kgreenewald commited on
Commit
d55a7a7
·
verified ·
1 Parent(s): c5ee93f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +125 -169
README.md CHANGED
@@ -1,202 +1,158 @@
1
  ---
2
- base_model: ibm-granite/granite-3.2-8b-instruct
3
- library_name: peft
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
17
 
 
 
18
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
37
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
 
103
  ## Evaluation
104
 
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
 
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
 
202
- - PEFT 0.14.1.dev0
 
 
1
  ---
2
+ license: apache-2.0
3
+ language:
4
+ - en
5
+ pipeline_tag: text-generation
6
+ library_name: transformers
7
  ---
8
 
9
+ # Granite 3.2 8B Instruct - Requirement Checker
10
 
11
+ Welcome to Granite Experiments!
12
 
13
+ Think of Experiments as a preview of what's to come. These projects are still under development, but we wanted to let the open-source community take them for spin! Use them, break them, and help us build what's next for Granite – we'll keep an eye out for feedback and questions in the [Community section](https://huggingface.co/ibm-granite/granite-uncertainty-3.0-8b-lora/discussions). Happy exploring!
14
 
15
 
16
+ ## Model Summary
17
 
18
+ **Granite 3.2 8b Instruct - Requirement Checker** is an Activated LoRA (aLoRA) adapter for [ibm-granite/granite-3.2-8b-instruct](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct),
19
+ adding the capability to check if specified requirements were satisfied by the last model generation. Only one requirement is checked at a time (but can be checked in parallel).
20
 
21
+ - **Developer:** IBM Research
22
+ - **Model type:** Activated LoRA adapter for [ibm-granite/granite-3.2-8b-instruct](https://huggingface.co/ibm-granite/granite-3.2-8b-instruct)
23
+ - **License:** [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0)
24
 
25
+ ## Activated LoRA
26
+ Activated LoRA (aLoRA) is a new low rank adapter architecture that allows for reusing existing base model KV cache for more efficient inference.
27
 
28
+ Whitepaper
29
 
30
+ [IBM Research Blogpost](https://research.ibm.com/blog/inference-friendly-aloras)
 
 
 
 
 
 
31
 
32
+ [Github - needed to run inference](https://github.com/IBM/activated-lora)
33
 
 
34
 
 
 
 
35
 
36
+ ## Usage
37
 
38
  <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
+ ### Intended use
41
+
42
+ This is an experimental aLoRA testing new functionality being developed for IBM's Granite LLM family. We are welcoming the community to test it out and give us feedback, but we are NOT recommending this model be used for real deployments at this time. Stay tuned for more updates on the Granite roadmap.
43
+
44
+ **Usage steps** Given a generation task and a set of requirements:
45
+
46
+ 1. Use the base model to generate a response as normal (via the `assistant` role), with the prompt describing the task followed by "Requirements:"" and the list of active requirements.
47
+ 2. Repeat the requirement to be checked.
48
+ 3. The Requirement Checker model will respond with "Y" or "N", where "Y" means the requirement is satisfied. Note, any additional text after the "Y/N" can be ignored. You can curb additional generation by setting "max token length" = 1.
49
+
50
+
51
+ ### Quickstart Example
52
+
53
+ The following code describes how to use the Granite Uncertainty model to answer questions and obtain intrinsic calibrated certainty scores.
54
+
55
+ The code required for Activated LoRA is on [Github](https://github.com/IBM/activated-lora)
56
+
57
+ Prior to running the code below, either clone the repo or install as
58
+
59
+ ```
60
+ pip install git+ssh://[email protected]:IBM/activated-lora.git
61
+ ```
62
+
63
+ Note that two generation options are shown - one illustrating the KV cache reuse ability of aLoRA (faster), and another showing the simplest generation call (slower).
64
+ ```python
65
+ import torch,os
66
+ from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
67
+ from alora.peft_model_alora import aLoRAPeftModelForCausalLM
68
+ from alora.config import aLoraConfig
69
+ from alora.tokenize_alora import tokenize_alora
70
+
71
+ REUSE_CACHE = False
72
+
73
+ token = os.getenv("HF_MISTRAL_TOKEN")
74
+ BASE_NAME = "ibm-granite/granite-3.2-8b-instruct"
75
+ LORA_NAME = "ibm-granite/granite-3.2-8b-alora-requirement-check"
76
+ device=torch.device('cuda' if torch.cuda.is_available() else 'cpu')
77
+
78
+ # Load model
79
+ tokenizer = AutoTokenizer.from_pretrained(BASE_NAME,padding_side='left',trust_remote_code=True, token=token)
80
+ model_base = AutoModelForCausalLM.from_pretrained(BASE_NAME,device_map="auto")
81
+ model_req_check = aLoRAPeftModelForCausalLM.from_pretrained(model_base, LORA_NAME)
82
+
83
+ question = "What is IBM Research?"
84
+ print("Question:" + question)
85
+ question_chat = [
86
+ {
87
+ "role": "user",
88
+ "content": question
89
+ },
90
+ ]
91
+
92
+ # Generate answer with base model
93
+ input_text = tokenizer.apply_chat_template(question_chat,tokenize=False,add_generation_prompt=True)
94
+ # Remove default system prompt
95
+ len_sys = len(input_text.split("<|start_of_role|>user"))
96
+ input_text = input_text[len_sys:]
97
+
98
+ #tokenize
99
+ inputs = tokenizer(input_text, return_tensors="pt")
100
+ if REUSE_CACHE: #save KV cache for future aLoRA call
101
+ prompt_cache = DynamicCache()
102
+ with model_req_check.disable_adapter():
103
+ output_dict = model_base.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=600,past_key_values = prompt_cache, return_dict_in_generate=True)
104
+ answer_cache = output_dict.past_key_values
105
+ output = output_dict.sequences
106
+ else: #simplest call
107
+ with model_req_check.disable_adapter():
108
+ output = model_req_check.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=600)
109
+ output_text = tokenizer.decode(output[0])
110
+ answer = output_text.split("assistant<|end_of_role|>")[1]
111
+ print("Answer: " + answer)
112
+
113
+ # Generate requirement check
114
+ req_generation_prompt = "<|start_of_role|>check_requirement<|end_of_role|>"
115
+ req_chat = question_chat + [
116
+ {
117
+ "role": "assistant",
118
+ "content": answer
119
+ },
120
+ ]
121
+
122
+ req_text = tokenizer.apply_chat_template(req_chat,tokenize=False)
123
+ req_text = req_text[len_sys:]
124
+ # tokenize and generate
125
+ inputs, alora_offsets = tokenize_alora(tokenizer,req_text, req_generation_prompt)
126
+
127
+ if REUSE_CACHE: #reuse KV cache from earlier answer generation
128
+ output = model_req_check.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=1,alora_offsets=alora_offsets,past_key_values=answer_cache)
129
+ else: #simplest call
130
+ output = model_req_check.generate(inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), max_new_tokens=1,alora_offsets=alora_offsets)
131
+ output_text = tokenizer.decode(output[0])
132
+
133
+ # Extract score
134
+ req_score = output_text[-1]
135
+ print("Requirement Satisfied: " + req_score)
136
+ ```
137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138
 
139
  ## Evaluation
140
 
141
+ The model was evaluated on held-out synthetic data. Classification error rate is 3.5%.
 
 
 
 
 
 
 
 
142
 
 
143
 
 
144
 
145
+ ## Training Details
146
+ The **Granite Requirement Checker 3.2 8b** model is an aLoRA adapter finetuned to check whether the specified requirement was satisfied by the last assisstant turn generation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
 
 
148
 
 
149
 
150
+ ### Training Data
151
+ Synthetic data generated by Mixtral 8x22b.
152
 
 
153
 
 
154
 
155
+ ## Model Card Authors
 
156
 
157
+ Kristjan Greenewald
158
+ Bo Wu