TerraTorch
Earth Observation
TerraMind
IBM
ESA
blumenstiel commited on
Commit
e1cef65
·
verified ·
1 Parent(s): b6ef6ed

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -9,11 +9,11 @@ tags:
9
  - IBM
10
  - ESA
11
  ---
12
- [![Website](https://img.shields.io/badge/Website-TerraMind-0F62FE)](https://ibm.github.io/terramind/)
13
  [![arXiv](https://img.shields.io/badge/arXiv-2504.11171-b31b1b?logo=arxiv)](https://arxiv.org/abs/2504.11171)
14
- [![Docs](https://img.shields.io/badge/Docs-EE4B2B?logo=materialformkdocs&logoColor=fff)](https://ibm.github.io/terratorch/stable/guide/terramind/)
15
  [![Examples](https://img.shields.io/badge/GitHub-Examples-0F62FE?logo=github)](https://github.com/IBM/terramind)
16
- [![Code](https://img.shields.io/badge/code-TerraTorch-EE4B2B?logo=github)](https://github.com/IBM/terratorch/tree/main/terratorch/models/backbones/terramind)
17
  [![ESAblog](https://img.shields.io/badge/Blog-ESA-113145)](https://www.esa.int/Applications/Observing_the_Earth/ESA_and_IBM_collaborate_on_TerraMind)
18
  [![IBMblog](https://img.shields.io/badge/Blog-IBM-0F62FE)](https://research.ibm.com/blog/terramind-esa-earth-observation-model)
19
 
@@ -40,12 +40,12 @@ During pre-training, TerraMind leverages masked token reconstruction, learning c
40
  We benchmarked TerraMind against other geospatial foundation models using the PANGAEA benchmark.
41
  TerraMind consistently achieved state-of-the-art performance, surpassing existing models in various downstream tasks such as land use segmentation, water body mapping, and vegetation assessments.
42
  The evaluation highlights its effectiveness in handling diverse Earth Observation scenarios.
43
- We present additional experiments in our [pre-print](https://arxiv.org/abs/2504.11171).
44
 
45
 
46
  ## Usage
47
 
48
- TerraMind is fully integrated into the fine-tuning package [TerraTorch](https://ibm.github.io/terratorch/).
49
  This makes it easy to initialize the pre-trained model or fine-tune it via PyTorch Lightning.
50
  The weights are automatically downloaded from Hugging Face.
51
 
@@ -116,7 +116,7 @@ model = BACKBONE_REGISTRY.build(
116
  )
117
  ```
118
 
119
- If you use TiM models, we recommend using the [pre-training statistics](https://github.com/IBM/terratorch/blob/a4ca8df7c7f22ddf469f372e1099157d2d7beeb2/terratorch/models/backbones/terramind/model/terramind_register.py#L111) for standardization.
120
 
121
  ### Generations
122
 
@@ -156,13 +156,13 @@ Already working with TerraMind? Submit your use case to the [TerraMind Blue-Sky
156
 
157
  ## Citation
158
 
159
- If you use TerraMind in your research, please cite the [TerraMind](https://arxiv.org/abs/2504.11171) pre-print.
160
 
161
  ```text
162
  @article{jakubik2025terramind,
163
  title={TerraMind: Large-Scale Generative Multimodality for Earth Observation},
164
  author={Jakubik, Johannes and Yang, Felix and Blumenstiel, Benedikt and Scheurer, Erik and Sedona, Rocco and Maurogiovanni, Stefano and Bosmans, Jente and Dionelis, Nikolaos and Marsocci, Valerio and Kopp, Niklas and others},
165
- journal={arXiv preprint arXiv:2504.11171},
166
  year={2025}
167
  }
168
  ```
 
9
  - IBM
10
  - ESA
11
  ---
12
+ [![Website](https://img.shields.io/badge/Website-TerraMind-0F62FE)](https://www.fast-eo.eu/terramind)
13
  [![arXiv](https://img.shields.io/badge/arXiv-2504.11171-b31b1b?logo=arxiv)](https://arxiv.org/abs/2504.11171)
14
+ [![Docs](https://img.shields.io/badge/Docs-EE4B2B?logo=materialformkdocs&logoColor=fff)](https://terrastackai.github.io/terratorch/stable/guide/terramind/)
15
  [![Examples](https://img.shields.io/badge/GitHub-Examples-0F62FE?logo=github)](https://github.com/IBM/terramind)
16
+ [![Code](https://img.shields.io/badge/code-TerraTorch-EE4B2B?logo=github)](https://github.com/terrastackai/terratorch/tree/main/terratorch/models/backbones/terramind)
17
  [![ESAblog](https://img.shields.io/badge/Blog-ESA-113145)](https://www.esa.int/Applications/Observing_the_Earth/ESA_and_IBM_collaborate_on_TerraMind)
18
  [![IBMblog](https://img.shields.io/badge/Blog-IBM-0F62FE)](https://research.ibm.com/blog/terramind-esa-earth-observation-model)
19
 
 
40
  We benchmarked TerraMind against other geospatial foundation models using the PANGAEA benchmark.
41
  TerraMind consistently achieved state-of-the-art performance, surpassing existing models in various downstream tasks such as land use segmentation, water body mapping, and vegetation assessments.
42
  The evaluation highlights its effectiveness in handling diverse Earth Observation scenarios.
43
+ We present additional experiments in our [paper](https://arxiv.org/abs/2504.11171).
44
 
45
 
46
  ## Usage
47
 
48
+ TerraMind is fully integrated into the fine-tuning package [TerraTorch](https://terrastackai.github.io/terratorch/).
49
  This makes it easy to initialize the pre-trained model or fine-tune it via PyTorch Lightning.
50
  The weights are automatically downloaded from Hugging Face.
51
 
 
116
  )
117
  ```
118
 
119
+ If you use TiM models, we recommend using the [pre-training statistics](https://github.com/terrastackai/terratorch/blob/main/terratorch/models/backbones/terramind/model/terramind_register.py#L145) for standardization.
120
 
121
  ### Generations
122
 
 
156
 
157
  ## Citation
158
 
159
+ If you use TerraMind in your research, please cite the [TerraMind](https://arxiv.org/abs/2504.11171) paper.
160
 
161
  ```text
162
  @article{jakubik2025terramind,
163
  title={TerraMind: Large-Scale Generative Multimodality for Earth Observation},
164
  author={Jakubik, Johannes and Yang, Felix and Blumenstiel, Benedikt and Scheurer, Erik and Sedona, Rocco and Maurogiovanni, Stefano and Bosmans, Jente and Dionelis, Nikolaos and Marsocci, Valerio and Kopp, Niklas and others},
165
+ journal={IEEE/CVF International Conference on Computer Vision (ICCV)},
166
  year={2025}
167
  }
168
  ```