kobkrit commited on
Commit
42159d0
·
verified ·
1 Parent(s): 9219423

Upload folder using huggingface_hub

Browse files
Files changed (4) hide show
  1. .gitattributes +1 -0
  2. Modelfile +17 -0
  3. README.md +541 -3
  4. chinda-qwen3-4b.q4_k_m.gguf +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ chinda-qwen3-4b.q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
Modelfile ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM ./chinda-qwen3-4b.q4_k_m.gguf
2
+
3
+ TEMPLATE """{{ if .System }}<|im_start|>system
4
+ {{ .System }}<|im_end|>
5
+ {{ end }}{{ if .Prompt }}<|im_start|>user
6
+ {{ .Prompt }}<|im_end|>
7
+ {{ end }}<|im_start|>assistant
8
+ {{ .Response }}<|im_end|>
9
+ """
10
+
11
+ PARAMETER stop "<|im_end|>"
12
+ PARAMETER temperature 0
13
+ PARAMETER top_k 20
14
+ PARAMETER top_p 0.95
15
+
16
+ SYSTEM """คุณชื่อจินดา สร้างโดย บ. ไอแอพพ์เทคโนโลยี จำกัด (iApp Technology Co., Ltd.)"""
17
+
README.md CHANGED
@@ -1,3 +1,541 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - th
5
+ - en
6
+ base_model:
7
+ - Qwen/Qwen3-4B
8
+ pipeline_tag: text-generation
9
+ tags:
10
+ - thai
11
+ ---
12
+
13
+ # 🇹🇭 Chinda Opensource Thai LLM 4B (Q4_K_M)
14
+
15
+ **Latest Model, Think in Thai, Answer in Thai, Built by Thai Startup**
16
+
17
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/RTzTckBAT3MjYp950UamV.jpeg)
18
+
19
+ Chinda Opensource Thai LLM 4B is iApp Technology's cutting-edge Thai language model that brings advanced thinking capabilities to the Thai AI ecosystem. Built on the latest Qwen3-4B architecture, Chinda represents our commitment to developing sovereign AI solutions for Thailand.
20
+
21
+ ## 🚀 Quick Links
22
+
23
+ - **🌐 Demo:** [https://chindax.iapp.co.th](https://chindax.iapp.co.th) (Choose ChindaLLM 4b)
24
+ - **📦 Model Download:** [https://huggingface.co/iapp/chinda-qwen3-4b](https://huggingface.co/iapp/chinda-qwen3-4b)
25
+ - **🏠 Homepage:** [https://iapp.co.th/products/chinda-opensource-llm](https://iapp.co.th/products/chinda-opensource-llm)
26
+ - **📄 License:** Apache 2.0
27
+
28
+ ## ✨ Key Features
29
+
30
+ ### 🆓 **0. Free and Opensource for Everyone**
31
+ Chinda LLM 4B is completely free and open-source, enabling developers, researchers, and businesses to build Thai AI applications without restrictions.
32
+
33
+ ### 🧠 **1. Advanced Thinking Model**
34
+ - **Highest score among Thai LLMs in 4B category**
35
+ - Seamless switching between thinking and non-thinking modes
36
+ - Superior reasoning capabilities for complex problems
37
+ - Can be turned off for efficient general-purpose dialogue
38
+
39
+ ### 🇹🇭 **2. Exceptional Thai Language Accuracy**
40
+ - **98.4% accuracy** in outputting Thai language
41
+ - Prevents unwanted Chinese and foreign language outputs
42
+ - Specifically fine-tuned for Thai linguistic patterns
43
+
44
+ ### 🆕 **3. Latest Architecture**
45
+ - Based on the cutting-edge **Qwen3-4B** model
46
+ - Incorporates the latest advancements in language modeling
47
+ - Optimized for both performance and efficiency
48
+
49
+ ### 📜 **4. Apache 2.0 License**
50
+ - Commercial use permitted
51
+ - Modification and distribution allowed
52
+ - No restrictions on private use
53
+
54
+ ## 📊 Benchmark Results
55
+
56
+ Chinda LLM 4B demonstrates superior performance compared to other Thai language models in its category:
57
+
58
+ | Benchmark | Language | Chinda LLM 4B | Alternative* |
59
+ |-----------|----------|---------------|-------------|
60
+ | **AIME24** | English | **0.533** | 0.100 |
61
+ | | Thai | **0.100** | 0.000 |
62
+ | **LiveCodeBench** | English | **0.665** | 0.209 |
63
+ | | Thai | **0.198** | 0.144 |
64
+ | **MATH500** | English | **0.908** | 0.702 |
65
+ | | Thai | **0.612** | 0.566 |
66
+ | **IFEVAL** | English | **0.849** | 0.848 |
67
+ | | Thai | 0.683 | **0.740** |
68
+ | **Language Accuracy** | Thai | 0.984 | **0.992** |
69
+ | **OpenThaiEval** | Thai | **0.651** | 0.544 |
70
+ | **AVERAGE** | | **0.569** | 0.414 |
71
+
72
+ * Alternative: scb10x_typhoon2.1-gemma3-4b
73
+ * Tested by Skythought and Evalscope Benchmark Libraries by iApp Technology team. Results show Chinda LLM 4B achieving **37% better overall performance** than the nearest alternative.
74
+
75
+ ## ✅ Suitable For
76
+
77
+ ### 🔍 **1. RAG Applications (Sovereign AI)**
78
+ Perfect for building Retrieval-Augmented Generation systems that keep data processing within Thai sovereignty.
79
+
80
+ ### 📱 **2. Mobile and Laptop Applications**
81
+ Reliable Small Language Model optimized for edge computing and personal devices.
82
+
83
+ ### 🧮 **3. Math Calculation**
84
+ Excellent performance in mathematical reasoning and problem-solving.
85
+
86
+ ### 💻 **4. Code Assistant**
87
+ Strong capabilities in code generation and programming assistance.
88
+
89
+ ### ⚡ **5. Resource Efficiency**
90
+ Very fast inference with minimal GPU memory consumption, ideal for production deployments.
91
+
92
+ ## ❌ Not Suitable For
93
+
94
+ ### 📚 **Factual Questions Without Context**
95
+ As a 4B parameter model, it may hallucinate when asked for specific facts without provided context. Always use with RAG or provide relevant context for factual queries.
96
+
97
+ ## 🛠️ Quick Start
98
+
99
+ ### Installation
100
+
101
+ ```bash
102
+ pip install transformers torch
103
+ ```
104
+
105
+ ### Basic Usage
106
+
107
+ ```python
108
+ from transformers import AutoModelForCausalLM, AutoTokenizer
109
+
110
+ model_name = "iapp/chinda-qwen3-4b"
111
+
112
+ # Load the tokenizer and model
113
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
114
+ model = AutoModelForCausalLM.from_pretrained(
115
+ model_name,
116
+ torch_dtype="auto",
117
+ device_map="auto"
118
+ )
119
+
120
+ # Prepare the model input
121
+ prompt = "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย"
122
+ messages = [
123
+ {"role": "user", "content": prompt}
124
+ ]
125
+
126
+ text = tokenizer.apply_chat_template(
127
+ messages,
128
+ tokenize=False,
129
+ add_generation_prompt=True,
130
+ enable_thinking=True # Enable thinking mode for better reasoning
131
+ )
132
+
133
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
134
+
135
+ # Generate response
136
+ generated_ids = model.generate(
137
+ **model_inputs,
138
+ max_new_tokens=1024,
139
+ temperature=0.6,
140
+ top_p=0.95,
141
+ top_k=20,
142
+ do_sample=True
143
+ )
144
+
145
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
146
+
147
+ # Parse thinking content (if enabled)
148
+ try:
149
+ # Find </think> token (151668)
150
+ index = len(output_ids) - output_ids[::-1].index(151668)
151
+ except ValueError:
152
+ index = 0
153
+
154
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
155
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
156
+
157
+ print("🧠 Thinking:", thinking_content)
158
+ print("💬 Response:", content)
159
+ ```
160
+
161
+ ### Switching Between Thinking and Non-Thinking Mode
162
+
163
+ #### Enable Thinking Mode (Default)
164
+ ```python
165
+ text = tokenizer.apply_chat_template(
166
+ messages,
167
+ tokenize=False,
168
+ add_generation_prompt=True,
169
+ enable_thinking=True # Enable detailed reasoning
170
+ )
171
+ ```
172
+
173
+ #### Disable Thinking Mode (For Efficiency)
174
+ ```python
175
+ text = tokenizer.apply_chat_template(
176
+ messages,
177
+ tokenize=False,
178
+ add_generation_prompt=True,
179
+ enable_thinking=False # Fast response mode
180
+ )
181
+ ```
182
+
183
+ ### API Deployment
184
+
185
+ #### Using vLLM
186
+ ```bash
187
+ pip install vllm>=0.8.5
188
+ vllm serve iapp/chinda-qwen3-4b --enable-reasoning --reasoning-parser deepseek_r1
189
+ ```
190
+
191
+ #### Using SGLang
192
+ ```bash
193
+ pip install sglang>=0.4.6.post1
194
+ python -m sglang.launch_server --model-path iapp/chinda-qwen3-4b --reasoning-parser qwen3
195
+ ```
196
+
197
+ ## 🔧 Advanced Configuration
198
+
199
+ ### Processing Long Texts
200
+
201
+ Chinda LLM 4B natively supports up to 32,768 tokens. For longer contexts, enable YaRN scaling:
202
+
203
+ ```json
204
+ {
205
+ "rope_scaling": {
206
+ "rope_type": "yarn",
207
+ "factor": 4.0,
208
+ "original_max_position_embeddings": 32768
209
+ }
210
+ }
211
+ ```
212
+
213
+ ### Recommended Parameters
214
+
215
+ **For Thinking Mode:**
216
+ - Temperature: 0.6
217
+ - Top-P: 0.95
218
+ - Top-K: 20
219
+ - Min-P: 0
220
+
221
+ **For Non-Thinking Mode:**
222
+ - Temperature: 0.7
223
+ - Top-P: 0.8
224
+ - Top-K: 20
225
+ - Min-P: 0
226
+
227
+ ## 📝 Context Length & Template Format
228
+
229
+ ### Context Length Support
230
+ - **Native Context Length:** 32,768 tokens
231
+ - **Extended Context Length:** Up to 131,072 tokens (with YaRN scaling)
232
+ - **Input + Output:** Total conversation length supported
233
+ - **Recommended Usage:** Keep conversations under 32K tokens for optimal performance
234
+
235
+ ### Chat Template Format
236
+
237
+ Chinda LLM 4B uses a standardized chat template format for consistent interactions:
238
+
239
+ ```python
240
+ # Basic template structure
241
+ messages = [
242
+ {"role": "system", "content": "You are a helpful Thai AI assistant."},
243
+ {"role": "user", "content": "สวัสดีครับ"},
244
+ {"role": "assistant", "content": "สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ"},
245
+ {"role": "user", "content": "ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย"}
246
+ ]
247
+
248
+ # Apply template with thinking mode
249
+ text = tokenizer.apply_chat_template(
250
+ messages,
251
+ tokenize=False,
252
+ add_generation_prompt=True,
253
+ enable_thinking=True
254
+ )
255
+ ```
256
+
257
+ ### Template Structure
258
+
259
+ The template follows the standard conversational format:
260
+
261
+ ```
262
+ <|im_start|>system
263
+ You are a helpful Thai AI assistant.<|im_end|>
264
+ <|im_start|>user
265
+ สวัสดีครับ<|im_end|>
266
+ <|im_start|>assistant
267
+ สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ<|im_end|>
268
+ <|im_start|>user
269
+ ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย<|im_end|>
270
+ <|im_start|>assistant
271
+ ```
272
+
273
+ ### Advanced Template Usage
274
+
275
+ ```python
276
+ # Multi-turn conversation with thinking control
277
+ def create_conversation(messages, enable_thinking=True):
278
+ # Add system message if not present
279
+ if not messages or messages[0]["role"] != "system":
280
+ system_msg = {
281
+ "role": "system",
282
+ "content": "คุณเป็น AI ผู้ช่วยที่ฉลาดและเป็นประโยชน์ พูดภาษาไทยได้อย่างเป็นธรรมชาติ"
283
+ }
284
+ messages = [system_msg] + messages
285
+
286
+ # Apply chat template
287
+ text = tokenizer.apply_chat_template(
288
+ messages,
289
+ tokenize=False,
290
+ add_generation_prompt=True,
291
+ enable_thinking=enable_thinking
292
+ )
293
+
294
+ return text
295
+
296
+ # Example usage
297
+ conversation = [
298
+ {"role": "user", "content": "คำนวณ 15 × 23 = ?"},
299
+ ]
300
+
301
+ prompt = create_conversation(conversation, enable_thinking=True)
302
+ ```
303
+
304
+ ### Dynamic Mode Switching
305
+
306
+ You can control thinking mode within conversations using special commands:
307
+
308
+ ```python
309
+ # Enable thinking for complex problems
310
+ messages = [
311
+ {"role": "user", "content": "/think แก้สมการ: x² + 5x - 14 = 0"}
312
+ ]
313
+
314
+ # Disable thinking for quick responses
315
+ messages = [
316
+ {"role": "user", "content": "/no_think สวัสดี"}
317
+ ]
318
+ ```
319
+
320
+ ### Context Management Best Practices
321
+
322
+ 1. **Monitor Token Count:** Keep track of total tokens (input + output)
323
+ 2. **Truncate Old Messages:** Remove oldest messages when approaching limits
324
+ 3. **Use YaRN for Long Contexts:** Enable rope scaling for documents > 32K tokens
325
+ 4. **Batch Processing:** For very long texts, consider chunking and processing in batches
326
+
327
+ ```python
328
+ def manage_context(messages, max_tokens=30000):
329
+ """Simple context management function"""
330
+ total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
331
+
332
+ while total_tokens > max_tokens and len(messages) > 2:
333
+ # Keep system message and remove oldest user/assistant pair
334
+ if messages[1]["role"] == "user":
335
+ messages.pop(1) # Remove user message
336
+ if len(messages) > 1 and messages[1]["role"] == "assistant":
337
+ messages.pop(1) # Remove corresponding assistant message
338
+
339
+ total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
340
+
341
+ return messages
342
+ ```
343
+
344
+ ## 🏢 Enterprise Support
345
+
346
+ For enterprise deployments, custom training, or commercial support, contact us at:
347
+ - **Email:** [email protected]
348
+ - **Website:** [iapp.co.th](https://iapp.co.th)
349
+
350
+ ## ❓ Frequently Asked Questions
351
+
352
+ <details>
353
+ <summary><strong>🏷️ Why is it named "Chinda"?</strong></summary>
354
+
355
+ The name "Chinda" (จินดา) comes from "จินดามณี" (Chindamani), which is considered the first book of Thailand written by Phra Horathibodi (Sri Dharmasokaraja) in the Sukhothai period. Just as จินดามณี was a foundational text for Thai literature and learning, Chinda LLM represents our foundation for Thai sovereign AI - a model that truly understands and thinks in Thai, preserving and advancing Thai language capabilities in the digital age.
356
+
357
+ </details>
358
+
359
+ <details>
360
+ <summary><strong>⚖️ Can I use Chinda LLM 4B for commercial purposes?</strong></summary>
361
+
362
+ Yes! Chinda LLM 4B is released under the **Apache 2.0 License**, which allows:
363
+ - ✅ **Commercial use** - Use in commercial products and services
364
+ - ✅ **Research use** - Academic and research applications
365
+ - ✅ **Modification** - Adapt and modify the model
366
+ - ✅ **Distribution** - Share and redistribute the model
367
+ - ✅ **Private use** - Use for internal company projects
368
+
369
+ No restrictions on commercial applications - build and deploy freely!
370
+
371
+ </details>
372
+
373
+ <details>
374
+ <summary><strong>🧠 What's the difference between thinking and non-thinking mode?</strong></summary>
375
+
376
+ **Thinking Mode (`enable_thinking=True`):**
377
+ - Model shows its reasoning process in `<think>...</think>` blocks
378
+ - Better for complex problems, math, coding, logical reasoning
379
+ - Slower but more accurate responses
380
+ - Recommended for tasks requiring deep analysis
381
+
382
+ **Non-Thinking Mode (`enable_thinking=False`):**
383
+ - Direct answers without showing reasoning
384
+ - Faster responses for general conversations
385
+ - Better for simple queries and chat applications
386
+ - More efficient resource usage
387
+
388
+ You can switch between modes or let users control it dynamically using `/think` and `/no_think` commands.
389
+
390
+ </details>
391
+
392
+ <details>
393
+ <summary><strong>📊 How does Chinda LLM 4B compare to other Thai language models?</strong></summary>
394
+
395
+ Chinda LLM 4B achieves **37% better overall performance** compared to the nearest alternative:
396
+
397
+ - **Overall Average:** 0.569 vs 0.414 (alternative)
398
+ - **Math (MATH500):** 0.908 vs 0.702 (English), 0.612 vs 0.566 (Thai)
399
+ - **Code (LiveCodeBench):** 0.665 vs 0.209 (English), 0.198 vs 0.144 (Thai)
400
+ - **Thai Language Accuracy:** 98.4% (prevents Chinese/foreign text output)
401
+ - **OpenThaiEval:** 0.651 vs 0.544
402
+
403
+ It's currently the **highest-scoring Thai LLM in the 4B parameter category**.
404
+
405
+ </details>
406
+
407
+ <details>
408
+ <summary><strong>💻 What are the system requirements to run Chinda LLM 4B?</strong></summary>
409
+
410
+ **Minimum Requirements:**
411
+ - **GPU:** 8GB VRAM (RTX 3070/4060 Ti or better)
412
+ - **RAM:** 16GB system memory
413
+ - **Storage:** 8GB free space for model download
414
+ - **Python:** 3.8+ with PyTorch
415
+
416
+ **Recommended for Production:**
417
+ - **GPU:** 16GB+ VRAM (RTX 4080/A4000 or better)
418
+ - **RAM:** 32GB+ system memory
419
+ - **Storage:** SSD for faster loading
420
+
421
+ **CPU-Only Mode:** Possible but significantly slower (not recommended for production)
422
+
423
+ </details>
424
+
425
+ <details>
426
+ <summary><strong>🔧 Can I fine-tune Chinda LLM 4B for my specific use case?</strong></summary>
427
+
428
+ Yes! As an open-source model under Apache 2.0 license, you can:
429
+
430
+ - **Fine-tune** on your domain-specific data
431
+ - **Customize** for specific tasks or industries
432
+ - **Modify** the architecture if needed
433
+ - **Create derivatives** for specialized applications
434
+
435
+ Popular fine-tuning frameworks that work with Chinda:
436
+ - **Unsloth** - Fast and memory-efficient
437
+ - **LoRA/QLoRA** - Parameter-efficient fine-tuning
438
+ - **Hugging Face Transformers** - Full fine-tuning
439
+ - **Axolotl** - Advanced training configurations
440
+
441
+ Need help with fine-tuning? Contact our team at [email protected]
442
+
443
+ </details>
444
+
445
+ <details>
446
+ <summary><strong>🌍 What languages does Chinda LLM 4B support?</strong></summary>
447
+
448
+ **Primary Languages:**
449
+ - **Thai** - Native-level understanding and generation (98.4% accuracy)
450
+ - **English** - Strong performance across all benchmarks
451
+
452
+ **Additional Languages:**
453
+ - 100+ languages supported (inherited from Qwen3-4B base)
454
+ - Focus optimized for Thai-English bilingual tasks
455
+ - Code generation in multiple programming languages
456
+
457
+ **Special Features:**
458
+ - **Code-switching** between Thai and English
459
+ - **Translation** between Thai and other languages
460
+ - **Multilingual reasoning** capabilities
461
+
462
+ </details>
463
+
464
+ <details>
465
+ <summary><strong>🔍 Is the training data publicly available?</strong></summary>
466
+
467
+ The model weights are open-source, but the specific training datasets are not publicly released. However:
468
+
469
+ - **Base Model:** Built on Qwen3-4B (Alibaba's open foundation)
470
+ - **Thai Optimization:** Custom dataset curation for Thai language tasks
471
+ - **Quality Focus:** Carefully selected high-quality Thai content
472
+ - **Privacy Compliant:** No personal or sensitive data included
473
+
474
+ For research collaborations or dataset inquiries, contact our research team.
475
+
476
+ </details>
477
+
478
+ <details>
479
+ <summary><strong>🆘 How do I get support or report issues?</strong></summary>
480
+
481
+ **For Technical Issues:**
482
+ - **GitHub Issues:** Report bugs and technical problems
483
+ - **Hugging Face:** Model-specific questions and discussions
484
+ - **Documentation:** Check our comprehensive guides
485
+
486
+ **For Commercial Support:**
487
+ - **Email:** [email protected]
488
+ - **Enterprise Support:** Custom training, deployment assistance
489
+ - **Consulting:** Integration and optimization services
490
+
491
+ **Community Support:**
492
+ - **Thai AI Community:** Join discussions about Thai AI development
493
+ - **Developer Forums:** Connect with other Chinda users
494
+
495
+ </details>
496
+
497
+ <details>
498
+ <summary><strong>📥 How large is the model download and what format is it in?</strong></summary>
499
+
500
+ **Model Specifications:**
501
+ - **Parameters:** 4.02 billion (4B)
502
+ - **Download Size:** ~8GB (compressed)
503
+ - **Format:** Safetensors (recommended) and PyTorch
504
+ - **Precision:** BF16 (Brain Float 16)
505
+
506
+ **Download Options:**
507
+ - **Hugging Face Hub:** `huggingface.co/iapp/chinda-qwen3-4b`
508
+ - **Git LFS:** For version control integration
509
+ - **Direct Download:** Individual model files
510
+ - **Quantized Versions:** Available for reduced memory usage (GGUF, AWQ)
511
+
512
+ **Quantization Options:**
513
+ - **4-bit (GGUF):** ~2.5GB, runs on 4GB VRAM
514
+ - **8-bit:** ~4GB, balanced performance/memory
515
+ - **16-bit (Original):** ~8GB, full performance
516
+
517
+ </details>
518
+
519
+ ## 📚 Citation
520
+
521
+ If you use Chinda LLM 4B in your research or projects, please cite:
522
+
523
+ ```bibtex
524
+ @misc{chinda-llm-4b,
525
+ title={Chinda LLM 4B: Thai Sovereign AI Language Model},
526
+ author={iApp Technology},
527
+ year={2025},
528
+ publisher={Hugging Face},
529
+ url={https://huggingface.co/iapp/chinda-qwen3-4b}
530
+ }
531
+ ```
532
+
533
+ ---
534
+
535
+ *Built with 🇹🇭 by iApp Technology - Empowering Thai Businesses with Sovereign AI Excellence*
536
+
537
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/5fcd9c426d942eaf4d1ebd30/qNa4bznh179myghTFcpFp.jpeg)
538
+
539
+ **Powered by iApp Technology**
540
+
541
+ <i>Disclaimer: Provided responses are not guaranteed.</i>
chinda-qwen3-4b.q4_k_m.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2c299c8384c3e1b1b2a84a08b98ac1e67a90aac0b4a30e614501f345f968a68
3
+ size 2497276480