Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- Modelfile +17 -0
- README.md +541 -3
- chinda-qwen3-4b.q4_k_m.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
chinda-qwen3-4b.q4_k_m.gguf filter=lfs diff=lfs merge=lfs -text
|
Modelfile
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM ./chinda-qwen3-4b.q4_k_m.gguf
|
2 |
+
|
3 |
+
TEMPLATE """{{ if .System }}<|im_start|>system
|
4 |
+
{{ .System }}<|im_end|>
|
5 |
+
{{ end }}{{ if .Prompt }}<|im_start|>user
|
6 |
+
{{ .Prompt }}<|im_end|>
|
7 |
+
{{ end }}<|im_start|>assistant
|
8 |
+
{{ .Response }}<|im_end|>
|
9 |
+
"""
|
10 |
+
|
11 |
+
PARAMETER stop "<|im_end|>"
|
12 |
+
PARAMETER temperature 0
|
13 |
+
PARAMETER top_k 20
|
14 |
+
PARAMETER top_p 0.95
|
15 |
+
|
16 |
+
SYSTEM """คุณชื่อจินดา สร้างโดย บ. ไอแอพพ์เทคโนโลยี จำกัด (iApp Technology Co., Ltd.)"""
|
17 |
+
|
README.md
CHANGED
@@ -1,3 +1,541 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- th
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- Qwen/Qwen3-4B
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
tags:
|
10 |
+
- thai
|
11 |
+
---
|
12 |
+
|
13 |
+
# 🇹🇭 Chinda Opensource Thai LLM 4B (Q4_K_M)
|
14 |
+
|
15 |
+
**Latest Model, Think in Thai, Answer in Thai, Built by Thai Startup**
|
16 |
+
|
17 |
+

|
18 |
+
|
19 |
+
Chinda Opensource Thai LLM 4B is iApp Technology's cutting-edge Thai language model that brings advanced thinking capabilities to the Thai AI ecosystem. Built on the latest Qwen3-4B architecture, Chinda represents our commitment to developing sovereign AI solutions for Thailand.
|
20 |
+
|
21 |
+
## 🚀 Quick Links
|
22 |
+
|
23 |
+
- **🌐 Demo:** [https://chindax.iapp.co.th](https://chindax.iapp.co.th) (Choose ChindaLLM 4b)
|
24 |
+
- **📦 Model Download:** [https://huggingface.co/iapp/chinda-qwen3-4b](https://huggingface.co/iapp/chinda-qwen3-4b)
|
25 |
+
- **🏠 Homepage:** [https://iapp.co.th/products/chinda-opensource-llm](https://iapp.co.th/products/chinda-opensource-llm)
|
26 |
+
- **📄 License:** Apache 2.0
|
27 |
+
|
28 |
+
## ✨ Key Features
|
29 |
+
|
30 |
+
### 🆓 **0. Free and Opensource for Everyone**
|
31 |
+
Chinda LLM 4B is completely free and open-source, enabling developers, researchers, and businesses to build Thai AI applications without restrictions.
|
32 |
+
|
33 |
+
### 🧠 **1. Advanced Thinking Model**
|
34 |
+
- **Highest score among Thai LLMs in 4B category**
|
35 |
+
- Seamless switching between thinking and non-thinking modes
|
36 |
+
- Superior reasoning capabilities for complex problems
|
37 |
+
- Can be turned off for efficient general-purpose dialogue
|
38 |
+
|
39 |
+
### 🇹🇭 **2. Exceptional Thai Language Accuracy**
|
40 |
+
- **98.4% accuracy** in outputting Thai language
|
41 |
+
- Prevents unwanted Chinese and foreign language outputs
|
42 |
+
- Specifically fine-tuned for Thai linguistic patterns
|
43 |
+
|
44 |
+
### 🆕 **3. Latest Architecture**
|
45 |
+
- Based on the cutting-edge **Qwen3-4B** model
|
46 |
+
- Incorporates the latest advancements in language modeling
|
47 |
+
- Optimized for both performance and efficiency
|
48 |
+
|
49 |
+
### 📜 **4. Apache 2.0 License**
|
50 |
+
- Commercial use permitted
|
51 |
+
- Modification and distribution allowed
|
52 |
+
- No restrictions on private use
|
53 |
+
|
54 |
+
## 📊 Benchmark Results
|
55 |
+
|
56 |
+
Chinda LLM 4B demonstrates superior performance compared to other Thai language models in its category:
|
57 |
+
|
58 |
+
| Benchmark | Language | Chinda LLM 4B | Alternative* |
|
59 |
+
|-----------|----------|---------------|-------------|
|
60 |
+
| **AIME24** | English | **0.533** | 0.100 |
|
61 |
+
| | Thai | **0.100** | 0.000 |
|
62 |
+
| **LiveCodeBench** | English | **0.665** | 0.209 |
|
63 |
+
| | Thai | **0.198** | 0.144 |
|
64 |
+
| **MATH500** | English | **0.908** | 0.702 |
|
65 |
+
| | Thai | **0.612** | 0.566 |
|
66 |
+
| **IFEVAL** | English | **0.849** | 0.848 |
|
67 |
+
| | Thai | 0.683 | **0.740** |
|
68 |
+
| **Language Accuracy** | Thai | 0.984 | **0.992** |
|
69 |
+
| **OpenThaiEval** | Thai | **0.651** | 0.544 |
|
70 |
+
| **AVERAGE** | | **0.569** | 0.414 |
|
71 |
+
|
72 |
+
* Alternative: scb10x_typhoon2.1-gemma3-4b
|
73 |
+
* Tested by Skythought and Evalscope Benchmark Libraries by iApp Technology team. Results show Chinda LLM 4B achieving **37% better overall performance** than the nearest alternative.
|
74 |
+
|
75 |
+
## ✅ Suitable For
|
76 |
+
|
77 |
+
### 🔍 **1. RAG Applications (Sovereign AI)**
|
78 |
+
Perfect for building Retrieval-Augmented Generation systems that keep data processing within Thai sovereignty.
|
79 |
+
|
80 |
+
### 📱 **2. Mobile and Laptop Applications**
|
81 |
+
Reliable Small Language Model optimized for edge computing and personal devices.
|
82 |
+
|
83 |
+
### 🧮 **3. Math Calculation**
|
84 |
+
Excellent performance in mathematical reasoning and problem-solving.
|
85 |
+
|
86 |
+
### 💻 **4. Code Assistant**
|
87 |
+
Strong capabilities in code generation and programming assistance.
|
88 |
+
|
89 |
+
### ⚡ **5. Resource Efficiency**
|
90 |
+
Very fast inference with minimal GPU memory consumption, ideal for production deployments.
|
91 |
+
|
92 |
+
## ❌ Not Suitable For
|
93 |
+
|
94 |
+
### 📚 **Factual Questions Without Context**
|
95 |
+
As a 4B parameter model, it may hallucinate when asked for specific facts without provided context. Always use with RAG or provide relevant context for factual queries.
|
96 |
+
|
97 |
+
## 🛠️ Quick Start
|
98 |
+
|
99 |
+
### Installation
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install transformers torch
|
103 |
+
```
|
104 |
+
|
105 |
+
### Basic Usage
|
106 |
+
|
107 |
+
```python
|
108 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
109 |
+
|
110 |
+
model_name = "iapp/chinda-qwen3-4b"
|
111 |
+
|
112 |
+
# Load the tokenizer and model
|
113 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
114 |
+
model = AutoModelForCausalLM.from_pretrained(
|
115 |
+
model_name,
|
116 |
+
torch_dtype="auto",
|
117 |
+
device_map="auto"
|
118 |
+
)
|
119 |
+
|
120 |
+
# Prepare the model input
|
121 |
+
prompt = "อธิบายเกี่ยวกับปัญญาประดิษฐ์ให้ฟังหน่อย"
|
122 |
+
messages = [
|
123 |
+
{"role": "user", "content": prompt}
|
124 |
+
]
|
125 |
+
|
126 |
+
text = tokenizer.apply_chat_template(
|
127 |
+
messages,
|
128 |
+
tokenize=False,
|
129 |
+
add_generation_prompt=True,
|
130 |
+
enable_thinking=True # Enable thinking mode for better reasoning
|
131 |
+
)
|
132 |
+
|
133 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
134 |
+
|
135 |
+
# Generate response
|
136 |
+
generated_ids = model.generate(
|
137 |
+
**model_inputs,
|
138 |
+
max_new_tokens=1024,
|
139 |
+
temperature=0.6,
|
140 |
+
top_p=0.95,
|
141 |
+
top_k=20,
|
142 |
+
do_sample=True
|
143 |
+
)
|
144 |
+
|
145 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
146 |
+
|
147 |
+
# Parse thinking content (if enabled)
|
148 |
+
try:
|
149 |
+
# Find </think> token (151668)
|
150 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
151 |
+
except ValueError:
|
152 |
+
index = 0
|
153 |
+
|
154 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
155 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
156 |
+
|
157 |
+
print("🧠 Thinking:", thinking_content)
|
158 |
+
print("💬 Response:", content)
|
159 |
+
```
|
160 |
+
|
161 |
+
### Switching Between Thinking and Non-Thinking Mode
|
162 |
+
|
163 |
+
#### Enable Thinking Mode (Default)
|
164 |
+
```python
|
165 |
+
text = tokenizer.apply_chat_template(
|
166 |
+
messages,
|
167 |
+
tokenize=False,
|
168 |
+
add_generation_prompt=True,
|
169 |
+
enable_thinking=True # Enable detailed reasoning
|
170 |
+
)
|
171 |
+
```
|
172 |
+
|
173 |
+
#### Disable Thinking Mode (For Efficiency)
|
174 |
+
```python
|
175 |
+
text = tokenizer.apply_chat_template(
|
176 |
+
messages,
|
177 |
+
tokenize=False,
|
178 |
+
add_generation_prompt=True,
|
179 |
+
enable_thinking=False # Fast response mode
|
180 |
+
)
|
181 |
+
```
|
182 |
+
|
183 |
+
### API Deployment
|
184 |
+
|
185 |
+
#### Using vLLM
|
186 |
+
```bash
|
187 |
+
pip install vllm>=0.8.5
|
188 |
+
vllm serve iapp/chinda-qwen3-4b --enable-reasoning --reasoning-parser deepseek_r1
|
189 |
+
```
|
190 |
+
|
191 |
+
#### Using SGLang
|
192 |
+
```bash
|
193 |
+
pip install sglang>=0.4.6.post1
|
194 |
+
python -m sglang.launch_server --model-path iapp/chinda-qwen3-4b --reasoning-parser qwen3
|
195 |
+
```
|
196 |
+
|
197 |
+
## 🔧 Advanced Configuration
|
198 |
+
|
199 |
+
### Processing Long Texts
|
200 |
+
|
201 |
+
Chinda LLM 4B natively supports up to 32,768 tokens. For longer contexts, enable YaRN scaling:
|
202 |
+
|
203 |
+
```json
|
204 |
+
{
|
205 |
+
"rope_scaling": {
|
206 |
+
"rope_type": "yarn",
|
207 |
+
"factor": 4.0,
|
208 |
+
"original_max_position_embeddings": 32768
|
209 |
+
}
|
210 |
+
}
|
211 |
+
```
|
212 |
+
|
213 |
+
### Recommended Parameters
|
214 |
+
|
215 |
+
**For Thinking Mode:**
|
216 |
+
- Temperature: 0.6
|
217 |
+
- Top-P: 0.95
|
218 |
+
- Top-K: 20
|
219 |
+
- Min-P: 0
|
220 |
+
|
221 |
+
**For Non-Thinking Mode:**
|
222 |
+
- Temperature: 0.7
|
223 |
+
- Top-P: 0.8
|
224 |
+
- Top-K: 20
|
225 |
+
- Min-P: 0
|
226 |
+
|
227 |
+
## 📝 Context Length & Template Format
|
228 |
+
|
229 |
+
### Context Length Support
|
230 |
+
- **Native Context Length:** 32,768 tokens
|
231 |
+
- **Extended Context Length:** Up to 131,072 tokens (with YaRN scaling)
|
232 |
+
- **Input + Output:** Total conversation length supported
|
233 |
+
- **Recommended Usage:** Keep conversations under 32K tokens for optimal performance
|
234 |
+
|
235 |
+
### Chat Template Format
|
236 |
+
|
237 |
+
Chinda LLM 4B uses a standardized chat template format for consistent interactions:
|
238 |
+
|
239 |
+
```python
|
240 |
+
# Basic template structure
|
241 |
+
messages = [
|
242 |
+
{"role": "system", "content": "You are a helpful Thai AI assistant."},
|
243 |
+
{"role": "user", "content": "สวัสดีครับ"},
|
244 |
+
{"role": "assistant", "content": "สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ"},
|
245 |
+
{"role": "user", "content": "ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย"}
|
246 |
+
]
|
247 |
+
|
248 |
+
# Apply template with thinking mode
|
249 |
+
text = tokenizer.apply_chat_template(
|
250 |
+
messages,
|
251 |
+
tokenize=False,
|
252 |
+
add_generation_prompt=True,
|
253 |
+
enable_thinking=True
|
254 |
+
)
|
255 |
+
```
|
256 |
+
|
257 |
+
### Template Structure
|
258 |
+
|
259 |
+
The template follows the standard conversational format:
|
260 |
+
|
261 |
+
```
|
262 |
+
<|im_start|>system
|
263 |
+
You are a helpful Thai AI assistant.<|im_end|>
|
264 |
+
<|im_start|>user
|
265 |
+
สวัสดีครับ<|im_end|>
|
266 |
+
<|im_start|>assistant
|
267 |
+
สวัสดีค่ะ! มีอะไรให้ช่วยเหลือบ้างคะ<|im_end|>
|
268 |
+
<|im_start|>user
|
269 |
+
ช่วยอธิบายเรื่อง AI ให้ฟังหน่อย<|im_end|>
|
270 |
+
<|im_start|>assistant
|
271 |
+
```
|
272 |
+
|
273 |
+
### Advanced Template Usage
|
274 |
+
|
275 |
+
```python
|
276 |
+
# Multi-turn conversation with thinking control
|
277 |
+
def create_conversation(messages, enable_thinking=True):
|
278 |
+
# Add system message if not present
|
279 |
+
if not messages or messages[0]["role"] != "system":
|
280 |
+
system_msg = {
|
281 |
+
"role": "system",
|
282 |
+
"content": "คุณเป็น AI ผู้ช่วยที่ฉลาดและเป็นประโยชน์ พูดภาษาไทยได้อย่างเป็นธรรมชาติ"
|
283 |
+
}
|
284 |
+
messages = [system_msg] + messages
|
285 |
+
|
286 |
+
# Apply chat template
|
287 |
+
text = tokenizer.apply_chat_template(
|
288 |
+
messages,
|
289 |
+
tokenize=False,
|
290 |
+
add_generation_prompt=True,
|
291 |
+
enable_thinking=enable_thinking
|
292 |
+
)
|
293 |
+
|
294 |
+
return text
|
295 |
+
|
296 |
+
# Example usage
|
297 |
+
conversation = [
|
298 |
+
{"role": "user", "content": "คำนวณ 15 × 23 = ?"},
|
299 |
+
]
|
300 |
+
|
301 |
+
prompt = create_conversation(conversation, enable_thinking=True)
|
302 |
+
```
|
303 |
+
|
304 |
+
### Dynamic Mode Switching
|
305 |
+
|
306 |
+
You can control thinking mode within conversations using special commands:
|
307 |
+
|
308 |
+
```python
|
309 |
+
# Enable thinking for complex problems
|
310 |
+
messages = [
|
311 |
+
{"role": "user", "content": "/think แก้สมการ: x² + 5x - 14 = 0"}
|
312 |
+
]
|
313 |
+
|
314 |
+
# Disable thinking for quick responses
|
315 |
+
messages = [
|
316 |
+
{"role": "user", "content": "/no_think สวัสดี"}
|
317 |
+
]
|
318 |
+
```
|
319 |
+
|
320 |
+
### Context Management Best Practices
|
321 |
+
|
322 |
+
1. **Monitor Token Count:** Keep track of total tokens (input + output)
|
323 |
+
2. **Truncate Old Messages:** Remove oldest messages when approaching limits
|
324 |
+
3. **Use YaRN for Long Contexts:** Enable rope scaling for documents > 32K tokens
|
325 |
+
4. **Batch Processing:** For very long texts, consider chunking and processing in batches
|
326 |
+
|
327 |
+
```python
|
328 |
+
def manage_context(messages, max_tokens=30000):
|
329 |
+
"""Simple context management function"""
|
330 |
+
total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
|
331 |
+
|
332 |
+
while total_tokens > max_tokens and len(messages) > 2:
|
333 |
+
# Keep system message and remove oldest user/assistant pair
|
334 |
+
if messages[1]["role"] == "user":
|
335 |
+
messages.pop(1) # Remove user message
|
336 |
+
if len(messages) > 1 and messages[1]["role"] == "assistant":
|
337 |
+
messages.pop(1) # Remove corresponding assistant message
|
338 |
+
|
339 |
+
total_tokens = sum(len(tokenizer.encode(msg["content"])) for msg in messages)
|
340 |
+
|
341 |
+
return messages
|
342 |
+
```
|
343 |
+
|
344 |
+
## 🏢 Enterprise Support
|
345 |
+
|
346 |
+
For enterprise deployments, custom training, or commercial support, contact us at:
|
347 |
+
- **Email:** [email protected]
|
348 |
+
- **Website:** [iapp.co.th](https://iapp.co.th)
|
349 |
+
|
350 |
+
## ❓ Frequently Asked Questions
|
351 |
+
|
352 |
+
<details>
|
353 |
+
<summary><strong>🏷️ Why is it named "Chinda"?</strong></summary>
|
354 |
+
|
355 |
+
The name "Chinda" (จินดา) comes from "จินดามณี" (Chindamani), which is considered the first book of Thailand written by Phra Horathibodi (Sri Dharmasokaraja) in the Sukhothai period. Just as จินดามณี was a foundational text for Thai literature and learning, Chinda LLM represents our foundation for Thai sovereign AI - a model that truly understands and thinks in Thai, preserving and advancing Thai language capabilities in the digital age.
|
356 |
+
|
357 |
+
</details>
|
358 |
+
|
359 |
+
<details>
|
360 |
+
<summary><strong>⚖️ Can I use Chinda LLM 4B for commercial purposes?</strong></summary>
|
361 |
+
|
362 |
+
Yes! Chinda LLM 4B is released under the **Apache 2.0 License**, which allows:
|
363 |
+
- ✅ **Commercial use** - Use in commercial products and services
|
364 |
+
- ✅ **Research use** - Academic and research applications
|
365 |
+
- ✅ **Modification** - Adapt and modify the model
|
366 |
+
- ✅ **Distribution** - Share and redistribute the model
|
367 |
+
- ✅ **Private use** - Use for internal company projects
|
368 |
+
|
369 |
+
No restrictions on commercial applications - build and deploy freely!
|
370 |
+
|
371 |
+
</details>
|
372 |
+
|
373 |
+
<details>
|
374 |
+
<summary><strong>🧠 What's the difference between thinking and non-thinking mode?</strong></summary>
|
375 |
+
|
376 |
+
**Thinking Mode (`enable_thinking=True`):**
|
377 |
+
- Model shows its reasoning process in `<think>...</think>` blocks
|
378 |
+
- Better for complex problems, math, coding, logical reasoning
|
379 |
+
- Slower but more accurate responses
|
380 |
+
- Recommended for tasks requiring deep analysis
|
381 |
+
|
382 |
+
**Non-Thinking Mode (`enable_thinking=False`):**
|
383 |
+
- Direct answers without showing reasoning
|
384 |
+
- Faster responses for general conversations
|
385 |
+
- Better for simple queries and chat applications
|
386 |
+
- More efficient resource usage
|
387 |
+
|
388 |
+
You can switch between modes or let users control it dynamically using `/think` and `/no_think` commands.
|
389 |
+
|
390 |
+
</details>
|
391 |
+
|
392 |
+
<details>
|
393 |
+
<summary><strong>📊 How does Chinda LLM 4B compare to other Thai language models?</strong></summary>
|
394 |
+
|
395 |
+
Chinda LLM 4B achieves **37% better overall performance** compared to the nearest alternative:
|
396 |
+
|
397 |
+
- **Overall Average:** 0.569 vs 0.414 (alternative)
|
398 |
+
- **Math (MATH500):** 0.908 vs 0.702 (English), 0.612 vs 0.566 (Thai)
|
399 |
+
- **Code (LiveCodeBench):** 0.665 vs 0.209 (English), 0.198 vs 0.144 (Thai)
|
400 |
+
- **Thai Language Accuracy:** 98.4% (prevents Chinese/foreign text output)
|
401 |
+
- **OpenThaiEval:** 0.651 vs 0.544
|
402 |
+
|
403 |
+
It's currently the **highest-scoring Thai LLM in the 4B parameter category**.
|
404 |
+
|
405 |
+
</details>
|
406 |
+
|
407 |
+
<details>
|
408 |
+
<summary><strong>💻 What are the system requirements to run Chinda LLM 4B?</strong></summary>
|
409 |
+
|
410 |
+
**Minimum Requirements:**
|
411 |
+
- **GPU:** 8GB VRAM (RTX 3070/4060 Ti or better)
|
412 |
+
- **RAM:** 16GB system memory
|
413 |
+
- **Storage:** 8GB free space for model download
|
414 |
+
- **Python:** 3.8+ with PyTorch
|
415 |
+
|
416 |
+
**Recommended for Production:**
|
417 |
+
- **GPU:** 16GB+ VRAM (RTX 4080/A4000 or better)
|
418 |
+
- **RAM:** 32GB+ system memory
|
419 |
+
- **Storage:** SSD for faster loading
|
420 |
+
|
421 |
+
**CPU-Only Mode:** Possible but significantly slower (not recommended for production)
|
422 |
+
|
423 |
+
</details>
|
424 |
+
|
425 |
+
<details>
|
426 |
+
<summary><strong>🔧 Can I fine-tune Chinda LLM 4B for my specific use case?</strong></summary>
|
427 |
+
|
428 |
+
Yes! As an open-source model under Apache 2.0 license, you can:
|
429 |
+
|
430 |
+
- **Fine-tune** on your domain-specific data
|
431 |
+
- **Customize** for specific tasks or industries
|
432 |
+
- **Modify** the architecture if needed
|
433 |
+
- **Create derivatives** for specialized applications
|
434 |
+
|
435 |
+
Popular fine-tuning frameworks that work with Chinda:
|
436 |
+
- **Unsloth** - Fast and memory-efficient
|
437 |
+
- **LoRA/QLoRA** - Parameter-efficient fine-tuning
|
438 |
+
- **Hugging Face Transformers** - Full fine-tuning
|
439 |
+
- **Axolotl** - Advanced training configurations
|
440 |
+
|
441 |
+
Need help with fine-tuning? Contact our team at [email protected]
|
442 |
+
|
443 |
+
</details>
|
444 |
+
|
445 |
+
<details>
|
446 |
+
<summary><strong>🌍 What languages does Chinda LLM 4B support?</strong></summary>
|
447 |
+
|
448 |
+
**Primary Languages:**
|
449 |
+
- **Thai** - Native-level understanding and generation (98.4% accuracy)
|
450 |
+
- **English** - Strong performance across all benchmarks
|
451 |
+
|
452 |
+
**Additional Languages:**
|
453 |
+
- 100+ languages supported (inherited from Qwen3-4B base)
|
454 |
+
- Focus optimized for Thai-English bilingual tasks
|
455 |
+
- Code generation in multiple programming languages
|
456 |
+
|
457 |
+
**Special Features:**
|
458 |
+
- **Code-switching** between Thai and English
|
459 |
+
- **Translation** between Thai and other languages
|
460 |
+
- **Multilingual reasoning** capabilities
|
461 |
+
|
462 |
+
</details>
|
463 |
+
|
464 |
+
<details>
|
465 |
+
<summary><strong>🔍 Is the training data publicly available?</strong></summary>
|
466 |
+
|
467 |
+
The model weights are open-source, but the specific training datasets are not publicly released. However:
|
468 |
+
|
469 |
+
- **Base Model:** Built on Qwen3-4B (Alibaba's open foundation)
|
470 |
+
- **Thai Optimization:** Custom dataset curation for Thai language tasks
|
471 |
+
- **Quality Focus:** Carefully selected high-quality Thai content
|
472 |
+
- **Privacy Compliant:** No personal or sensitive data included
|
473 |
+
|
474 |
+
For research collaborations or dataset inquiries, contact our research team.
|
475 |
+
|
476 |
+
</details>
|
477 |
+
|
478 |
+
<details>
|
479 |
+
<summary><strong>🆘 How do I get support or report issues?</strong></summary>
|
480 |
+
|
481 |
+
**For Technical Issues:**
|
482 |
+
- **GitHub Issues:** Report bugs and technical problems
|
483 |
+
- **Hugging Face:** Model-specific questions and discussions
|
484 |
+
- **Documentation:** Check our comprehensive guides
|
485 |
+
|
486 |
+
**For Commercial Support:**
|
487 |
+
- **Email:** [email protected]
|
488 |
+
- **Enterprise Support:** Custom training, deployment assistance
|
489 |
+
- **Consulting:** Integration and optimization services
|
490 |
+
|
491 |
+
**Community Support:**
|
492 |
+
- **Thai AI Community:** Join discussions about Thai AI development
|
493 |
+
- **Developer Forums:** Connect with other Chinda users
|
494 |
+
|
495 |
+
</details>
|
496 |
+
|
497 |
+
<details>
|
498 |
+
<summary><strong>📥 How large is the model download and what format is it in?</strong></summary>
|
499 |
+
|
500 |
+
**Model Specifications:**
|
501 |
+
- **Parameters:** 4.02 billion (4B)
|
502 |
+
- **Download Size:** ~8GB (compressed)
|
503 |
+
- **Format:** Safetensors (recommended) and PyTorch
|
504 |
+
- **Precision:** BF16 (Brain Float 16)
|
505 |
+
|
506 |
+
**Download Options:**
|
507 |
+
- **Hugging Face Hub:** `huggingface.co/iapp/chinda-qwen3-4b`
|
508 |
+
- **Git LFS:** For version control integration
|
509 |
+
- **Direct Download:** Individual model files
|
510 |
+
- **Quantized Versions:** Available for reduced memory usage (GGUF, AWQ)
|
511 |
+
|
512 |
+
**Quantization Options:**
|
513 |
+
- **4-bit (GGUF):** ~2.5GB, runs on 4GB VRAM
|
514 |
+
- **8-bit:** ~4GB, balanced performance/memory
|
515 |
+
- **16-bit (Original):** ~8GB, full performance
|
516 |
+
|
517 |
+
</details>
|
518 |
+
|
519 |
+
## 📚 Citation
|
520 |
+
|
521 |
+
If you use Chinda LLM 4B in your research or projects, please cite:
|
522 |
+
|
523 |
+
```bibtex
|
524 |
+
@misc{chinda-llm-4b,
|
525 |
+
title={Chinda LLM 4B: Thai Sovereign AI Language Model},
|
526 |
+
author={iApp Technology},
|
527 |
+
year={2025},
|
528 |
+
publisher={Hugging Face},
|
529 |
+
url={https://huggingface.co/iapp/chinda-qwen3-4b}
|
530 |
+
}
|
531 |
+
```
|
532 |
+
|
533 |
+
---
|
534 |
+
|
535 |
+
*Built with 🇹🇭 by iApp Technology - Empowering Thai Businesses with Sovereign AI Excellence*
|
536 |
+
|
537 |
+

|
538 |
+
|
539 |
+
**Powered by iApp Technology**
|
540 |
+
|
541 |
+
<i>Disclaimer: Provided responses are not guaranteed.</i>
|
chinda-qwen3-4b.q4_k_m.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2c299c8384c3e1b1b2a84a08b98ac1e67a90aac0b4a30e614501f345f968a68
|
3 |
+
size 2497276480
|