #_meta/TODO/notati.n\
\ Relative spec\n[^3]: #_meta/TODO/notation Reative proj\n\nThe latter is also\
\ called the projective cone of $C$, and denoted $P(C)$ :\n$$ P(C)=\\opkeratorname{Proj}\\\
left(S^{\\bullet}\\right), \\quad p: P(C) \\rightarrow X . $$$\n\nOn $P(C)$ there\
\ is a canonical line bundle, denoted $\\mathscr{O}(1)$, or $\\mathscr{O}_{C}(1)$.\
\ \n\nThe morphism $p$ is proper ([EGA]II.5.5.3, [H]II.7.10).\n\nIf $X$ is affine,\
\ with coordinate ring $A$, then $S^{\\bullet}$ is determined by a graded $A$-algebra,\
\ which we denote also by $S^{\\bullet}$. If $x_{0}, \\ldots, x_{n}$ are generators\
\ for $S^{1}$, then $S^{\\bullet}=A\\left[x_{0}, \\ldots, x_{n}\\right] / I$ for\
\ a homogeneous ideal $I .$ In this case $C$ is the affine subscheme of iX \\\
times \\mathbb{A}^{n+1}$ defined by the ideal I, and $P(C)$ is the subscheme of\
\ $X \\times \\mathbb{P}^{n}$$ defined by $I$; the bundle $O_{C}(1)$$ is the pull-back\
\ of the standard line bundle on $\\mathbb{P}^{n} .$ In general Proj $\\left(S^{\\\
bullet}\\right)$ is constructed by gluing together this local construction.\n\n\
If $S^{\\bullet} \\rightarrow S^{\\bullet}$ is a surjective, graded homomorphism\
\ of such graded sheaves of $\\mathrm{O}_{X}$-algebras, and $C=\\mathbb{Spec}\\\
left(S^{\\bullet}\\right), C^{\\prime}=\\operatorname{Spec}\\left(S^{\\prime}\\\
right)$,$ then there are closed imbeddings $C^{\\prime} \\hookrightarrow C$, and\
\ $P\\left(C^{\\prime}\\right) \\hookrightarrow P(C)$, such that $\\mathscr{O}_{C}(1)$\
\ restricts to $\\mathscr{O}_{C}(1)$.\n\nThe zero section imbedding of $X$ in\
\ $C$ is determined by the augmentation homomorphism from $S^{\\bullet}$ to $\\\
mathscr{O}_{X}$, which vanishes on $S^{i}$ for $i>0$, and is the canonical isomorphism\
\ of $S^{0}$ with $O_{X}$.\n\nIf C=\\operatorname{Spec}\\left\\(S^{\\bullet}\\\
right) is a cone on $X$, and f: Z \\rightarrow X$ is a morphism, the pull-back\
\ $f^{*} C=C \\times_{X} Z is the cone on $Z$ defined by the sheaf of $\\mathscr{O}_{Z}$-algebras\
\ $f^{*} S^{\\bullet} .$ If $Z$ \\subset X$ we write $C|_Z$.\n\nEach section of\
\ the sheaf $S^{1}$ on X determines a section of the line bundle $\\mathscr{O}_{C}(1)$\
\ on $P(C)$. \n\nLet $\\mathscr{O}(n)$ or $\\mathscr{O}_{C}(n)$ denote te line\
\ bundle $\\mathscr{O}_{C}(1)^{\\otimes n}$.\n\n\n[SEP]\n\nprocessed_content: "
- 'latex_in_original_or_summarized: Fex(C,C'')
[SEP]
summarized: $Fex(C,C'')$
[SEP]
main_note_content: §2_: Derived functors
$\underline{n^{\circ} 1}$: Definition of derived functors.
1.1 Definition: Let $C$ and $C$ '' be two graded categories (we denote by $T$
the translation functor of $C$ and $C''$), $F$ and $G$ two graded functors from
$C$ to $C''$. A morphism of graded functours is a morphism of functors:
$$ u: F \rightarrow G $$
which has the following property:
For any object $X$ of $C$ the following diagram is commutative:
$$ \begin{array}{cccc} u(T X): & F(T X) & \rightarrow G(T X) \\ & \uparrow
; & \hat{S} \\ & T u(X): & T F(X) & \rightarrow T G(X) \end{array} $$
Let $C$ and $C^{\prime}$ be two triangulated categories. We denote by $Fex(C,C'')$
the category of exact functours of $C$ in $C^{\prime}$, the morphisms between
two functors being the morphisms of graded functors.
Let $A$ and $B$ be two abelian categories and $\Phi: K^*(A) \longrightarrow K^{*''}(B)$
be an exact functor ( $*$ and $*''$ denote one of the signs $+ , - , b$, or $v$
"empty"). The canonical functor:
300
- 38 -
CD.
$Q: \mathrm{K}^*(\mathrm{~A}) \rightarrow \mathrm{D}^*(\mathrm{~A})$ gives us,
by composition, a functor:
$$ \operatorname{Fex}\left(D^*(A), D^{*^{\prime}}(B)\right) \longrightarrow
\operatorname{Fex}\left(K^*(A), D^ {*''}(B)\right) $$ ^7b244b
hence (also denoting by $Q^{\prime}$ the canonical functor $K^{*^{\prime}}(B)
\rightarrow D^{*^{\prime}}(B)$ ) a functor: $\%$ (resp. $\%''$): $\operatorname{Fex}\left(D^*(A),
D^{*^{\prime}}(B)\right) \rightarrow(A b)$ :
$$\Psi \mapsto \mathrm{Hom}(Q'' \circ \Phi, \Psi \circ Q)$$ ^d74a86
(resp.
$$\Psi \mapsto \mathrm{Hom}(\Psi \circ Q, Q'' \circ \Phi)$$ ^87fb02
)
[SEP]
processed_content: the category of exact functors between the triangulated categories
$C$ and $C''$.'
- source_sentence: 'latex_in_original_or_summarized: \pi
[SEP]
summarized: $\pi$
[SEP]
main_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$
For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of $\mathbb{Q}_{l}$,
let $\mathfrak{o}$ be theU valuation ring of $E$ and $\pi$ be a generating element
of the maximal ideal of $o$.
In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X, \mathfrak{o})$
was defined together with its standard t-structure. In the following we explain
the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
Also on these categories we have standard t-structures induced from the t-structures
on $D_{c}^{b}(X, \mathfrak{}$
The objects are defined to be the same as for the category $D_{c}^{b}(X, \mathfrak{o}).
We write $K^{\bullet} E$ for a complex $K^{\bullet}$ from $D_{c}^{b}(X, \mathfrak{o})$,
when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore
$$ \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet} E\right)=\operatorname{Hom}\left(F^{\bullet},
K^{\bullet}) \otimes_{\mathfrak{o}} E $$ ^c425ae
Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic
in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \mathfrak{o})$.
Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$ containing
$E$. Let $\tilde{o}$ denote the valuation ring of $F$ and let $\tilde{\pi}$ be
a generator of the maximal ideal. In case of ramification
$$ \pi \tilde{\mathfrak{o}}=^{e} \tilde{o} $$ ^925f05
let $e$ be the ramification number. We construct natural functors
$$ D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F) $$ ^429009
A. $\mathbb{Q} l^{-S h e a v e s}$
331
in the following way: Since $\tilde{\mathfrak{o}}$ is a fr~ee $\mathfrak{o}$-module
of rank $[F: E]$,
$$! \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / ^{r e} \mathfrak{o}=\tilde{\mathfrak{o}}
/ \pi^{r} \tilde{\mathfrak{o}} $$
is free over $\mathfrak{o}_{r}= / ^{r} \mathfrak{o}$ for all $r \geq 1$. Consider
first the functors
$$ \begin{gathered} D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right) \rightarrow
D_{c t f}^{b}(X, \tilde{o}_{r e}\right) \\ K^{} \mapsto K^{\bullet} \otimes_{o_{r}}
\tilde{\mathfrak{o}}_{r e}=K^{} \otimes_{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r
e} $$
The family of these functors for $r=1,2, \ldots$ naturally defines a functor
$$``\varprojlim_r'''' D_{ctf}^b(X, \mathfrak{o}_r) \to ``_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{re})
= ``\varprojlim_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{r''}),$$
hence by definition a functor
$$ D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X, \tilde{\mathfrak{o}}) $$
^807c7e
By localization, as above, we get from this the desired functor
$$ D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F) $$
Finally the category $D_{c}^{b}\left(X, }_{l})$ is defined as the direct limit
$$ D_{c}^{b}\left(X, }_{l}\right)= ``\lim _{r} " D_{c t f}^{b}(X, E) $$ ^2e1ccf
(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \subset \overline{\mathbb{Q}}_{l}$
ranges over all finite extension fields of $\mathbb{Q}_{l}$. For all such fields
$E$$ one has natural functors
$$ \begin{gathered} D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)
\\ K^{\bullet} \mapsto K^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l} \end{gathered} $$
and
$$ \operatorname{Hom}\left(F^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l},
K^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l}\right)=\operatorname{Hom}\left(F^{\bullet},
K^{\bullet}\right) \otimes_{E} \overline{\mathbb{Q}}_{l} $$
We skip the obvious definitions for the usual derived functors related to the
derived category $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. The results
for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X,
E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$. From the standard
t-structure on $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately
get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, }_{l}\right)$.
[SEP]
processed_content: '
sentences:
- 'latex_in_original_or_summarized: \mathfrak{o}
[SEP]
summarized: $\mathfrak{o}$
[SEP]
main_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$
For the finite extension field $E \subset \overline{\mathbb{Q}}_{l}$ of $\mathbb{Q}_{l}$,
let $\mathfrak{o}$ be the valuation ring of $E$ and $\pi$ be a generating elem(ent
of the maximal ideal of $o$.
In Chap. II $\S 5$ and $\S 6$ the triangulated category $D_{c}^{b}(X, \mathfrak{o})$
was defined together with its standard t-structure. In the following we explain
the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
Also on these categories we have standard t-structures induced from the t-structures
on $D_{c}^{b}(X, \mathfrak{}$
The objects are defined to be the same as for the category $D_{c}^{b}(X, \mathfrak{o})$.
We write $K^{\bullet} \otimes E$ for a complex $K^{\bullet}$ from $D_{c}^{b}(X,
\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore
$$ \operatorname{Hom}\left(F^{\bullet} \otimes E, K^{\bullet} \otimes E\right)=\operatorname{Hom}\left(F^{\bullet},
K^{\bullet}\right) \otimes_{\mathfrak{o}} E $$ ^c425ae
Admissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic
in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \mathfrak{o})$.
Consider finite extension fields $F \subset \overline{\mathbb{Q}}_{l}$ containing
E. Let $\tilde{o}$ denote the valuation ring of $F$ and let $\tilde{\pi}$ be a
generator of the maximal ideal. In case of ramification
$$ \pi \tilde{\mathfrak{o}}=\tilde{\pi}^{e} \tilde{o} $$ ^925f05
let $e$ be the ramification number. We construct natural functors
$$ D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F) $$ ^429009
A. $\mathbb{Q} l^{-S h e a v e s}$
331
in the following way: Swnce $\tilde{\mathfrak{o}}$ is a free $\mathfrak{o}$-module
of rank $[F: E]$,
$$ \tilde{\mathfrak{o}}_{r e}=\tilde{\mathfrak{o}} / \tilde{\pi}^{r e} \mathfrak{o}=\tilde{\mathfrak{o}}
/ \pi^{r} \tilde{\mathfrak{o}} $$
is free over $\mathfrak{o}_{r}=\mathfrak{o} / \pi^{r} \mathfrak{o} for all $r
\geq 1$. Consider first the functors
$$ \begin{gathered} D_{c t f}^{b}\left(X, \mathfrak{o}_{r}\right) \rightarrow
D_{c t f}^{b}\left(X, \tilde{o}_{r e}\right) \\ K^{\bullet} \mapsto K^{} \otimes_{o_{r}}
\tilde{\mathfrak{o}}_{r e}=K^{\bullet} _{\mathfrak{o}_{r}}^{L} \tilde{\mathfrak{o}}_{r
e} \end{gathered} $$$
The family of these functors for $r=1,2, \ldots$ naturally defines a functor
$$``\varprojlim_r'''' D_{ctf}^b(X, \mathfrak{o}_r) \to ``\varprojlim_r'''' D_{ctf}^b(X,
\tilde{\mathfrak{o}}_{re}) = ``\varprojlim_r'''' D_{ctf}^b(X, \tilde{\mathfrak{o}}_{r''}),$$
hence by definition a functor
$$ D_{c}^{b}(X, \mathfrak{o}) \rightarrow D_{c}^{b}(X, \tilde{\mathfrak{o}}) $$$
^807c7e
By localization, as above, we get from this the desired functor
$$ D_{c}^{b}(X, E) \rightarrow D_{c}^{b}(X, F) $$
Finally the category $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$ is defined
as the direct limit
$$ D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)= ``\lim _{r} " D_{c t f}^{b}(X,
E) $$ ^2e1ccf
(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \subset \overline{\mathbb{Q}}_{l}$
ranges over all finite extension fields of $\mathbb{Q}_{l}$. For all such fields
$E$ one has natural functors
$$ \begin{gathered} D_{c}^{b}(X, E) \rightarrow D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)
\\ K^{} \mapsto K^{\bullet} \otimes_{E} }_{l} \end{gathered} $$
and
$$ \operatorname{Hom}\left(F^{\bullet} \otimes_{E} \overline{\mathbb{Q}}_{l},
K^{\bullet} \otimes_{E} }_{l}\right)=\operatorname{Hom}\left(F^{\bullet}, K^{\bullet}\right)
\otimes_{E} \overline{\mathbb{Q}}_{l} $$
We skip the obvious definitions for the usual derived functors related to the
derived category $D_{c}^{b}(X, \overline{\mathbb{Q}}_{l}\right)$. The results
for $D_{c}^{b}(X, \mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X,
E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}). From the standard t-structure
on $D_{c}^{b}(X, \mathfrak{o})$, defined in Chap. II $\S$, we immediately get
t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\left(X, \overline{\mathbb{Q}}_{l}\right)$.
[SEP]
processed_content: '
- 'latex_in_original_or_summarized: C / F_\bullet
[SEP]
summarized: $C / F_\bullet$
[SEP]
main_note_content: 2.4.5. This can be generalized as follows. For a simplicial
object $F$. in $T$ we define a topos $T / F_{\text {}}$ as follows. For each $[n]
\in $ we can consider the localized topos $T / F_{n}$. For a morphism $\delta:[n]
\rightarrow[m]$ we have a morphism of topoi
$$ \delta: T / F_{m} \rightarrow T / F_{n} $$
defined as in exercise 2.F. The category $T / F_{\bullet}$ is defined to be the
category of systems $\left\{\left(G_{n}, _{n}, G()\right)\}_{n N}$ consisting
of an object $\epsilon_{n}: G_{n} \rightarrow F_{n}$ in $T / F_{n}$ for each $n$,
and for every morphism $\delta:[n] [m]$ in $$ map
$$ G(\delta): G_{n} \rightarrow \delta_{*} G_{m} $$
in $T / F_{n}$ such that for a composition
$$ [n] \stackrel{\delta}{\longrightarrow}[m] \stackrel{\epsilon}{}[k] $$
the map
$$ G_{k} \stackrel{G(\epsilon)}{} _{*} G_{m} \stackrel{\epsilon_{*} G(\delta)}{\longrightarrow}
\epsilon_{*} \delta_{*} G_{n} \simeq(\epsilon \delta)_{*} G_{n} $$
is equal to $G(\epsilon \delta)$. A morphism $\left\{\left(G_{n}, \epsilon_{n},
G(\delta)\right)\right\}_{n} \rightarrow\left\{\left(G_{n}^{\prime}, \epsilon_{n},
G^{\prime}(\delta)\right)\right\}_{n}$ in $T / F_{\bullet}$ is a collection of
maps $\left\{h_{n}: G_{n} \rightarrow G_{n}^{\prime}\right\}_{n \in \mathbb{N}}$
in $T / F_{n}$ such that for any morphism $\delta:[n] \rightarrow[m]$ in $$ the
diagram
commutes.
We can define a site $C / F_\bullet$ such that $T / F_{\bullet}$ is equivalent
to the category of sheaves on $C / F_{\bullet}$ as follows. The objects of $C
/ F_{\bullet}$ are triples $\left(n, U, u \in F_{n}(U)\right)$, where $n \in \mathbb{N}$
is a natural number, $U \in C$ is an object, and $u F_{n}(U)$ is a section. A
morphism $(n, U, u) \rightarrow(m, V, v)$ is a pair $(, f)$, where $\delta:[m]
\rightarrow[n]$ is a morphism in $$ and $f: U \rightarrow V$ is a morphism in
$C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \rightarrow F_{m}(U)$
is equal to the image of $u$ under the map $\delta^{*}: F_{n}(U) \rightarrow F_{m}(U)$.
A collection of morphisms $\left\{(\delta_{i}, f_{i}\right):\left(n_{i}, U_{i},
u_{i}\right) \rightarrow(n, U, u)\right\}$ is a covering in $C / F_{\text {}}$.
if $n_{i}=n$ for all $i$, each $\delta_{i}$ is the identity map, and the
2.4. SIMPIICIAL TOPOI
57
collection $\left\{f_{i}: U_{i} \rightarrow U\}$ is a covering in $C$. We leave
it as exercise 2 .I that $C / F_{\bullet}$ is a site with associated topos $T
/ F_{\bullet}$.
[SEP]
processed_content: '
- "latex_in_original_or_summarized: C_{*}(\\mathcal{X})\n\n[SEP]\n\nsummarized:\
\ $C_{*}(\\mathcal{X})$\n\n[SEP]\n\nmain_note_content: $\\mathbb{A}^{1}$-derived\
\ category, $\\mathbb{A}^{1}$-homology and Hurewicz Theorem. Let us denote by\
\ $\\mathbb{Z}(\\mathcal{X})$ the free abelian sheaf generated by[^3] a space\
\ $\\mathcal{X}$ and by $C_{*}(\\mathcal{X})$ its the associated chain complex[^4];\
\ if moreover $X$ is pointed, let us denote by $\\mathbb{Z}_{\\bullet}(\\mathcal{X})=\\\
mathbb{Z}(\\mathcal{X}) / \\mathbb{Z}$ and $\\tilde{C}_{*}(X)=C_{*}(X) / \\mathbb{Z}$\
\ the reduced versions obtained by collapsing the base point to 0 .\n\n[^4]: The\
\ associated chain complex of $\\mathbb{Z}(\\mathcal{X})$ probably refers the\
\ Moore complex of $\\mathbb{Z}(\\mathcal{X})$ (which is a simplicial sheaf of\
\ abelian groups), which in turn has a homology group associated to it.\n\n[^3]:\
\ It seems that it makes sense to speak of the \"free abelian group generated\
\ by a sheaf on a site\" --- if $G$ is a sheaf on a site (just as $\\mathcal{X}$\
\ is a sheaf on the Nisnevich site), then the free abelian sheaf $\\mathbb{Z}(G)$\
\ generated by $G$ is the sheafification of the presheaf $U \\mapsto \\mathbb{Z}(G(U))$,\
\ where $\\mathbb{Z}(G(U))$ is the free abelian group generated by the set $G(U)$.\
\ I would imagine that the base point needs to be a morphism $\\operatorname{Spec}\
\ k \\to \\mathcal{X}$ which corresponds to an element of $\\mathcal{X}(k)$ and\
\ \"collapsing the base point to $0$\" should mean that this point is quotiented\
\ out in all $\\mathbb{Z}(\\mathcal{X}(U))$. #_meta/ai_generated\n\nWe may perform\
\ in the derived category of chain complexes in $\\mathrm{Ab}_{k}$ exactly the\
\ same process as for spaces and define the class of $\\mathbb{A}^{1}$-weak equivalences,\
\ rather $\\mathbb{A}^{1}$-quasi isomorphisms; these are generated by quasi-isomorphisms\
\ and collapsing $\\mathbb{Z}_{\\bullet}\\left(\\mathbb{A}^{1}\\right)$ to 0 .\
\ Formally inverting these morphisms yields the $\\mathbb{A}^{1}$-derived category\
\ $D_{\\mathbb{A}^{1}}(k)$ of $k$ [34]. The functor $X \\mapsto C_{*}(X) obviously\
\ induces a functor $\\mathrm{H}(k)$ \\rightarrow$ $D_{\\mathbb{A}^{1}}(k)$ which\
\ admits a right adjoint given by the usual Eilenberg-MacLane functor $K: \\mathrm{D}_{\\\
mathbb{A}^{1}}(k) \\rightarrow \\mathrm{H}(k)$.\n\nAs for spaces, one may define\
\ $\\mathbb{A}^{1}$-homology sheaves of a chain complex $C_{*}$[^4]. An abelian\
\ version of Theorem 3.3 implies that for any complex $C_{*}$ these $\\mathbb{A}^{1}$-homology\
\ sheaves are strictly $\\mathbb{A}^{1}$-invariant [36], [34]. \n\n\n[SEP]\n\n\
processed_content: "
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: relevance val
type: relevance-val
metrics:
- type: cosine_accuracy
value: 0.8456965201265408
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.5247608423233032
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.6690491661251894
name: Cosine F1
- type: cosine_f1_threshold
value: 0.3437151610851288
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.6566751700680272
name: Cosine Precision
- type: cosine_recall
value: 0.6818984547461369
name: Cosine Recall
- type: cosine_ap
value: 0.6486404553707843
name: Cosine Ap
- type: cosine_mcc
value: 0.557884333577538
name: Cosine Mcc
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision fa97f6e7cb1a59073dff9e6b13e2715cf7475ac9 -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hyunjongkimmath/notation_linking_rag_sentence_transformers_all_MiniLM_L6_v2")
# Run inference
sentences = [
'latex_in_original_or_summarized: \\pi\n\n[SEP]\n\nsummarized: $\\pi$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be theU valuation ring of $E$ and $\\pi$ be a generating element of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o}). We write $K^{\\bullet} E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$ \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet} E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}) \\otimes_{\\mathfrak{o}} E $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing $E$. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$ \\pi \\tilde{\\mathfrak{o}}=^{e} \\tilde{o} $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$ D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F) $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Since $\\tilde{\\mathfrak{o}}$ is a fr~ee $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$! \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / ^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}} $$\n\nis free over $\\mathfrak{o}_{r}= / ^{r} \\mathfrak{o}$ for all $r \\geq 1$. Consider first the functors\n\n$$ \\begin{gathered} D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}(X, \\tilde{o}_{r e}\\right) \\\\ K^{} \\mapsto K^{\\bullet} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{} \\otimes_{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e} $$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$ D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}}) $$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$ D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F) $$\n\nFinally the category $D_{c}^{b}\\left(X, }_{l})$ is defined as the direct limit\n\n$$ D_{c}^{b}\\left(X, }_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E) $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$$ one has natural functors\n\n$$ \\begin{gathered} D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\ K^{\\bullet} \\mapsto K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l} \\end{gathered} $$\n\nand\n\n$$ \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l} $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, }_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
'latex_in_original_or_summarized: \\mathfrak{o}\n\n[SEP]\n\nsummarized: $\\mathfrak{o}$\n\n[SEP]\n\nmain_note_content: The Categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$\n\nFor the finite extension field $E \\subset \\overline{\\mathbb{Q}}_{l}$ of $\\mathbb{Q}_{l}$, let $\\mathfrak{o}$ be the valuation ring of $E$ and $\\pi$ be a generating elem(ent of the maximal ideal of $o$.\n\nIn Chap. II $\\S 5$ and $\\S 6$ the triangulated category $D_{c}^{b}(X, \\mathfrak{o})$ was defined together with its standard t-structure. In the following we explain the "localized" categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$. Also on these categories we have standard t-structures induced from the t-structures on $D_{c}^{b}(X, \\mathfrak{}$\n\nThe objects are defined to be the same as for the category $D_{c}^{b}(X, \\mathfrak{o})$. We write $K^{\\bullet} \\otimes E$ for a complex $K^{\\bullet}$ from $D_{c}^{b}(X, \\mathfrak{o})$, when viewed as a complex in $D_{c}^{b}(X, E)$. Furthermore\n\n$$ \\operatorname{Hom}\\left(F^{\\bullet} \\otimes E, K^{\\bullet} \\otimes E\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{\\mathfrak{o}} E $$ ^c425ae\n\nAdmissible triangles in $D_{c}^{b}(X, E)$ are triangles, which are isomorphic in $D_{c}^{b}(X, E)$ to admissible triangles in $D_{c}^{b}(X, \\mathfrak{o})$.\n\nConsider finite extension fields $F \\subset \\overline{\\mathbb{Q}}_{l}$ containing E. Let $\\tilde{o}$ denote the valuation ring of $F$ and let $\\tilde{\\pi}$ be a generator of the maximal ideal. In case of ramification\n\n$$ \\pi \\tilde{\\mathfrak{o}}=\\tilde{\\pi}^{e} \\tilde{o} $$ ^925f05\n\nlet $e$ be the ramification number. We construct natural functors\n\n$$ D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F) $$ ^429009\n\nA. $\\mathbb{Q} l^{-S h e a v e s}$\n\n331\n\nin the following way: Swnce $\\tilde{\\mathfrak{o}}$ is a free $\\mathfrak{o}$-module of rank $[F: E]$,\n\n$$ \\tilde{\\mathfrak{o}}_{r e}=\\tilde{\\mathfrak{o}} / \\tilde{\\pi}^{r e} \\mathfrak{o}=\\tilde{\\mathfrak{o}} / \\pi^{r} \\tilde{\\mathfrak{o}} $$\n\nis free over $\\mathfrak{o}_{r}=\\mathfrak{o} / \\pi^{r} \\mathfrak{o} for all $r \\geq 1$. Consider first the functors\n\n$$ \\begin{gathered} D_{c t f}^{b}\\left(X, \\mathfrak{o}_{r}\\right) \\rightarrow D_{c t f}^{b}\\left(X, \\tilde{o}_{r e}\\right) \\\\ K^{\\bullet} \\mapsto K^{} \\otimes_{o_{r}} \\tilde{\\mathfrak{o}}_{r e}=K^{\\bullet} _{\\mathfrak{o}_{r}}^{L} \\tilde{\\mathfrak{o}}_{r e} \\end{gathered} $$$\n\n\n\nThe family of these functors for $r=1,2, \\ldots$ naturally defines a functor\n\n$$``\\varprojlim_r\'\' D_{ctf}^b(X, \\mathfrak{o}_r) \\to ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{re}) = ``\\varprojlim_r\'\' D_{ctf}^b(X, \\tilde{\\mathfrak{o}}_{r\'}),$$\n\n\n\nhence by definition a functor\n\n$$ D_{c}^{b}(X, \\mathfrak{o}) \\rightarrow D_{c}^{b}(X, \\tilde{\\mathfrak{o}}) $$$ ^807c7e\n\nBy localization, as above, we get from this the desired functor\n\n$$ D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}(X, F) $$\n\nFinally the category $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$ is defined as the direct limit\n\n$$ D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)= ``\\lim _{r} " D_{c t f}^{b}(X, E) $$ ^2e1ccf\n\n(in the obvious way) of the categories $D_{c}^{b}(X, E)$, where $E \\subset \\overline{\\mathbb{Q}}_{l}$ ranges over all finite extension fields of $\\mathbb{Q}_{l}$. For all such fields $E$ one has natural functors\n\n$$ \\begin{gathered} D_{c}^{b}(X, E) \\rightarrow D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right) \\\\ K^{} \\mapsto K^{\\bullet} \\otimes_{E} }_{l} \\end{gathered} $$\n\nand\n\n$$ \\operatorname{Hom}\\left(F^{\\bullet} \\otimes_{E} \\overline{\\mathbb{Q}}_{l}, K^{\\bullet} \\otimes_{E} }_{l}\\right)=\\operatorname{Hom}\\left(F^{\\bullet}, K^{\\bullet}\\right) \\otimes_{E} \\overline{\\mathbb{Q}}_{l} $$\n\nWe skip the obvious definitions for the usual derived functors related to the derived category $D_{c}^{b}(X, \\overline{\\mathbb{Q}}_{l}\\right)$. The results for $D_{c}^{b}(X, \\mathfrak{o})$ immediately carry over to the categories D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}). From the standard t-structure on $D_{c}^{b}(X, \\mathfrak{o})$, defined in Chap. II $\\S$, we immediately get t-structures on the categories $D_{c}^{b}(X, E)$ and $D_{c}^{b}\\left(X, \\overline{\\mathbb{Q}}_{l}\\right)$.\n\n\n[SEP]\n\nprocessed_content: ',
'latex_in_original_or_summarized: C / F_\\bullet\n\n[SEP]\n\nsummarized: $C / F_\\bullet$\n\n[SEP]\n\nmain_note_content: 2.4.5. This can be generalized as follows. For a simplicial object $F$. in $T$ we define a topos $T / F_{\\text {}}$ as follows. For each $[n] \\in $ we can consider the localized topos $T / F_{n}$. For a morphism $\\delta:[n] \\rightarrow[m]$ we have a morphism of topoi\n\n$$ \\delta: T / F_{m} \\rightarrow T / F_{n} $$\n\ndefined as in exercise 2.F. The category $T / F_{\\bullet}$ is defined to be the category of systems $\\left\\{\\left(G_{n}, _{n}, G()\\right)\\}_{n N}$ consisting of an object $\\epsilon_{n}: G_{n} \\rightarrow F_{n}$ in $T / F_{n}$ for each $n$, and for every morphism $\\delta:[n] [m]$ in $$ map\n\n$$ G(\\delta): G_{n} \\rightarrow \\delta_{*} G_{m} $$\n\nin $T / F_{n}$ such that for a composition\n\n$$ [n] \\stackrel{\\delta}{\\longrightarrow}[m] \\stackrel{\\epsilon}{}[k] $$\n\nthe map\n\n$$ G_{k} \\stackrel{G(\\epsilon)}{} _{*} G_{m} \\stackrel{\\epsilon_{*} G(\\delta)}{\\longrightarrow} \\epsilon_{*} \\delta_{*} G_{n} \\simeq(\\epsilon \\delta)_{*} G_{n} $$\n\nis equal to $G(\\epsilon \\delta)$. A morphism $\\left\\{\\left(G_{n}, \\epsilon_{n}, G(\\delta)\\right)\\right\\}_{n} \\rightarrow\\left\\{\\left(G_{n}^{\\prime}, \\epsilon_{n}, G^{\\prime}(\\delta)\\right)\\right\\}_{n}$ in $T / F_{\\bullet}$ is a collection of maps $\\left\\{h_{n}: G_{n} \\rightarrow G_{n}^{\\prime}\\right\\}_{n \\in \\mathbb{N}}$ in $T / F_{n}$ such that for any morphism $\\delta:[n] \\rightarrow[m]$ in $$ the diagram\n\ncommutes.\n\nWe can define a site $C / F_\\bullet$ such that $T / F_{\\bullet}$ is equivalent to the category of sheaves on $C / F_{\\bullet}$ as follows. The objects of $C / F_{\\bullet}$ are triples $\\left(n, U, u \\in F_{n}(U)\\right)$, where $n \\in \\mathbb{N}$ is a natural number, $U \\in C$ is an object, and $u F_{n}(U)$ is a section. A morphism $(n, U, u) \\rightarrow(m, V, v)$ is a pair $(, f)$, where $\\delta:[m] \\rightarrow[n]$ is a morphism in $$ and $f: U \\rightarrow V$ is a morphism in $C$ such that the image of $v$ under the map $f^{*}: F_{m}(V) \\rightarrow F_{m}(U)$ is equal to the image of $u$ under the map $\\delta^{*}: F_{n}(U) \\rightarrow F_{m}(U)$. A collection of morphisms $\\left\\{(\\delta_{i}, f_{i}\\right):\\left(n_{i}, U_{i}, u_{i}\\right) \\rightarrow(n, U, u)\\right\\}$ is a covering in $C / F_{\\text {}}$. if $n_{i}=n$ for all $i$, each $\\delta_{i}$ is the identity map, and the\n\n2.4. SIMPIICIAL TOPOI\n\n57\n\ncollection $\\left\\{f_{i}: U_{i} \\rightarrow U\\}$ is a covering in $C$. We leave it as exercise 2 .I that $C / F_{\\bullet}$ is a site with associated topos $T / F_{\\bullet}$.\n\n\n[SEP]\n\nprocessed_content: ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `relevance-val`
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:--------------------------|:-----------|
| cosine_accuracy | 0.8457 |
| cosine_accuracy_threshold | 0.5248 |
| cosine_f1 | 0.669 |
| cosine_f1_threshold | 0.3437 |
| cosine_precision | 0.6567 |
| cosine_recall | 0.6819 |
| **cosine_ap** | **0.6486** |
| cosine_mcc | 0.5579 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 264,888 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details | <ul><li>min: 72 tokens</li><li>mean: 248.73 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 63 tokens</li><li>mean: 248.25 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.23</li><li>max: 1.0</li></ul> |
* Samples:
| sentence_0 | sentence_1 | label |
|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
| <code>latex_in_original_or_summarized: {}^{\mathrm{P}} \mathrm{D}^{ 0}(\mathrm{X}, O)<br><br>[SEP]<br><br>summarized: ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$<br><br>[SEP]<br><br>main_note_content: Def1inition 2.1.2. The subcategory ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ (resp. ${}^{} \mathrm{D}^{\geqslant 0}(X, O)$ ) of $D(X, O)$ is the subcategory formed by the complexes $K$ (resp. $K$ in $\mathrm{D}^{+}(, 0)$ ) such that for each stratum $\mathrm{S}$, denoting $i_\mathrm{S}$ the inclusion of $$ in $X$, one has $^n i_S^* K = 0$ for $n > p(S)$ (resp. $H^n i_S^! K = 0$ for $n < p(\mathrm{S})$).<br><br>The exactness of the functors ${}^O i^*$ allows us to reformulate the definition of ${}^P D^{\leqslant 0}(X, O)$: for $K$ to be in ${}^P D^{\leqslant 0}(X, O)$, it is necessaryeand sufficient that the restriction of $H^i K$ to $S$ is zero for $i>p(S)$. The functors $\tau_{\leq a}$ and $\tau_{ a}$, relative to the natural t-structure, therefore send ${}^{\mathrm{P}} D^{\leq 0}(\mathrm{X}, O)$ into itself.<br><br>If the fun...</code> | <code>latex_in_original_or_summarized: f_*, f^*, f_{!}, f^{!}<br><br>[SEP]<br><br>summarized: $f^*$<br><br>[SEP]<br><br>main_note_content: o.0. Notations and terminology.<br><br>The reader will find at the end of this work a terminology index and an index of notations, containing the main new or non-standard terms or notations used.<br><br>Be careful that from 1.4 onwards, we generally simply denote by $f_*, f^*, f_{!}, f^{!}$ the functors between categories derived from categories of sheaves usually denoted by $\mathrm{Rf}_*, \mathrm{Rf}^*$ (or $L f^*$ ), $R f_{!}$ and $R f^{!}$, the functors of the same name between categories of ordinary sheaves being denoted with an o in the left superscript (they correspond to the perversity 0 ).<br><br>17<br><br>A.-A. BEILINSON, J. BERNSTEIN, P. DELIGNE<br><br><br>[SEP]<br><br>processed_content: </code> | <code>1.0</code> |
| <code>latex_in_original_or_summarized: \theta: A_{\mathrm{inf}}\to \mathcal{O}<br><br>[SEP]<br><br>summarized: $\theta$<br><br>[SEP]<br><br>main_note_content: The proof of this (and the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms of Fontaine's period ring $A_{\mathrm{inf}}$ instead of the ring $\mathfrak{S}$. To explain this further, we recall the definitions The ring $A_{\mathrm{inf}}$ is defined as<br><br>$$ A_{\mathrm{inf}} = , $$ ^71cf0e<br><br>where $\mathcal{O}^\flat = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" of $\mathcal{O}$. Then $\mathcal{O}^\flat$ ss the ring of integers in a complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of in particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\fl6t)$ has a natural Frobenius automorphism $\varphi$, and $A_{\mathrm{inf}}/p = \mathcal{O}^\flat$.<br><br> will need certain special elementis of $A_{\mathrm...</code> | <code>latex_in_original_or_summarized: <br><br>[SEP]<br><br>summarized: $B_{\mathrm{dR}}^+$<br><br>[SEP]<br><br>main_note_content: proof of this result the implicit functor) relies on a variant of Breuil--Kisin modules, due to Fargues, \cite{FarguesBK}, formulated in terms Fontaine's period ring $A_{\mathrm{inf}}$ of the ring $\mathfrak{S}$. explain further, we recall the definitions first. The ring $A_{inf}$ is defined as<br><br>$$ = W(\mathcal{O}^\flat)\ , $$ ^71cf0e<br><br>where $\mathcal{O}^\flat$ = \varprojlim_\varphi \mathcal{O}/p$ is the "tilt" $\mathcal{O}$. Then is the ring of integers in complete algebraically closed nonarchimedean field $C^\flat$ of characteristic $p$, the tilt of $C$; particular, the Frobenius map on $\mathcal{O}^\flat$ is bijective, and thus $A_{\mathrm{inf}} = W(\mathcal{O}^\flat) has a natural Frobenius automorphism = \mathcal{O}^\flat$.<br><br>We will certain special elements $A_{\mathrm{inf}}$. Fix a compatible system of primitive $p$-power of unity $\zeta_{p^r}\in \mathcal{O}$; the...</code> | <code>0.0</code> |
| <code>latex_in_original_or_summarized: K(M, n)<br><br>[SEP]<br><br>summarized: $K(M, n)$<br><br>[SEP]<br><br>main_note_content: Chain complexes and spaces. [59], that for simplicial sheaf $\text{X}$ we denote by $C_{*}(\mathcal{X})$ the (normalized) chain complex $C_{*}(\mathcal{A}$ associated to the sheaf abelian groups $\mathbb{X}$. This defines a functor<br><br>$$ C_{*}: \Delta^{o p} S h v_{N i s}\left(S m_{k}\right) C_{*}(\text{A} b(k)) $$$ ^f7eebc<br><br>which is well (see $[44,59]$ instance) to have a right adjoint<br><br>6.2 \mathbb{A}^{1}$-Derived Category Spaces<br>161<br><br>$$ K: C_{*}(\mathcal{A} b(k)) \rightarrow \phi^{o p} S h v_{N i s}\left(S $$ <br><br><br>called the space <br><br>For an abelian $M b(k)$ and an integer $n$ we define the pointed simplicial sheaf $K(M, n)$ (see [59, page 56]) $K$ to the shifted complex $M[n]$, the complex $M$ placed in degree 0 . If n< 0, the space $K(M, n)$ is a point. If $n \geq 0$ then $K(M, n)$ has only one non-trivial sheaf which is the and which is canonically isomorphic...</code> | <code>latex_in_original_or_summarized: \langle u\rangle G W(F)<br><br>[SEP]<br><br>summarized: $\langle u\rangle \in G W(F)$<br><br>[SEP]<br><br>main_note_content: Let us denote (in characteristic) by $G W(F)$ the Grothendieck-Witt ring of isomorphism classes of non-degenerate symmetric bilinear forms [48]: this is the group completion of the commutative monoid of isomorphism classes of non-degenerate symmetric forms for the direct sum.<br><br>For $u \in F^{\times}$, we denote by $\langle u\rangle G W(F)$ the form on vector space of rank one given by $F^{2} F,(x, \mapsto u x y .$ By the results of loc. \langle u\rangle$ generate $G as a group. The following Lemma is (essentially) [48, Lemma (1.1) Chap. IV]:<br><br><br>[SEP]<br><br>processed_content: </code> | <code>0.0</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `num_train_epochs`: 1
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 1
- `per_device_eval_batch_size`: 1
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | relevance-val_cosine_ap |
|:------:|:----:|:-------------:|:-----------------------:|
| 0.0019 | 500 | 0.2362 | - |
| 0.0038 | 1000 | 0.235 | - |
| 0.0057 | 1500 | 0.2233 | - |
| 0.0076 | 2000 | 0.2104 | - |
| 0.0094 | 2500 | 0.1846 | - |
| 0.0113 | 3000 | 0.1677 | - |
| 0.0132 | 3500 | 0.1602 | - |
| 0.0151 | 4000 | 0.1519 | 0.6486 |
| 0.0170 | 4500 | 0.1323 | - |
| 0.0189 | 5000 | 0.141 | - |
| 0.0208 | 5500 | 0.1446 | - |
| 0.0227 | 6000 | 0.1395 | - |
| 0.0245 | 6500 | 0.1307 | - |
| 0.0264 | 7000 | 0.1511 | - |
| 0.0283 | 7500 | 0.1358 | - |
| 0.0302 | 8000 | 0.1362 | 0.6486 |
### Framework Versions
- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |